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Lecture #5

Learning Decision Trees and Random Forests

Outline

® Entropy and conditional entropy
— definition, calculation, and meaning
— application for feature selection

® Generalization error — estimating and minimizing

® Decision Trees
— Heuristic algorithms for building Decision Trees

® Random Forests
— bootstrapping extension of Decision Trees
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WSD task — distribution of target class values

> examples <- read.table("wsd.development.csv", header=T)
> plot (examples$SENSE)
>

1000 1500

500
|

cord division formation phone product text
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Amount of information contained in a value?

How much information do you gain when you observe a random event?
According to the Information Theory, amount of information contained in an
event is given by

I = log, t = —|
og 0gy p
2 2

where p is probability of the event occurred.

Thus, the lower probability, the more information you get when you observe an
event (e.g. a feature value). If an event is certain (p = 100 %), then the amount
of information is zero.
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Amount of information in SENSE values

### probability distribution of SENSE
> round(table (examples$SENSE) /nrow(examples), 3)

cord division formation phone  product text
0.095 0.091 0.084 0.108 0.522 0.100

### amount of information contained in SENSE values
> round(-log2(table (examples$SENSE) /nrow(examples)), 3)

cord division formation phone  product text
3.391 3.452 3.574 3.213 0.939 3.324
>

What is the average amount of information that you get when you observe
values of the attribute SENSE?
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The average amount of information that you get when you observe random values
is

1
Z Pr(value) - log, Pr(value) = - Z Pr(value) - log, Pr(value)

value value

This is what information theory calls entropy.

® Entropy of a random variable X is denoted by H(X)

n
—-or H(pla P2;-- -, pn) where Z pPi = 1
i=1
® Entropy is a measure of the uncertainty in a random variable
— or, measure of the uncertainty in a probability distribution
® The unit of entropy is bit; entropy says how many bits on average you
necessarily need to encode a value of the given random variable
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Properties of entropy

Normality
H(z,2)=1
(5:3)

Continuity
H(p,1 — p) is a continuous function

Non negativity and maximality

OS H(p17p2a"'7pn)< H(

:\l—‘
:\l—'
S|

Symmetry

H(p1, p2, .., pn) is @a symmetric function of its arguments

Recursivity

p1 P2
p1+p2’ p1+p2

H(p1, p2, p3s- -, Pn) = H(p1 + P2, p3, - .., pn) + (p1 + p2)H(
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Entropy of SENSE

Entropy of SENSE is 2.107129 bits.

### probability distribution of SENSE
> p.sense <- table(examples$SENSE)/nrow(examples)

>

### entropy of SENSE

> H.sense <- - sum( p.sense * log2(p.sense) )
> H.sense

[1] 2.107129

The maximum entropy value would be log,(6) = 2.584963
if and only if the distribution of the 6 senses was uniform.

> p.uniform <- rep(1/6, 6)

> p.uniform

[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
>

### entropy of uniformly distributed 6 senses

> - sum( p.uniform * log2(p.uniform) )

[1] 2.584963
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Distribution of feature values — A16

> levels(examples$A16)
[1] neen " s " nen non "CC" uCDu "pT" "IN" "JJ"
[10] n JJRII n JJSII llNNll "NNS" "POSlI IIPRP" ||PRP$I| ||RB|| llRPIl
[19] lI_RRB_II |ISYMII "VB" "VBDII "VBGH IIVBN" IIVBP" IIVBZ" lleTll
[28] "wP$"  "X"
> plot(examples$A16)
>
O PP s | [ 5 Y v 1 5
- B CC CD DT IN JJ JJR JJS NN POS PRP$ RP SYM VB VBD VBN VBZ WP$ X
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Distribution of feature values — A17

> levels(examples$A17)

[1] neen n " " n n . n "Cc" IICD" IIDTII IIINII IIJJII
[10] ||JJR" ||_LRB_" "MD“ "NN" "NNS" ||PRP" ||RB|| ||RBR" ||RP||
[19] II_RRB_II llTOll "VB" "VBDII ||VBG|I llvBN" IIvBP" IIVBZ" lleT"
[28] "WRB"
> plot(examples$Al7)
>

1000 1400

600

CC CD DT IN JJ JR MD NN NNS RB RBR RP TO VB VBD VBN VBZ WRB
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Distribution of feature values — A4

> levels(examples$A4)
[1] non nqn
>

500 1000 1500 2000 2500 3000

0
L
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Entropy of features

Entropy of Al6 is 2.78 bits.

