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Lecture #5
Learning Decision Trees and Random Forests

Outline

• Decision Trees
— Key problems of Decision Trees learning
— Impurity measure
— Heuristic algorithms for building Decision Trees
— Evaluation and tuning
— Weak spots of Decision Trees

• Ensemble learning and Random Forests
— Ensemble classifiers – a motivation exercise
— Combining classifiers into ensembles – general scheme
— Generating random samples by bootstrapping
— Bagging – a simple ensemble classifier
— Random Forests: Bootstrapping extension of Decision Trees
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Learning a decision tree – key problems

Each node of a decision tree is associated with a subset of traning data

Building a decision tree means to make a hierarchical sequence of splits. Each
practical algorithm must be able to efficiently decide the following key questions:

(1) How to choose a suitable splitting condition?

(2) When to stop the splitting process?

A practical answer to problem (1) is to employ entropy or another similar
measure. Each node is defined by an associated subset of examples with a specific
distribution of target values. After a split, the entropy in child nodes should
decrease in comparison with entropy in the parent node.

The splitting process should be duly stopped just to not produce model that
overfits the training data. To avoid overfitting, practical implementations usually
use pruning after building a relatively deep tree.
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Historical excursion

• ID3 ∼ Iterative Dichotomiser
• AID ∼ Automatic Interaction Detection
• CART ∼ Classification and Regression Trees

Probably most well-known is the “C 5.0” algorithm (Quinlan), which has become the
industry standard.
Packages in R: rpart
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Building a classification tree from training data

We work with decisions on the value of only a single feature

• For each categorical feature Aj having values Values(Aj) = {b1, b2, ..., bL}

is xj = bi? as i = 1, ..., L

• For each categorical feature Aj

is xj ∈ a subset ∈ 2Values(Aj )?

• For each numerical feature Aj

is xj ≤ k?, k ∈ (−∞, +∞)
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Building a classification tree from training data

Which decision is the best?

• Focus on the distribution of target class values in the associated subset of
training examples.

• Then select the decision that splits training data into subsets as pure as
possible.
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Building a classification tree from training data

Which decision is the best?

We say a data set is pure (or homogenous) if it contains only a single class. If a
data set contains several classes, then the data set is impure (or heterogenous).

Example:

⊕: 5, 	: 5 ⊕: 9, 	: 1
heterogenous almost homogenous

high degree of impurity low degree of impurity
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Building a classification tree from training data

Which decision is the best?
1. Define a candidate set S of splits at each node using possible decisions.

s ∈ S splits t into two subsets t1 and t2.
2. Define the node proportions p(yj |t), j = 1, . . . , k, to be the proportion of

instances 〈x, yj〉 in t.
3. Define an impurity measure i(t), i.e. splitting criterion, as a non-negative

function Φ of the p(y1|t), p(y2|t), . . . , p(yk |t),

i(t) = Φ(p(y1|t), p(y2|t), . . . , p(yk |t)), (1)

such that
• Φ( 1

k , 1
k , ..., 1

k ) = max , i.e. the node impurity is largest when all examples are
equally mixed together in it.

• Φ(1, 0, ..., 0) = 0, Φ(0, 1, ..., 0) = 0, ..., Φ(0, 0, ..., 1) = 0, i.e. the node impurity
is smallest when the node contains instances of only one class
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Building a classification tree from training data

Which decision is the best?
4. Define the goodness of split s to be the decrease in impurity

∆i(s, t) = i(t)− (p1 ∗ i(t1) + p2 ∗ i(t2)),
where pi is the proportion of instances in t that go to ti .

5. Find split s∗ with the largest decrease in impurity:
∆i(s∗, t) = maxs∈S∆i(s, t).

6. Use splitting criterion i(t) to compute ∆i(s, t) and get s∗.
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Building a classification tree from training data

Which decision is the best?

Splitting criteria – examples that are really used
• Misclassification Error – i(t)ME

• Information Gain – i(t)IG
• Gini Index – i(t)GI
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Building a classification tree from training data
Which decision is the best?

Splitting criteria — Misclassification Error i(t)ME

i(t)ME = 1−maxj=1,...,k p(yj |t) (2)

Example:

⊕: 0, 	: 6 ⊕: 1, 	: 5 ⊕: 2, 	: 4 ⊕: 3, 	: 3

i(t)ME 1− 6
6 = 0 1− 5

6 = 0.17 1− 4
6 = 0.33 1− 3

6 = 0.5
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Building a classification tree from training data
Which decision is the best?

Splitting criteria — Information Gain i(t)IG

i(t)IG = −
k∑

j=1
p(yj |t) ∗ log p(yj |t). (3)

Recall the notion of entropy H(t), i(t)IG = H(t).

