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Lecture #1 — Introduction to Machine Learning
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Organizational notes on the course

• https://ufal.mff.cuni.cz/courses/npfl054
– the course web page with all important information and materials

• Two parallel classes – identical content

• Brief overview of the course
• This is an introductory course
• We teach general foundations of ML

and “traditional” machine learning algorithms (no neural networks)
• Main topics correspond to the exam requirements

• Recommended literature
• An Introduction to Statistical Learning

by James, Witten, Hastie, and Tibshirani.
Springer, New York, 2013. (available online)

• Machine learning with R
by Brett Lantz.
Packt Publishing Ltd. 2013. (available in the MFF library)
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Please, introduce briefly yourself

• What you study – faculty, your field?

• Machine Learning course – your motivation/expectations?

• Your experience with Machine Learning – at school, or in practice?
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Machine Learning Lab Sessions

Goals of the lab sessions
• to learn how to practically analyse example data and ML tasks
• to learn how to practically implement some ML methods
• to solve a particular task
• practical experience with R system for statistical computing and graphics

http://www.r-project.org/
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Why statistics and probability theory?

Motivation
• In machine learning, models come from data and provide insights for

understanding data (unsupervised classification) or making prediction
(supervised learning).

• A good model is often a model which not only fits the data but gives good
predictions, even if it is not interpretable.

Statistics
• is the science of the collection, organization, and interpretation of data
• uses the probability theory
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Gentle introduction to R
What is R?
• a library of statistical tools
• an interactive environment for statistical analyses and graphics
• a programming language
• a public free software derived from the commercial system S

R is becoming more and more popular especially for its
• effective data handling and storage facility
• large, coherent, integrated collection of tools for data analysis
• well-developed, simple and effective programming language

Recommended reading
• An Introduction to R

by W. N. Venables, D. M. Smith and the R core team
• also, an introduction available on the web:

http://cran.r-project.org/doc/manuals/R-intro.html
• R for Beginners by Emmanuel Paradis
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Conditions for getting the credits

• Obligatory participation in lab sessions
– you should take part in at least 2/3 of all practical classes

• Two obligatory short presentations during lab sessions
– you should shortly present your solution of assigned homework

• Obligatory written assignments
– you should submit one written homework in the middle of the semester,
and finally a more demanding written report of your term project

• Written tests
– you should pass one written test in the middle of the semester
– and then a more demanding final written test

• Scored assignments and written tests are necessary conditions
for attending the oral exam!
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What you *cannot* learn in this course
• no advanced methods
−→ NPFL 097 Selected Problems in Machine Learning

• no deep learning
−→ NPFL 114 Deep Learning
−→ NPFL 122 Deep Reinforcement Learning

• no very details on Neural Networks
−→ NAIL 002 Neural Networks

• no special applications
−→ e.g. NDBI 023 Data Mining

• no advanced theoretical aspects of ML
−→ NAIL 029 Machine Learning

• no Weka, no Python libraries, etc.
– interested in Python?
−→ NPFL 104 Machine Learning Methods
−→ NPFL 129 Machine Learning for Greenhorns

– a new course, very similar topics, exercises in Python
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Supportive course NPFL 081
Practical Fundamentals of Probability and Statistics

• Intended and designed for students with weaker mathematical background

• We will go through basics of probability theory and statistics

• We will do practical exercises using R system

• Taught by Martin Holub and flexible for students’ needs

Send a message to Holub@UFAL if you want to attend
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Informal explanation of ML – motivation examples

Word-sense disambiguation (WSD)
Assign the correct sense of a word in a sentence.
Let’s work with the word line:
• I’ve got Inspector Jackson on the line for you.
• Outside, a line of customers waited to get in.
• He quoted a few lines from Shakespeare.
• He didn’t catch many fish, but it hardly mattered.