> p.A16 <- table(examples$A16)/nrow(examples)
> H.A16 <- - sum( p.A16 * log2(p.A16) )

> H.A16

[1] 2.777606

Entropy of Al7 is 3.09 bits.

> p.A17 <- table(examples$A17)/nrow(examples)
> H.A17 <~ - sum( p.A17 * log2(p.A17) )

> H.A17

[1] 3.093003

Entropy of A4 is 0.27 bits.

> p.A4 <- table(examples$A4)/nrow(examples)
> H.A4 <- - sum( p.A4 * log2(p.Ad) )

> H.A4

[1] 0.270267
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Conditional entropy H(C | A)

How much does target class entropy decrease if we have the knowledge of
a feature?

The answer is conditional entropy:

H(C[A) = — > Pr(y,x)-log,Pr(y|x)

yeC,xeA
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Conditional entropy and mutual information

H(C|A)
I(C;A)

H(AIC)

H(A)
H(C)

WARNING
There are NO SETS in this picture! Entropy is a quantity, only a number!
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Conditional entropy and mutual information

Mutual information measures the amount of information that can be
obtained about one random variable by observing another.

Mutual information is a symmetrical quantity.

H(C)— H(C|A) =

I(C; A)

H(A) —H(A[ C)

Another name for mutual information is information gain.

NPFL054, 2021

Hladka & Holub
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Conditional entropy — feature A4

H(SENSE|A4)=1.96

I(SENSE;A4)=0.15

H(A4|SENSE)=0.12

H(A4)=0.27
H(C)=2.1
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Conditional entropy — feature A19

H(SENSE|A19)=2.09  |(SENSE;A19)=0.01

H(C)=2.1 H(A19)=0.91

NPFLO054, 2021 Hladka & Holub Lecture 5, page 17/55



Conditional entropy — feature A17

H(SENSE|A17)=1.98 |(SENSE;A17)=0.12

H(C)=2.1
H(A17)=3.09
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User-defined functions in R

Structure of a user-defined function

myfunction <- function(argl, arg2, ... ){
. statements ...
return(object)
}

Objects in a function are local to the function.

Example — a function to calculate entropy

> entropy <- function(x){

+ p <- table(x) / NROW(x)

+ return( -sum(p * log2(p)) )
¥

>

3

# invoking the function
> entropy(examples$SENSE)
[1] 2.107129
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Conditional entropy and feature selection

Summary

® |nformation theory provides a measure for comparing how the knowledge
of features statistically contribute to the knowledge about target class.

® The lower conditional entropy H(C | A), the better chance that A is a useful
feature.
® However, since features typically interact, conditional entropy H(C | A) should

NOT be the only criterion when you do feature selection. You need
experiments to see if a feature with high information gain really helps.

Note
Also, decision tree learning algorithm makes use of entropy when it computes
purity of training subsets.
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Homework

You do NOT have to submit it

® Write your own function for computing conditional entropy in R.

New function entropy.cond(x,y) will take two factors of the same length
and will compute H(x | y).

