NPFL099 - Statistical dialogue systems

Spoken language understanding I

Filip Jurčíček

Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

Version: 12/03/2013

Outline

- Spoken language understanding
- Meaning representation in a dialogue system
- Parsers
 - Phoenix parser
 - Transformation based learning for SLU
- Data preprocessing

Spoken language understanding

- Definition
 - SLU converts recognised speech into meaning

- For SDS, only basic basic meaning is necessary
 - I am looking for a Chinese restaurant
 - inform(venue=restaurant)&inform(food=Chinese)
- Mostly in the form of dialogue acts

Meaning representation

- Dialogue acts are composed of:
 - a dialogue act type:
 - inform, request, confirm, select, affirm, deny, hello, bye, repeat, help, request_alternatives, etc.
 - semantic information:
 - attribute value pairs
 - domain dependent
 - usually defined by ontology
 - venue=restaurant
 - food=Chinese

SLU in an SDS

inform(venue=restaurant)&inform(food=Chinese)

NPFL099 2013LS 5/47

Example: TownInfo application

- Queries about
 - restaurants, bars, and hotels
- Search constraints
 - area, price range, stars
- Provides
 - address, postcode, phone number

Typical conversation

Turn	Transcription	Dialogue act
System	Hello. How may I help you?	hello()
User	Hi, I am looking for a restaurant.	inform(venue=restaurant)
System	What type of food would you like?	request(food)
User	I want Italian.	inform(food=Italian)
System	Did you say Italian	confirm(food=Italian)

Real user input

User	0.4 hi I am looking for a restaurant 0.2 uhm am looking for a bar	0.7 inform(venue=restaurant) 0.3 inform(venue=bar)
System	Did you say that you are looking for a restaurant?	confirm(venue=restaurant)

Example: TrainInfo application

- Queries about
 - departures, arrivals
- Search constraints
 - station of a query, from, to, through, planned time
- Provides
 - platform number, delay, real time of departure, real time of arrival

Frame based approach

- Utterances are composed of frames
- Frame(s) is a hierarchical structure

- Frame is composed of
 - Slots
 - Or other Frames
- All of this is equivalent to CFG

Example: Semantic frames

DARPA Communicator

```
clause:
{ display
    topic:
    { flight
        number: pl
        predicate:
        { from
            topic: { city name:Boston }
        predicate:
        { to
            topic: { city name:Denver }
        }
}
```

interpretation of "Show me flights from Boston to Denver"

Design of meaning representation

- Aim to capture all important aspects in an utterance
- Transform ambiguous natural redundant input into a unambiguous formal representation
- Every SDS has usually its own meaning representation
 - a set of DAs

Information State Update

 Meaning representation provides instruction to SDS's how to update dialogue state

- Dialogue state
 - A collection of variables used to track progress in a dialogue

Dialogue state

Dialogue state is used to track the progress of the dialogue

- Turn 1:
 - S: How may I help you?
 - Dialogue state:
 - venue = None
 - food = None
 - price = None

User says

Dialogue state is used to track the progress of the dialogue

- Turn 1:
 - S: How may I help you?
 - Dialogue state:
 - venue = None
 - food = None
 - price = None
 - U: inform(venue = restaurant)

Dialogue state update

Dialogue state is used to track the progress of the dialogue

- Turn 1:
 - S: How may I help you?

Dialogue state update

- Dialogue state:
 - venue = restaurant
 - food = None
 - price = None
- U: inform(venue = restaurant)

Dialogue act set

- Slot level DAs
 - inform I want Chinese restaurant
 - deny I do not want Chines
 - request What is the phone number
 - confirm Is it cheap
 - select Is it cheap or expensive (S)

- Others
 - hello
 - bye
 - thankyou

Dialogue act set

- Others
 - ack back-channel: uhm, fine
 - affirm Yes
 - negate No
 - reqalts Do you have anything else
 - reqmore Can you give me more details
 - repeat
 - help
 - restart
 - null does nothing, uninterpretable input

Challenges of SLU

- Repetitions
 - Erm, I want I want something in the city centre.
- Irrelevant content
 - If it is not too much trouble I would be very grateful of some one could tell me whether there is a Chinese restaurant which is not very expensive and close to the city centre, thank you.
- Missing content
 - Chinese city centre

