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Outline

● Spoken language understanding

● Meaning representation in a dialogue system

● Parsers

● Phoenix parser
● Transformation based learning for SLU

● Data preprocessing



 NPFL099 2013LS   3/47

Spoken language understanding

● Definition
● SLU converts recognised speech into meaning

● For SDS, only basic basic meaning is necessary
● I am looking for a Chinese restaurant
● inform(venue=restaurant)&inform(food=Chinese)

● Mostly in the form of dialogue acts
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Meaning representation

● Dialogue acts are composed of:
● a dialogue act type: 

– inform, request, confirm, select, affirm, deny, hello, bye, 
repeat, help, request_alternatives, etc.

● semantic information: 
– attribute value pairs
– domain dependent
– usually defined by ontology

– venue=restaurant
– food=Chinese
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SLU in an SDS

User Automatic speech 
recognition

Spoken language
understanding

Dialogue act

Audio signal Word sequence

inform(venue=restaurant)&inform(food=Chinese)
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Example: TownInfo application

● Queries about

– restaurants, bars, and hotels
● Search constraints 

– area, price range, stars
● Provides

– address, postcode, phone number
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Typical conversation

Real user input

Turn Transcript ion Dialogue act

System Hello. How may I help you? hello()

User Hi, I am looking for a restaurant. inform(venue=restaurant)

System What type of food would you like? request(food)

User I want Italian. inform(food=Italian)

System Did you say Italian confirm(food=Italian)

User 0.4 hi I am looking for a restaurant
0.2 uhm am looking for a bar

0.7 inform(venue=restaurant)
0.3 inform(venue=bar)

System Did you say that you are looking for a 
restaurant?

confirm(venue=restaurant)
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Example: TrainInfo application

● Queries about

– departures, arrivals 
● Search constraints 

– station of a query, from, to, through, planned time
● Provides

● platform number, delay, real time of departure, real 
time of arrival
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Frame based approach

● Utterances are composed of frames
● Frame(s) is a hierarchical structure 

● Frame is composed of 
● Slots
● Or other Frames

● All of this is equivalent to CFG
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Example: Semantic frames

DARPA Communicator

clause:
{ display

topic:
{ flight

number: pl
predicate:
{ from

topic: { city name:Boston }
}
predicate:
{ to

topic: { city name:Denver }
}

}
}

interpretation of “Show me flights from Boston to Denver”
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Design of meaning representation

● Aim to capture all important aspects in an 
utterance

● Transform ambiguous natural redundant input 
into a unambiguous formal representation

● Every SDS has usually its own meaning 
representation
● a set of DAs
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Information State Update 

● Meaning representation provides instruction to 
SDS's how to update dialogue state

● Dialogue state
● A collection of variables used to track progress 

in a dialogue
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Dialogue state

Dialogue state is used to track the progress of the 
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state: 
– venue = None
– food = None
– price = None
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User says

Dialogue state is used to track the progress of the 
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state: 
– venue = None
– food = None
– price = None

● U: inform(venue = restaurant)
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Dialogue state update

Dialogue state update

Dialogue state is used to track the progress of the 
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state: 
– venue = restaurant
– food = None
– price = None

● U: inform(venue = restaurant)
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Dialogue act set

● Slot level DAs
● inform  – I  want Chinese restaurant
● deny – I do not want Chines 
● request – What is the phone number 
● confirm – Is it cheap
● select – Is it cheap or expensive (S)

● Others
● hello
● bye
● thankyou
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Dialogue act set

● Others
● ack – back-channel: uhm, fine
● affirm – Yes     
● negate – No 
● reqalts – Do you have anything else
● reqmore – Can you give me more details
● repeat
● help
● restart
● null – does nothing, uninterpretable input
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Challenges of SLU

● Repetitions
● Erm, I want I want something in the city centre.

● Irrelevant content
● If it is not too much trouble I would be very grateful of 

some one could tell me whether there is a Chinese 
restaurant which is not very expensive and close to 
the city centre, thank you.