Gain(s, t) = ∆i(s, t)IG (4)
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Building a classification tree from training data
Which decision is the best?

Splitting criteria — Gini Index i(t)GI

i(t)GI = 1−
k∑

j=1
p2(yj |t) =

k∑
j=1

p(yj |t)(1− p(yj |t)). (5)

Interpretation
Use the rule that assigns an instance selected at random from the node to class i with
probability p(i |t). The estimated probability that the item is actually in class j is p(j|t).
The estimated probability of misclassification is the Gini index. In other words, Gini can
be interpreted as expected error rate.
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Building a classification tree from training data

Which decision is the best?
Splitting criteria – a comparison example

⊕: 0 ⊕: 1 ⊕: 2 ⊕: 3
	: 6 	: 5 ⊕: 4 ⊕: 3

Gini 0 0.278 0.444 0.5
Entropy 0 0.65 0.92 1.0
ME 0 0.17 0.333 0.5

For two classes (k = 2), if p is the proportion of the class "1", the measures are:
• Misclassification error: 1−max(p, 1− p)
• Entropy: −p ∗ log p − (1− p) ∗ log(1− p)
• Gini: 2p ∗ (1− p)
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Building a classification tree from training data
Which decision is the best?
Splitting criteria
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Building a *regression* tree from training data

Again, we work with decisions on the value of only a single feature

Which decision is the best?

Splitting criterion – usually used
• Squared Error – i(t)SE

i(t)SE = 1
|t|

∑
xi∈t

(yi − y t)2,

where y t = 1
|t|

∑
xi∈t yi .
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Building decision tree from training data
When to stop the splitting process?

The recursive binary splitting is stopped when a stopping criterion is fulfilled.
Then a leaf node is created with an output value.

Stopping criteria, e.g.
• the leaf node is associated with less than five training instances
• the maximum tree depth has been reached
• the best splitting criteria is not greater than a certain threshold
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Building a decision tree from training data
How to avoid overfitting?

Overfitting can be avoided by
• applying a stopping criterion that prevents some sets of training instances
from being subdivided,
• removing some of the structure of the decision tree after it has been
produced.

Preferred strategy
Grow a large tree T0, stop the splitting process when only some minimum node
size (say 5) is reached. Then prune T0 using some pruning criteria.
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Decision trees learning parameters

2 phases of decision tree learning:
• growing
• pruning

Learning parameters are used to control these two phases:

• when to stop growing
• how much to prune the tree

... to avoid overfitting and improve performance
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Decision trees — implementation in R

There are two widely used packages in R
• rpart
• tree

The algorithms used are very similar.

References
• An Introduction to Recursive Partitioning Using the RPART Routines

by Terry M. Therneau, Elizabeth J. Atkinson, and Mayo Foundation
(available online)

• An Introduction to Statistical Learning with Application in R
Chapters 8.1, 8.3.1, and 8.3.2
by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
(available online)

• R packages documentation — rpart, tree
(available online)
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Example heuristic — implementation in R
Learning parameters in rpart()

rpart.control

minsplit
• the minimum number of observations that must exist in a node in order for a

split to be attempted
cp
• complexity parameter, influences the depth of the tree

... and others, see ?rpart.control

T: try to set different cp and minsplit values in the M1 model learning and
observe the resulting tree
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cp parameter

Meaning of the cp parameter
• Any split that does not decrease the relative training error by a factor of cp
is not attempted

⇒ That means, the learning algorithm measures for each split how it improves the
tree relative error and if the improvement is too small, the split will not be
performed.

Relative error is the error relative to the misclassification error (without any
splitting relative error is 100%)
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How to choose the optimal cp value?
> m = rpart(profits ~ category + sales + assets + marketvalue,

data=F[data.train, 1:8], cp=0.001)
> m$cptable

CP nsplit rel error xerror xstd
1 0.543259557 0 1.0000000 1.0482897 0.03178559
2 0.027162978 1 0.4567404 0.4607646 0.02673551
3 0.007042254 3 0.4024145 0.4446680 0.02640028
4 0.006036217 6 0.3762575 0.4507042 0.02652763
5 0.005030181 8 0.3641851 0.4567404 0.02665301
6 0.004024145 15 0.3279678 0.4768612 0.02705703
7 0.003018109 19 0.3118712 0.4688129 0.02689795
8 0.002012072 21 0.3058350 0.4869215 0.02725122
9 0.001006036 23 0.3018109 0.5171026 0.02780383
10 0.001000000 25 0.2997988 0.5412475 0.02821490

rel error relative error on training data

xerror relative error in x-fold cross-validation

xstd standard deviation of xerror on x validation folds
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How to choose the optimal cp value?
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Decision Trees – weak spots

• data splitting
— deeper nodes can learn only from small data portions

• sensitivity to training data set (unstable algorithm)
— learning algorithm is called unstable if small changes in the training set
cause large differences in generated models
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Ensemble classifiers – a motivation exercise

Consider the following task – we have a binary classification problem and a
number of predictors, each with error less than 0.5. Will the resulting majority
voting ensemble have an error lower than the single classifers?

