
 NPFL099 2013LS 1/47

NPFL099 - Statistical dialogue systems

Spoken language understanding I

Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague

Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

Version: 12/03/2013

http://ufal.mff.cuni.cz/~jurcicek

 NPFL099 2013LS 2/47

Outline

● Spoken language understanding

● Meaning representation in a dialogue system

● Parsers

● Phoenix parser
● Transformation based learning for SLU

● Data preprocessing

 NPFL099 2013LS 3/47

Spoken language understanding

● Definition
● SLU converts recognised speech into meaning

● For SDS, only basic basic meaning is necessary
● I am looking for a Chinese restaurant
● inform(venue=restaurant)&inform(food=Chinese)

● Mostly in the form of dialogue acts

 NPFL099 2013LS 4/47

Meaning representation

● Dialogue acts are composed of:
● a dialogue act type:

– inform, request, confirm, select, affirm, deny, hello, bye,
repeat, help, request_alternatives, etc.

● semantic information:
– attribute value pairs
– domain dependent
– usually defined by ontology

– venue=restaurant
– food=Chinese

 NPFL099 2013LS 5/47

SLU in an SDS

User Automatic speech
recognition

Spoken language
understanding

Dialogue act

Audio signal Word sequence

inform(venue=restaurant)&inform(food=Chinese)

 NPFL099 2013LS 6/47

Example: TownInfo application

● Queries about

– restaurants, bars, and hotels
● Search constraints

– area, price range, stars
● Provides

– address, postcode, phone number

 NPFL099 2013LS 7/47

Typical conversation

Real user input

Turn Transcript ion Dialogue act

System Hello. How may I help you? hello()

User Hi, I am looking for a restaurant. inform(venue=restaurant)

System What type of food would you like? request(food)

User I want Italian. inform(food=Italian)

System Did you say Italian confirm(food=Italian)

User 0.4 hi I am looking for a restaurant
0.2 uhm am looking for a bar

0.7 inform(venue=restaurant)
0.3 inform(venue=bar)

System Did you say that you are looking for a
restaurant?

confirm(venue=restaurant)

 NPFL099 2013LS 8/47

Example: TrainInfo application

● Queries about

– departures, arrivals
● Search constraints

– station of a query, from, to, through, planned time
● Provides

● platform number, delay, real time of departure, real
time of arrival

 NPFL099 2013LS 9/47

Frame based approach

● Utterances are composed of frames
● Frame(s) is a hierarchical structure

● Frame is composed of
● Slots
● Or other Frames

● All of this is equivalent to CFG

 NPFL099 2013LS 10/47

Example: Semantic frames

DARPA Communicator

clause:
{ display

topic:
{ flight

number: pl
predicate:
{ from

topic: { city name:Boston }
}
predicate:
{ to

topic: { city name:Denver }
}

}
}

interpretation of “Show me flights from Boston to Denver”

 NPFL099 2013LS 11/47

Design of meaning representation

● Aim to capture all important aspects in an
utterance

● Transform ambiguous natural redundant input
into a unambiguous formal representation

● Every SDS has usually its own meaning
representation
● a set of DAs

 NPFL099 2013LS 12/47

Information State Update

● Meaning representation provides instruction to
SDS's how to update dialogue state

● Dialogue state
● A collection of variables used to track progress

in a dialogue

 NPFL099 2013LS 13/47

Dialogue state

Dialogue state is used to track the progress of the
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state:
– venue = None
– food = None
– price = None

 NPFL099 2013LS 14/47

User says

Dialogue state is used to track the progress of the
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state:
– venue = None
– food = None
– price = None

● U: inform(venue = restaurant)

 NPFL099 2013LS 15/47

Dialogue state update

Dialogue state update

Dialogue state is used to track the progress of the
dialogue

● Turn 1:
● S: How may I help you?

● Dialogue state:
– venue = restaurant
– food = None
– price = None

● U: inform(venue = restaurant)

 NPFL099 2013LS 16/47

Dialogue act set

● Slot level DAs
● inform – I want Chinese restaurant
● deny – I do not want Chines
● request – What is the phone number
● confirm – Is it cheap
● select – Is it cheap or expensive (S)

● Others
● hello
● bye
● thankyou

 NPFL099 2013LS 17/47

Dialogue act set

● Others
● ack – back-channel: uhm, fine
● affirm – Yes
● negate – No
● reqalts – Do you have anything else
● reqmore – Can you give me more details
● repeat
● help
● restart
● null – does nothing, uninterpretable input

 NPFL099 2013LS 18/47

Challenges of SLU

● Repetitions
● Erm, I want I want something in the city centre.

● Irrelevant content
● If it is not too much trouble I would be very grateful of

some one could tell me whether there is a Chinese
restaurant which is not very expensive and close to
the city centre, thank you.