Example use: entropy.cond(examples$SENSE, examples$A4)
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Entropy — Summary of Examination Requirements

You should understand and be able to explain and practically use

® entropy
® motivation
® definition
® main properties
® calculation in R
® conditional entropy
® definition and meaning
® relation to mutual information
® calculation in R
® information gain — application in feature selection
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Sample accuracy and sample error rate

To measure the performance of classification tasks we often use (sample)
accuracy and (sample) error rate

Sample accuracy is the number of correctly predicted examples divided by the
number of all examples in the predicted set

Sample error rate is equal to 1 - accuracy

Training error rate is the sample error rate measured
on the training data set

Test error rate is the sample error rate measured
on the test data set
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Sample error and generalization error

Sample error of a hypothesis h with respect to a data sample S of the size n is
usually measured as follows

1 n
e for regression: mean squared error MSE = — E Vi — yi)?
n
i=1
n
P e 1 .
e for classification: classification error = — E I(y; # yi)
n
i=1

Generalization error (aka “true error” or “expected error”) measures how well a
hypothesis h generalizes beyond the used training data set, to unseen data with
distribution D. Usually it is defined as follows

e for regression: errorp(h) = E(§; — y;)?
e for classification: errorp(h) = Pr(§; # vi)
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Minimizing generalization error vs. overfitting

Finding a model that minimizes generalization error
. is one of central goals of the machine learning process

error

generalization error

training error

model complexity
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Learning a decision tree — key problems

Each node of a decision tree is associated with a subset of traning data

Building a decision tree means to make a hierarchical sequence of splits. Each
practical algorithm must be able to efficiently decide the following key questions:

(1) How to choose a suitable splitting condition?

(2) When to stop the splitting process?

A practical answer to problem (1) is to employ entropy or another similar
measure. Each node is defined by an associated subset of examples with a specific
distribution of target values. After a split, the entropy in child nodes should
decrease in comparison with entropy in the parent node.

The splitting process should be duly stopped just to not produce model that
overfits the training data. To avoid overfitting, practical implementations usually
use pruning after building a relatively deep tree.
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Historical excursion

Decision trees concept  AID (Morgan, 1964)
(Hunt, 1962)

| '

ID3 (Quinlan, 1979) CART (Breiman, 1984)

C4.5 (Quinlan, 1993)

® |D3 ~ lterative Dichotomiser
® AID ~ Automatic Interaction Detection

® CART ~ Classification and Regression Trees

Probably most well-known is the “C5.0" algorithm (Quinlan), which has become the
industry standard.
Packages in R: rpart
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Building a classification tree from training data

We work with decisions on the value of only a single feature

® For each categorical feature A; having values Values(A;) = {b1, b, ..., b }

isx;=bi7asi=1,..1L

® For each categorical feature A;

is x; € a subset € o Values(A;)7

® For each numerical feature A;

is xj < k?, k € (—o0,+00)
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Building a classification tree from training data

Which decision is the best?

® Focus on the distribution of target class values in the associated subset of
training examples.

® Then select the decision that splits training data into subsets as pure as
possible.

NPFLO054, 2021 Hladka & Holub Lecture 5, page 29/55



Building a classification tree from training data

Which decision is the best?

We say a data set is pure (or homogenous) if it contains only a single class. If a
data set contains several classes, then the data set is impure (or heterogenous).

Example:

NPFL054, 2021

é: 5 6:5

¢: 9 61

heterogenous

high degree of impurity

almost homogenous
low degree of impurity

Hladka & Holub
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Building a classification tree from training data

Which decision is the best?
1. Define a candidate set S of splits at each node using possible decisions.
s € S splits t into two subsets t; and t.

2. Define the node proportions p(y;|t),j =1,..., k, to be the proportion of
instances (x, y;) in t.

3. Define an impurity measure i(t), i.e. splitting criterion, as a non-negative
function ® of the p(y1|t), p(y2[t), - -, p(y«lt),

i(t) = ®(p(y1lt), p(y2lt), . .., p(yklt)), (1)
such that
® ®(%, ..., ;) = max, i.e. the node impurity is largest when all examples are

equally mixed together in it.
* ¢(1,0,..,0)=0,%(0,1,...,0) =0,...,9(0,0,...,1) = 0, i.e. the node impurity
is smallest when the node contains instances of only one class
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Building a classification tree from training data

Which decision is the best?