Depends on the accuracy and the diversity of the base learners!

Illustrative example
Particular settings – assume that you have
• 21 classifiers
• each with error p = 0.3
• their outputs are statistically independent

Compute the error of the ensemble under these conditions!
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Solution of the exercise

How many classifiers will produce error output?
Key idea: The number of them will be binomially distributed! ∼ Bi(21, 0.3)

> plot(0:21, dbinom(0:21, 21, 0.3))
> dbinom(11, 21, 0.3)
[1] 0.01764978
> pbinom(10, 21, 0.3)
[1] 0.9736101

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Wrong predictions

de
ns

ity

Conslusion: Accuracy of the ensemble will be more than 97.3%!
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General scheme of combining classifiers
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Resampling approach

Resampling can be used as a way to produce diversity among base learners

• Distribute the training data into K portions

• Run the learning process to get K different models

• Collect the output of the K models use a combining function to get a final
output value
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Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while the
examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick it
after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.
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Same algorithm, different classifiers
Combining classifiers to improve the performance

Ensemble methods – key ideas
• combining the classification results from different classifiers to produce the

final output
• using (un)weighted voting
• different training data – e.g. bootstrapping
• different features
• different values of the relevant paramaters
• performance: complementarity −→ potential improvement

Two fundamental approaches
• Bagging works by taking a bootstrap sample from the training set
• Boosting works by changing the weights on the training set
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Are ensembles effective?

Combining multiple learners
• the more complementary the learners are, the more useful their combining is
• the simpliest way to combine multiple learners is voting
• in weighted voting the voters (= base-learners) can have different weights

Unstable learning
• learning algorithm is called unstable if small changes in the training set cause

large differences in generated models
• typical unstable algorithm is the decision trees learning
• bagging or boosting techniques are a natural remedy for unstable algorithms
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Bagging

• Bagging is a voting method that uses slightly different training sets
(generated by bootstrap) to make different base-learners.

• Generating complementary base-learners is left to chance and to unstability
of the learning method.

• Generally, bagging can be combined with any approach to learning.
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Simple bagging algorithm

Bootstrap AGGregatING
1 for i ← 1 to K do
2 Traini ← bootstrap(Data)
3 hi ← TrainPredictor(Traini)

Combining function
• Classification: hfinal(x) = MajorityVote(h1(x), h2(x), . . . , hK(x))
• Regression: hfinal(x) = Mean(h1(x), h2(x), . . . , hK(x))
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Random Forests — an extension of Decision Trees

• Random Forest is another example of bagging

• an ensemble method based on decision trees and bagging

• builds a number of independent random decision trees and then uses voting

• introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

• very good (state-of-the-art) prediction performance

• a nice page with description
www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

• important: Random Forests helps to
• avoid overfitting (by random sampling the training data set)
• select important/useful features (by random sampling the feature set)

NPFL054, 2023 Hladká & Holub Lecture 5, page 35/39



Building Random Forests

The algorithm for building a tree in the ensemble
1 Having a training set of the size n, sample n cases at random – with

replacement, and use the sample to build a decision tree.

2 If there are M input features, choose a less number m� M. When building
the tree, at each node a random sample of m features is selected as split
candidates from the full set of M available features. Then the best split on
these m features is used to split the node. A fresh sample of m features is
taken at each split.
– m is fixed for the whole procedure

3 Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!
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R packages for Random Forests

• randomForest: Breiman and Cutler’s random forests for classification and
regression
– Classification and regression based on a forest of trees using random inputs.

• RRF: Regularized Random Forest
– Feature Selection with Regularized Random Forest. This package is based
on the ’randomForest’ package by Andy Liaw. The key difference is the RRF
function that builds a regularized random forest.
– http://cran.r-project.org/web/packages/RRF/index.html

• party: A Laboratory for Recursive Partytioning
– a computational toolbox for recursive partitioning
– cforest() provides an implementation of Breiman’s random forests
– extensible functionality for visualizing tree-structured regression models is
available
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Examination requirements

• You should understand the basic ideas of building and using Decision Trees
for both classification and regression task.
• Decision Trees – splitting criteria: typical heuristics
• Decision Trees – pruning and overfitting: the complexity parameter
• Decision Trees – practical use of the rpart() package

• You should understand Random Forests, which is an important and effective
extension of simple Decision Trees.

• You should be able to practically use rpart() and randomForest()
packages in R.

• Also, later we will discuss Random Forests again, in connection with more
general ensemble methods.
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References – more details on Decision Trees
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