Types of SLU components

- Handcrafted
 - Rule and grammar based
- Data driven
 - Rules and grammar based
 - Kernel techniques such as SVM
 - Probabilistic
 - FSM
 - Logistic Regression
 - CRF
 - DBN

Phoenix parser

- Allows for:
 - Robust parsing
 - Parses what is important
 - Ignore irrelevant bits
 - Follows frame based approach

- Based on robust combination of multiple CFGs
- Allows garbage between consecutive CFGs
- Greedy
 - Tries to match as little CFG as possible
 - Prefers frames where all slots are presented

Phoenix grammar example

reserve hotel room
FRAME: Hotel
NETS:

[hotel_request]
[hotel_name]
[hotel_period]
[hotel_location]
[Room_Type]
[Arrive_Date]
[want]

•

```
[hotel_request]
  (*[want] *a HOTEL)
HOTEL
  (hotel)
  (accommodations)
  (place to stay)
;
```

```
[want]
  (*I WANT)
  I
  (i)
  (we)
WANT
  (want)
  (would like)
;
```

Grammar notation

- The grammar is composed of slots
 - slot names are in square brackets
 - in between are strings of words

- The words there are of three types:
 - standard words: these are natural language words, they are always written in lower case
 - **slot names:** slots are defined recursively, you can use slots within other slots
 - variables: are all-caps words, they behave like slots but are only defined within particular slot definition

Grammar notation

1

- "*" indicates 0 or 1 word repetitions
- "+" indicates 1 or more repetitions
- "+*" indicates 0 or more repetitions

```
# reserve hotel room
FRAME: Hotel
NETS:
  [hotel_request]
  [hotel_name]
  [hotel_period]
  [hotel_location]
  [Room_Type]
  [Arrive_Date]
  [want]
```

1

```
[hotel_request]
  (*[want] *a HOTEL)
HOTFI
  (hotel)
  (accommodations)
  (place to stay)
1
[want]
  (*I WANT)
  (i)
  (we)
WANT
  (want)
  (would like)
```

Phoenix parser output

- Input
 - I would like a hotel room
- Output
 - [hotel_request]([want](i would like) a hotel room)

Phoenix summary

- Phoenix
 - CFGs can be shared
 - only accepts things in the grammar
 - can be restrictive, e.g. not accepting valid input

Transformation based learning

- Based on an idea of inferring a set of self correcting rules
- Initially used in part-of-speech tagging

- Advantages
 - comparable to the state-of-the-art statistical methods
 - results in a small compact set rules
 - it is fast !!! / it is not probabilistic

F. Jurčíček, M. Gašić, S. Keizer, F. Mairesse, B. Thomson, K. Yu, S. Young: Transformation-based learning for semantic parsing. In: Proc. Interspeech, Brighton, United Kingdom, 2009.

Basic idea on POS tagging

- Input
 - Example input for the Brill tagger
- Output
 - Example/NN input/NN for/IN the/DT Brill/NNP tagger/NN
- Uses an ordered list of rules

```
    if w_t = example then t_t = NN
    if w_t = the then t_t = DT
    if w_t = for then t_t = IN
    ...
    if w_t = input then t_t = VB
    ...
    if t_t = VB & w_{t-1} = example & t_{t+1} = IN then t_t = NN
NPFL099 2013LS 27/47
```

Training procedure

TBL for SLU

- Transforms an initial semantic hypothesis into the correct semantics
 - by applying an ordered list of transformation rules
- Initial semantic hypotheses
 - inform()
- In each iteration
 - a transformation rule corrects some of the remaining errors in the semantics

Rules

- Have two components
 - trigger
 - transformation
- Trigger
 - matched against both the utterance and the semantic hypothesis
- Transformation
 - only if the trigger successfully matched
 - it is applied to the current hypothesis

Trigger

- Trigger contains one or more conditions as follows:
 - the utterance contains N-gram N
 - the dialogue act type equals D
 - and the semantics contains slot S
 - all included conditions must be satisfied
- N-gram triggers can be
 - unigrams, bigrams, trigrams
 - skip-ping bigrams which can skip up to 3 words
 - looking * * * bar

Transformation

- Available operations
 - replace the dialogue act type
 - add a slot
 - delete a slot,
 - replace a slot