● Missing content
● Chinese city centre
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Types of SLU components

● Handcrafted
● Rule and grammar based

● Data driven
● Rules and grammar based
● Kernel techniques such as SVM
● Probabilistic

– FSM
– Logistic Regression
– CRF
– DBN
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Phoenix parser

● Allows for:
● Robust parsing
● Parses what is important
● Ignore irrelevant bits
● Follows frame based approach

● Based on robust combination of multiple CFGs

● Allows garbage between consecutive CFGs 

● Greedy
● Tries to match as little CFG as possible
● Prefers frames where all slots are presented
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Phoenix grammar example

# reserve hotel room
FRAME: Hotel
NETS:
  [hotel_request]
  [hotel_name]
  [hotel_period]
  [hotel_location]
  [Room_Type]
  [Arrive_Date]
  [want]
;

[hotel_request]
  (*[want] *a HOTEL)
HOTEL
  (hotel)
  (accommodations)
  (place to stay)
;

[want]
  (*I WANT)
  I
  (i)
  (we)
WANT
  (want)
  (would like)
;
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Grammar notation

● The grammar is composed of slots
● slot names are in square brackets
● in between are strings of words

● The words there are of three types:
● standard words: these are natural language words, 

they are always written in lower case
● slot names: slots are defined recursively, you can 

use slots within other slots
● variables: are all-caps words, they behave like slots 

but are only defined within particular slot definition
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Grammar notation
● "*" indicates 0 or 1 word repetitions

● "+" indicates 1 or more repetitions

● "+*" indicates 0 or more repetitions

# reserve hotel room

FRAME: Hotel

NETS:

  [hotel_request]

  [hotel_name]

  [hotel_period]

  [hotel_location]

  [Room_Type]

  [Arrive_Date]

  [want]

;

[hotel_request]
  (*[want] *a HOTEL)
HOTEL
  (hotel)
  (accommodations)
  (place to stay)
;

[want]
  (*I WANT)
  I
  (i)
  (we)
WANT
  (want)
  (would like)
;
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Phoenix parser output

● Input
● I would like a hotel room

● Output
● [hotel_request]( [want]( i would like) a hotel room)



 NPFL099 2013LS   25/47

Phoenix summary

● Phoenix
● CFGs can be shared
● only accepts things in the grammar
● can be restrictive, e.g. not accepting valid input
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Transformation based learning

● Based on an idea of inferring a set of self 
correcting  rules

● Initially used in part-of-speech tagging

● Advantages
● comparable to the state-of-the-art statistical methods
● results in a small compact set rules
● it is fast !!! / it is not probabilistic

F. Jurčíček, M. Gašić, S. Keizer, F. Mairesse, B. Thomson, K. Yu, S. Young: 
Transformation-based learning for semantic parsing. In: Proc. Interspeech, Brighton, 
United Kingdom, 2009.
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Basic idea on POS tagging
● Input

● Example input for the Brill tagger

● Output

● Example/NN input/NN for/IN the/DT Brill/NNP tagger/NN

● Uses an ordered list of rules

1. if w_t = example then t_t = NN

2. if w_t = the then t_t = DT

3. if w_t = for then t_t = IN

4.  ..

5. if w_t = input then t_t = VB

6. ..

7. if t_t = VB & w_{t-1} = example & t_{t+1} = IN then t_t = NN 
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Training procedure
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TBL for SLU

● Transforms an initial semantic hypothesis into the 
correct semantics 
● by applying an ordered list of transformation rules

● Initial semantic hypotheses
● inform()

● In each iteration 
● a transformation rule corrects some of the remaining 

errors in the semantics
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Rules

● Have two components
● trigger
● transformation

● Trigger  
● matched against both the utterance and the semantic 

hypothesis

● Transformation 
● only if  the trigger successfully matched
● it is applied to the current hypothesis 
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Trigger

● Trigger contains one or more conditions as 
follows: 
● the utterance contains N-gram N
● the dialogue act type  equals D
● and the semantics contains slot S
● all included conditions must be satisfied

● N-gram triggers can be 
● unigrams, bigrams, trigrams 
● skip-ping bigrams which can skip up to 3 words

– looking * * * bar



 NPFL099 2013LS   32/47

Transformation

● Available operations
● replace the dialogue act type
● add a slot
● delete a slot,
● replace a slot

Trigger Transformation

I want replace DAT  by ``inform''

can * give & DAT=inform replace DAT by ``request''

cheap add the slot ``pricerange=cheap''

centre add the slot ``area=centre''

near replace the slot ``area=*'' by ``near=*''
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Parsing example