4. Define the goodness of split s to be the decrease in impurity
Ai(s, t) = i(t) — (pr* i(t1) + p2 % i(t2)),
where p; is the proportion of instances in t that go to t;.

5. Find split s* with the largest decrease in impurity:
Ai(s*, t) = maxsesAi(s, t).
6. Use splitting criterion i(t) to compute Ai(s, t) and get s*.

@ =D,

decisionl

decision,

decision3

yt:{;D.

J

t.cD,
) ‘ yk
decision,

decision_
5
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Building a classification tree from training data

Which decision is the best?

Splitting criteria — examples that are really used

® Misclassification Error — i(t)me
® Information Gain — i(t);c
® Gini Index — i(t)g
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Building a classification tree from training data

Which decision is the best?

Splitting criteria — Misclassification Error i(t)ye
i(t)me =1 — maxj—,...k p(y;t) )

Example:

®:0,e:6 | 1, 6:5 ®: 2,04 ®: 3,6: 3

(e [1-2=0 |1-2=017 | 1-%2=033[1-2=05
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Building a classification tree from training data

Which decision is the best?

Splitting criteria — Information Gain i(t)c

k

i(t)ic ==Y py;lt) = log p(y;lt). (3)

j=1
Recall the notion of entropy H(t), i(t);c = H(t).

Gain(s, t) = Ai(s, t)ic (4)
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Building a classification tree from training data

Which decision is the best?

Splitting criteria — Gini Index i(t)g

k k

i(t)er =1 pP(ylt) = > plylt)(1 - p(y]1))-

j=1 j=1

Interpretation

Use the rule that assigns an instance selected at random from the node to class i with
probability p(i|t). The estimated probability that the item is actually in class j is p(j|t).
The estimated probability of misclassification is the Gini index. In other words, Gini can

be interpreted as expected error rate.
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Building a classification tree from training data

Which decision is the best?

Splitting criteria — a comparison example

@: 0| &1 | p:2 | ¢:3
©:6| &5 | &4 | e 3
Gini 0 0.278 | 0.444 | 0.5
Entropy 0 0.65 | 0.92 1.0
ME 0 0.17 | 0.333 | 0.5

For two classes (k = 2), if p is the proportion of the class "1", the measures are:
® Misclassification error: 1 — max(p,1 — p)
® Entropy: —pxlogp — (1 — p) x log(1 — p)

® Gini: 2p*(1—p)

NPFL054, 2021

Hladka & Holub
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Building a classification tree from traini

Which decision is the best?
Splitting criteria

Misclassification, Entropy, and Gini

05

04
1

0.2
L

Misclassification error

/ — Gi}u index \

01
L
T~

0.0
L
S

Hastie at al.: The Elements of Statistical Learning, Springer, pp. 309. 2002.

0.0 02 0.4 06 08 1.0

P
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Building a *regression* tree from training data

Again, we work with decisions on the value of only a single feature
Which decision is the best?

Splitting criterion — usually used

® Squared Error — i(t)se

i(t)se = ﬁz(yl‘ -y,

X;Et

t_ 1
where y* = Y owet Vi
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Building decision tree from training data

When to stop the splitting process?

The recursive binary splitting is stopped when a stopping criterion is fulfilled.
Then a leaf node is created with an output value.
Stopping criteria, e.g.

® the leaf node is associated with less than five training instances

® the maximum tree depth has been reached

® the best splitting criteria is not greater than a certain threshold
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Building a decision tree from training data

How to avoid overfitting?

Overfitting can be avoided by

® applying a stopping criterion that prevents some sets of training instances
from being subdivided,

® removing some of the structure of the decision tree after it has been
produced.

Preferred strategy
Grow a large tree Ty, stop the splitting process when only some minimum node
size (say 5) is reached. Then prune Ty using some pruning criteria.
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Decision trees learning parameters

2 phases of decision tree learning:
® growing

® pruning

Learning parameters are used to control these two phases:
® when to stop growing

® how much to prune the tree

... to avoid overfitting and improve performance
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Decision trees — implementation in R

There are two widely used packages in R
® rpart
® tree

The algorithms used are very similar.