Trigger	Transformation
I want	replace DAT by ``inform"
can * give & DAT=inform	replace DAT by ``request"
cheap	add the slot ``pricerange=cheap"
centre	add the slot ``area=centre"
near	replace the slot ``area=*" by ``near=*"

Parsing example

- Text:
 - I am at the west side shopping centre could you tell me a nearby hotel
- Initial semantics
 - DAT = inform

#	trigger	transformation
1	hotel	add the slot type=hotel
2	centre	add the slot area=centre

- Partial semantics
 - DAT = inform
 - type = hotel
 - area = centre

Parsing example

- Text:
 - I am at the west side shopping centre could you tell me a nearby hotel
- Partial semantics
 - DAT = inform
 - type = hotel
 - area = centre

#	trigger	transformation
3	west side shopping" & area=centre	replace the slot "area=centre" by "near=west side shopping"

- Final semantics
 - DAT = inform
 - type = hotel
 - near = west side shopping

Long-range dependencies

• Bigrams and trigrams are not good in capturing long range dependencies between words

- In general, N-grams fragment data
 - I am looking for a restaurant
 - I am looking for a cheap restaurant
 - I am looking for a cheap beautiful comfortable restaurant

- Use dependency trees
 - long-range dependencies from an utterance tend to be local in a dependency tree

Dependency tree

- Each word is viewed as the dependant of one other word, with the exception of the root.
- Dependency links represent grammatical relationships between words

show the cheapest flights from Boston to Miami arriving before 7pm on Monday NPFL099 2013LS 36/47

Features from a dep. tree

- Bigrams, trigrams, ...
 - following the structure of the tree

Training procedure

Input: a set of (utterance, semantic tree) pairs

Output: a classifier of the input utterance

- 1. Assign initial semantics to each utterance.
- 2. Repeat as long as the number of errors on the training set decreases:
 - a) Generate all rules which correct at least one error in the training set.
 - b) Measure the number of errors corrected minus the number of errors introduced by each rule.
 - c) Select the rule with the largest number of corrected errors.
 - d) Stop if the number of corrected errors is smaller than threshold \$T\$.
 - e) Add the selected rule to the end of the rule list and apply it to the current state of the training set.

Text input pre-processing

- Remove
 - uhm, err, uh output from ASR
- Convert
 - $I'm \rightarrow I am$
 - ...

Text input pre-processing

• Remove filler words

- Replace surface forms of slot values with their category labels, e.g. slot names
 - affirm(area="central",type="hotel")⁻⁻
 - yes i'd like a hotel in the centre of town
- to
 - affirm(area=AREA-0,type=TYPE-0)
 - yes i'd like a TYPE-0 in the AREA-0 of town
 - TYPE-0 = hotel
 - AREA-0 = centre

Text input pre-processing

- For Phoenix, it does not matter
 - it is handcrafted anyway

- In the case of data driven approaches
 - it significantly helps for low price
 - e.g. $93.2\% \rightarrow 94.2\%$ in F-measure in TownInfo domain

Summary

- Meaning representation in a dialogue system
- Parsers
 - Phoenix parser
 - Transformation based learning for SLU
- Data preprocessing
 - category label substitution
- Processing multiple hypotheses

Thank you!

Filip Jurčíček

Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

Processing multiple hypotheses

- ASR provides N-best list
 - 0.33 I am looking for a bar
 - 0.26 I am looking for the bar
 - 0.11 I am looking for a car
 - 0.09 I am looking for the car
 - • •
- How do we get?
 - 0.59 inform(task=find, venue=bar)
 - 0.20 null()
 - • •

Processing multiple hypotheses

- Semantic parser: P(d|w)
- Automatic speech recognition: P(w|a)

• We want to get:

P(d|a)

- where
 - d dialogue act
 - w word sequence
 - a audio signal

Processing multiple hypotheses

- ASR provides multiple word sequence hypotheses
 - we have to sum over them

$$P(d|a) = \sum_{w} P(d|w) P(w|a)$$

- Algorithm
 - Compute semantic interpretation for every word seq.
 - Weight them by the prob. of the word sequence
 - Merge the same dialogue acts and sum their probs.

Alternative

- ASR provides P(w|a)
 - map directly from probability distribution to dialogue acts

$$P(d|a) = P(d|P(w|a))$$

$$P(d|a) \approx e^{\theta^T \cdot \Phi_d(P(w|a))}$$

- This approach
 - will be explained in the next lecture