With his line out, he sat for hours staring at the Atlantic.
• ...
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Motivation example

Word-sense disambiguation
Assign the correct sense of a word in a sentence.
Let’s work with the word line and its following senses:
• CORD
• DIVISION
• FORMATION
• PHONE
• PRODUCT
• TEXT
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Motivation example — Word-sense disambiguation

?CORD ?DIVISION ?FORMATION ?PHONE ?PRODUCT ?TEXT

• I’ve got Inspector Jackson on the line for you. PHONE

• Outside, a line of customers waited to get in. FORMATION

• He quoted a few lines from Shakespeare. TEXT

• He didn’t catch many fish, but it hardly mattered.
With his line out, he sat for hours staring at the Atlantic. CORD

• The company has just launched a new line of small,
low-priced computers. PRODUCT

• Draw a line that passes through the points P and Q. DIVISION

• This has been a very popular new line. PRODUCT? FORMATION?
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Motivation example

Word-sense disambiguation
• What knowledge do you use to assign the senses?

• What are the keys for the correct decision?
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Motivation example

• We – human beings – do word sense disambiguation easily using the context
in the sentence and having our knowledge of the world.

• We want computers to master it as well.

Let’s prepare examples and guide computers to learn from them.

That is Machine Learning!
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Classical vs. deep Machine Learning
Cited from: Deep Learning, MIT Press, 2016.
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Deep learning – history

Cited from: www.codesofinterest.com/p/what-is-deep-learning.html
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Deep feedforward architecture

Fully connected layers have their own
– sets of parameters (weights and biases)
– outputs (activation values)
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ML performance – traditional vs. deep
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The deeper the better?
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Machine Learning in the context of Data Science

How to read the Data Science Venn Diagram
For more comments see http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
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The perfect Data Scientist
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Formal definition of ML by Mitchell (1997)

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.
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Machine learning needs examples

Intuitively we need a large set of recognized examples to learn the essential
knowledge necessary to recognize correct output values. Examples used for
learning are called training data.
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What computers extract from examples

In the WSD task, both humans and computers need to know the context of the
target word (“line”) to recognize correct senses.
Humans use their reason, intuition, and their real world knowledge.
Computers need to extract a limited set of useful context clues that are then
used for automatic decision about the correct sense.
• Formally, the context clues are called attributes or features and should be
exactly and explicitly defined.
• Then each object (e.g. a sentence) is characterized by a list of features,
which is called feature vector.

Computer makes feature vectors from examples.

NPFL054, 2022 Hladká & Holub Lecture 1, page 25/51



Intuitive feature extraction – examples

To choose an effective set of features we always need our intuition.
Only then all experiments with data can start.

A few example hints:

class a feature to recognize the class – will be useful?
CORD immediately preceding word
FORMATION immediately following word
PHONE can be often recognized by characteristic verbs
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“Examples” in ML – two meanings

1) Real examples – Each real object that is already recognized or that we want
to recognize is an example.

2) Data instances – In ML, each real example is represented as a data instance.
In this sense

example = feature vector + output value
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Data instances

Sometimes we do not know the output value; in this case data instances are not
different from feature vectors.

data instance = feature vector (+ output value, if it is known)

A data instance is either a feature vector or a complete example.
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Supervised learning process

Supervised Machine Learning = computer learns “essential knowledge”
extracted from a (large) set of examples with known output values
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Machine learning as building a prediction function

• if target values are continuous numbers, we speak about regression
= estimating or predicting a continuous response

• if target values are discrete/categorical, we speak about classification
= identifying group membership
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Prediction function and its relation to the data

Idealized model of supervised learning

• xi are feature vectors, yi are true predictions
• prediction function f̂ ? is the “best” of all possible hypotheses f̂
• learning process is searching for f̂ ?, which means to search the hypothesis
space and minimize a predefined loss function

• ideally, the learning process results in f̂ ? so that predicted ŷi = f̂ ?(xi) is
equal to the true target values yi
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Loss function
A loss function L(ŷ , y) measures the cost of predicting ŷ when the true value is y .
Commonly used loss functions are
• squared loss L(ŷ , y) = (ŷ − y)2

for regression
• zero-one loss L(ŷ , y) = I(ŷ 6= y)

for classifiation; indicator variable I is 1 if ŷ 6= y , 0 otherwise
The goal of learning can be stated as producing a model with the smallest
possible loss; i.e., a model that minimizes the average L(ŷ , y) over all
examples.