● Text:
● I am at the west side shopping centre could you tell me a nearby hotel

● Initial semantics
● DAT = inform

● Partial semantics
● DAT = inform
● type = hotel
● area = centre

# trigger transformation

1 hotel add the slot type=hotel

2 centre add the slot area=centre
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Parsing example
● Text:

● I am at the west side shopping centre could you tell me a nearby hotel

● Partial semantics

● DAT = inform

● type = hotel

● area = centre

● Final semantics

● DAT = inform

● type = hotel

● near = west side shopping

# trigger transformation

3 west side shopping” & 
area=centre

replace the slot “area=centre” by “near=west 
side shopping”
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Long-range dependencies

● Bigrams and trigrams are not good in capturing long 
range dependencies between words

● In general, N-grams fragment data
● I am looking for a restaurant
● I am looking for a cheap restaurant
● I am looking for a cheap beautiful comfortable restaurant

● Use dependency trees
● long-range dependencies from an utterance tend to 

be local in a dependency tree
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Dependency tree
● Each word is viewed as the dependant of one other word, 

with the exception of the root.

● Dependency links represent grammatical relationships 
between words

            show the cheapest flights from Boston to Miami arriving before 7pm on Monday
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Features from a dep. tree

● Bigrams, trigrams, ... 
● following the structure of the tree
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Training procedure

Input:  a set of (utterance, semantic tree) pairs

Output:  a classifier of the input utterance

1. Assign initial semantics to each utterance.

2. Repeat as long as the number of errors on the training set 
decreases:

a) Generate all rules which correct at least one error in the training set.

b) Measure the number of errors corrected minus the number of errors 
introduced by each rule.

c) Select the rule with the largest number of corrected errors.

d) Stop if the number of corrected errors is smaller than threshold $T$.

e) Add the selected rule to the end of the rule list and apply it to the 
current state of the training set.
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Text input pre-processing

● Remove 
● uhm, err, uh output from ASR

● Convert  
● I'm → I am
● …
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Text input pre-processing

● Remove filler words

● Replace surface forms of slot values with their category 
labels, e.g. slot names
● affirm(area="central",type="hotel") 
● yes i'd like a hotel in the centre of town

● to 

● affirm(area=AREA-0,type=TYPE-0) 
● yes i'd like a TYPE-0 in the AREA-0 of town

● TYPE-0 = hotel
● AREA-0 = centre

It was used on CUED DAs.



 NPFL099 2013LS   41/47

Text input pre-processing

● For Phoenix, it does not matter 
● it is handcrafted anyway

● In the case of data driven approaches 
● it significantly helps for low price
● e.g. 93.2% → 94.2% in F-measure in TownInfo 

domain
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Summary

● Meaning representation in a dialogue system

● Parsers

● Phoenix parser
● Transformation based learning for SLU

● Data preprocessing

● category label substitution
● Processing multiple hypotheses
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Thank you!

Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague

Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

http://ufal.mff.cuni.cz/~jurcicek


 NPFL099 2013LS   44/47

Processing multiple hypotheses

● ASR provides N-best list
● 0.33 – I am looking for a bar

● 0.26 – I am looking for the bar

● 0.11 – I am looking for a car

● 0.09 – I am looking for the car

● ...

● How do we get?
● 0.59 – inform(task=find, venue=bar)

● 0.20 – null()

● ...
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Processing multiple hypotheses

● Semantic parser: 
● Automatic speech recognition:

● We want to get:

● where 
● d – dialogue act
● w – word sequence
● a – audio signal

P (d∣w)

P (w∣a )

P (d∣a )
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Processing multiple hypotheses

● ASR provides multiple word sequence 
hypotheses
● we have to sum over them

● Algorithm
● Compute semantic interpretation for every word seq.
● Weight them by the prob. of the word sequence
● Merge the same dialogue acts and sum their probs.

P (d∣a )=∑w
P (d∣w)P(w∣a)
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Alternative

● ASR provides 
● map directly from probability distribution to dialogue 

acts

● This approach
● will be explained in the next lecture

P (d∣a )=P (d∣P (w∣a ))

P (w∣a )

P (d∣a )≈eθ
T
⋅Φd (P(w∣a))
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