● Missing content
● Chinese city centre

 NPFL099 2013LS 19/47

Types of SLU components

● Handcrafted
● Rule and grammar based

● Data driven
● Rules and grammar based
● Kernel techniques such as SVM
● Probabilistic

– FSM
– Logistic Regression
– CRF
– DBN

 NPFL099 2013LS 20/47

Phoenix parser

● Allows for:
● Robust parsing
● Parses what is important
● Ignore irrelevant bits
● Follows frame based approach

● Based on robust combination of multiple CFGs

● Allows garbage between consecutive CFGs

● Greedy
● Tries to match as little CFG as possible
● Prefers frames where all slots are presented

 NPFL099 2013LS 21/47

Phoenix grammar example

reserve hotel room
FRAME: Hotel
NETS:
 [hotel_request]
 [hotel_name]
 [hotel_period]
 [hotel_location]
 [Room_Type]
 [Arrive_Date]
 [want]
;

[hotel_request]
 (*[want] *a HOTEL)
HOTEL
 (hotel)
 (accommodations)
 (place to stay)
;

[want]
 (*I WANT)
 I
 (i)
 (we)
WANT
 (want)
 (would like)
;

 NPFL099 2013LS 22/47

Grammar notation

● The grammar is composed of slots
● slot names are in square brackets
● in between are strings of words

● The words there are of three types:
● standard words: these are natural language words,

they are always written in lower case
● slot names: slots are defined recursively, you can

use slots within other slots
● variables: are all-caps words, they behave like slots

but are only defined within particular slot definition

 NPFL099 2013LS 23/47

Grammar notation
● "*" indicates 0 or 1 word repetitions

● "+" indicates 1 or more repetitions

● "+*" indicates 0 or more repetitions

reserve hotel room

FRAME: Hotel

NETS:

 [hotel_request]

 [hotel_name]

 [hotel_period]

 [hotel_location]

 [Room_Type]

 [Arrive_Date]

 [want]

;

[hotel_request]
 (*[want] *a HOTEL)
HOTEL
 (hotel)
 (accommodations)
 (place to stay)
;

[want]
 (*I WANT)
 I
 (i)
 (we)
WANT
 (want)
 (would like)
;

 NPFL099 2013LS 24/47

Phoenix parser output

● Input
● I would like a hotel room

● Output
● [hotel_request]([want](i would like) a hotel room)

 NPFL099 2013LS 25/47

Phoenix summary

● Phoenix
● CFGs can be shared
● only accepts things in the grammar
● can be restrictive, e.g. not accepting valid input

 NPFL099 2013LS 26/47

Transformation based learning

● Based on an idea of inferring a set of self
correcting rules

● Initially used in part-of-speech tagging

● Advantages
● comparable to the state-of-the-art statistical methods
● results in a small compact set rules
● it is fast !!! / it is not probabilistic

F. Jurčíček, M. Gašić, S. Keizer, F. Mairesse, B. Thomson, K. Yu, S. Young:
Transformation-based learning for semantic parsing. In: Proc. Interspeech, Brighton,
United Kingdom, 2009.

 NPFL099 2013LS 27/47

Basic idea on POS tagging
● Input

● Example input for the Brill tagger

● Output

● Example/NN input/NN for/IN the/DT Brill/NNP tagger/NN

● Uses an ordered list of rules

1. if w_t = example then t_t = NN

2. if w_t = the then t_t = DT

3. if w_t = for then t_t = IN

4. ..

5. if w_t = input then t_t = VB

6. ..

7. if t_t = VB & w_{t-1} = example & t_{t+1} = IN then t_t = NN

 NPFL099 2013LS 28/47

Training procedure

 NPFL099 2013LS 29/47

TBL for SLU

● Transforms an initial semantic hypothesis into the
correct semantics
● by applying an ordered list of transformation rules

● Initial semantic hypotheses
● inform()

● In each iteration
● a transformation rule corrects some of the remaining

errors in the semantics

 NPFL099 2013LS 30/47

Rules

● Have two components
● trigger
● transformation

● Trigger
● matched against both the utterance and the semantic

hypothesis

● Transformation
● only if the trigger successfully matched
● it is applied to the current hypothesis

 NPFL099 2013LS 31/47

Trigger

● Trigger contains one or more conditions as
follows:
● the utterance contains N-gram N
● the dialogue act type equals D
● and the semantics contains slot S
● all included conditions must be satisfied

● N-gram triggers can be
● unigrams, bigrams, trigrams
● skip-ping bigrams which can skip up to 3 words

– looking * * * bar

 NPFL099 2013LS 32/47

Transformation

● Available operations
● replace the dialogue act type
● add a slot
● delete a slot,
● replace a slot