Important notes
• Loss function is sometimes also known as “cost function”.
• In a broader sense, loss function means the value that summarizes the loss over a

sample of examples, e.g.
∑

L(ŷ , y) or E [L(ŷ , y)].
• A more general term is “objective function”, which is sometimes used for the

function that should be optimized (minimized or maximized); yes, typically the
objective function is in fact the loss function computed over a sample of
development test examples.
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Training data vs. test data

• Training data = a set of examples
– used for learning process

• Test data = another set of examples
– used for evaluation of a trained model

• Important: the split of all available examples into the training and the test
portions should be random!
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Supervised ML task and data instances

Supervised machine learning necessarily requires learning examples
• Features are properties of examples that can be observed or measured

– are numerical (discrete or continuous), or categorical (incl. binary)
• Feature vector is an ordered list of selected features
• Data instance = feature vector (+ target class, if it is known)
• Training data = a set of examples used for learning process
• Test data = another set of examples used for evaluation
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Terminology – features and target values

• How different people call values that describe objects

observed (known) values or categories
object characteristics to be predicted

computer
scientists

features (target) value or class

mathematicians attributes response (value)
(statisticians) or predictors or output value
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Machine learning process — development cycle
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Terminological notes on building predictors

The purpose of the learning process is search for the best parameters of
prediction function. – These parameters are the output of learning
algorithms.

learning parameters (aka hyperparameters) hypothesis parameters
= parameters of learning algorithm = parameters of prediction function

• Method = approach/principle to learning. i.e. to building predictors

• Model = method + set of features + learning parameters

• Predictor = trained model, i.e. an output of the machine learning process,
i.e. a particular method trained on a particular training data.

• Prediction function = predictor (used in mathematics). It’s a function
calculating a response value using “predictor variables”.

• Hypothesis = prediction function – not necessarily the best one (used in
theory of machine learning).
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Practical procedures in the ML process

• Formulating the task

• Getting data, examples

• Data preprocessing and feature extraction/selection

• Learning and evaluation

• Model assessment
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Formulating the task – example

1 Task description
WSD: Assign the correct sense to the target word "line"

2 Object specification
WSD: Sentences containing the target word

3 Specification of desired output Y
WSD: Y = SENSE
SENSE = {CORD,DIVISION,FORMATION,PHONE,PRODUCT,TEXT}
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Data preprocessing and feature extraction

Step 1: Getting feature vectors
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Feature extraction and feature selection
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Getting data

Step 1: Getting feature vectors – terminology and notation
• Features as variables A1, ..., Am

• numerical
– either discrete or continuous

• categorical
– any list of discrete values, non-numerical

• binary (0/1, True/False, Yes/No)
– can be viewed as a kind of categorical

• Feature values x1, ..., xm, xi ∈ Ai

• Each object represented as feature vector x = 〈x1, ..., xm〉
• Feature vectors are elements in an m-dimensional feature space
• Set of instances X = {x : x = 〈x1, ..., xm〉, xi ∈ Ai}.
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Getting data

Step 1: Getting feature vectors – Example
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Example feature vectors – the WSD task

See the feature description wsd.attributes.pdf at
https://ufal.mff.cuni.cz/course/npfl054/materials
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Getting data

Step 2: Assigning true predictions
• Take a number of original objects and assign true prediction to each of them,
e.g. do manual annotation.

• Take these objects and their true prediction, do preprocessing and feature
extraction. It results in Gold Standard Data

Data = {〈x, y〉 : x ∈ X , y ∈ Y }.
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Getting data

Step 2: Assigning true prediction
Example: Y = SENSE = {CORD,DIVISION,FORMATION,PHONE,PRODUCT,TEXT}
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Getting data

Step 2: Assigning true prediction
Example: Y = {red , blue}
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Getting data

Step 3: Selecting training set Train and test set Test
• Train ⊆ Data, Test ⊆ Data

• Train ∩ Test = ∅

• Train ∪ Test = Data
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Summary of Lecture #1
Examination Requirements

You should be familiar with the following key machine learning terms
• Machine learning process
• Development cycle
• Examples, feature vectors, data instances
• Gold standard data, training data, test data
• Manual annotation (true predictions)
• Model, predictor, hypothesis optimization
• Supervised learning
• Classification, regression
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Homework – get ready for the first lab session!

• Install R on your own computer and get familiar with its basic
functions
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What you will learn at the following Lab session #1

• Annotation experiment
– Practical experience with manual annotation

• Startup with R
– Elementary data processing and computation in R
– Annotation data analysis
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