Trigger Transformation

I want replace DAT by ``inform''

can * give & DAT=inform replace DAT by ``request''

cheap add the slot ``pricerange=cheap''

centre add the slot ``area=centre''

near replace the slot ``area=*'' by ``near=*''

 NPFL099 2013LS 33/47

Parsing example

● Text:
● I am at the west side shopping centre could you tell me a nearby hotel

● Initial semantics
● DAT = inform

● Partial semantics
● DAT = inform
● type = hotel
● area = centre

trigger transformation

1 hotel add the slot type=hotel

2 centre add the slot area=centre

 NPFL099 2013LS 34/47

Parsing example
● Text:

● I am at the west side shopping centre could you tell me a nearby hotel

● Partial semantics

● DAT = inform

● type = hotel

● area = centre

● Final semantics

● DAT = inform

● type = hotel

● near = west side shopping

trigger transformation

3 west side shopping” &
area=centre

replace the slot “area=centre” by “near=west
side shopping”

 NPFL099 2013LS 35/47

Long-range dependencies

● Bigrams and trigrams are not good in capturing long
range dependencies between words

● In general, N-grams fragment data
● I am looking for a restaurant
● I am looking for a cheap restaurant
● I am looking for a cheap beautiful comfortable restaurant

● Use dependency trees
● long-range dependencies from an utterance tend to

be local in a dependency tree

 NPFL099 2013LS 36/47

Dependency tree
● Each word is viewed as the dependant of one other word,

with the exception of the root.

● Dependency links represent grammatical relationships
between words

 show the cheapest flights from Boston to Miami arriving before 7pm on Monday

 NPFL099 2013LS 37/47

Features from a dep. tree

● Bigrams, trigrams, ...
● following the structure of the tree

 NPFL099 2013LS 38/47

Training procedure

Input: a set of (utterance, semantic tree) pairs

Output: a classifier of the input utterance

1. Assign initial semantics to each utterance.

2. Repeat as long as the number of errors on the training set
decreases:

a) Generate all rules which correct at least one error in the training set.

b) Measure the number of errors corrected minus the number of errors
introduced by each rule.

c) Select the rule with the largest number of corrected errors.

d) Stop if the number of corrected errors is smaller than threshold T.

e) Add the selected rule to the end of the rule list and apply it to the
current state of the training set.

 NPFL099 2013LS 39/47

Text input pre-processing

● Remove
● uhm, err, uh output from ASR

● Convert
● I'm → I am
● …

 NPFL099 2013LS 40/47

Text input pre-processing

● Remove filler words

● Replace surface forms of slot values with their category
labels, e.g. slot names
● affirm(area="central",type="hotel")
● yes i'd like a hotel in the centre of town

● to

● affirm(area=AREA-0,type=TYPE-0)
● yes i'd like a TYPE-0 in the AREA-0 of town

● TYPE-0 = hotel
● AREA-0 = centre

It was used on CUED DAs.

 NPFL099 2013LS 41/47

Text input pre-processing

● For Phoenix, it does not matter
● it is handcrafted anyway

● In the case of data driven approaches
● it significantly helps for low price
● e.g. 93.2% → 94.2% in F-measure in TownInfo

domain

 NPFL099 2013LS 42/47

Summary

● Meaning representation in a dialogue system

● Parsers

● Phoenix parser
● Transformation based learning for SLU

● Data preprocessing

● category label substitution
● Processing multiple hypotheses

 NPFL099 2013LS 43/47

Thank you!

Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague

Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

http://ufal.mff.cuni.cz/~jurcicek

 NPFL099 2013LS 44/47

Processing multiple hypotheses

● ASR provides N-best list
● 0.33 – I am looking for a bar

● 0.26 – I am looking for the bar

● 0.11 – I am looking for a car

● 0.09 – I am looking for the car

● ...

● How do we get?
● 0.59 – inform(task=find, venue=bar)

● 0.20 – null()

● ...

 NPFL099 2013LS 45/47

Processing multiple hypotheses

● Semantic parser:
● Automatic speech recognition:

● We want to get:

● where
● d – dialogue act
● w – word sequence
● a – audio signal

P (d∣w)

P (w∣a)

P (d∣a)

 NPFL099 2013LS 46/47

Processing multiple hypotheses

● ASR provides multiple word sequence
hypotheses
● we have to sum over them

● Algorithm
● Compute semantic interpretation for every word seq.
● Weight them by the prob. of the word sequence
● Merge the same dialogue acts and sum their probs.

P (d∣a)=∑w
P (d∣w)P(w∣a)

 NPFL099 2013LS 47/47

Alternative

● ASR provides
● map directly from probability distribution to dialogue

acts

● This approach
● will be explained in the next lecture

P (d∣a)=P (d∣P (w∣a))

P (w∣a)

P (d∣a)≈eθ
T
⋅Φd (P(w∣a))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