References

® An Introduction to Recursive Partitioning Using the RPART Routines
by Terry M. Therneau, Elizabeth J. Atkinson, and Mayo Foundation
(available online)

® An Introduction to Statistical Learning with Application in R
Chapters 8.1, 8.3.1, and 8.3.2
by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
(available online)

® R packages documentation — rpart, tree
(available online)
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Example heuristic — implementation in R

Learning parameters in rpart ()

rpart.control

minsplit

® the minimum number of observations that must exist in a node in order for a
split to be attempted

cp
® complexity parameter, influences the depth of the tree

. and others, see ?rpart.control

T: try to set different cp and minsplit values in the M1 model learning and
observe the resulting tree
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Meaning of the cp parameter

® Any split that does not decrease the relative training error by a factor of cp
is not attempted

=- That means, the learning algorithm measures for each split how it improves the
tree relative error and if the improvement is too small, the split will not be
performed.

Relative error is the error relative to the misclassification error (without any
splitting relative error is 100%)
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How to choose the optimal cp value?

> m = rpart(profits ~ category + sales + assets + marketvalue,
data=F[data.train, 1:8], cp=0.001)

> m$cptable
CP nsplit rel error xXerror xstd

1 0.543259557 0 1.0000000 1.0482897 0.03178559

2 0.027162978 1 0.4567404 0.4607646 0.02673551

3 0.007042254 3 0.4024145 0.4446680 0.02640028

4 0.006036217 6 0.3762575 0.4507042 0.02652763

5 0.005030181 8 0.3641851 0.4567404 0.02665301

6 0.004024145 15 0.3279678 0.4768612 0.02705703

7 0.003018109 19 0.3118712 0.4688129 0.02689795

8 0.002012072 21 0.3058350 0.4869215 0.02725122

9 0.001006036 23 0.3018109 0.5171026 0.02780383

10 0.001000000 25 0.2997988 0.5412475 0.02821490

rel error relative error on training data

xerror relative error in x-fold cross-validation

xstd standard deviation of xerror on x validation folds
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How to choose the optimal cp value?

size of tree
1 2 4 7 9 16 20 22 24 26
™~ | | | | | | | | | |
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e
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Decision Trees — weak spots

® data splitting
— deeper nodes can learn only from small data portions

® sensitivity to training data set (unstable algorithm)
— learning algorithm is called unstable if small changes in the training set
cause large differences in generated models
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Random Forests — an extension of Decision Trees

Resampling approach

Resampling can be used as a way to produce diversity among base learners
® Distribute the training data into K portions
® Run the learning process to get K different models

® Collect the output of the K models use a combining function to get a final
output value
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Bootstrapping principle

® New data sets Datay, ..., Datax are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

® In the i-th step of the iteration, Data; is used as a training set, while the
examples {x|x € Data A x ¢ Data;} form the test set.

® The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1 — 1/n. The probability that we do not pick it
after n draws is (1 —1/n)" ~ e~ = 0.368.

® |t means that for training the system will not use 36.8 % of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.
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Random Forests

® an ensemble method based on decision trees and bagging
® builds a number of random decision trees and then uses voting

® introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

® very good (state-of-the-art) prediction performance

® a nice page with description
www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

® important: Random Forests helps to

® avoid overfitting (by random sampling the training data set)
® select important/useful features (by random sampling the feature set)
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Building Random Forests

The algorithm for building a tree in the ensemble

@ Having a training set of the size n, sample n cases at random — with
replacement, and use the sample to build a decision tree.

@ If there are M input features, choose a less number m < M. When building
the tree, at each node a random sample of m features is selected as split
candidates from the full set of M available features. Then the best split on
these m features is used to split the node. A fresh sample of m features is
taken at each split.

— m is fixed for the whole procedure

© Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!
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R packages for Random Forests

e randomForest: Breiman and Cutler's random forests for classification and

regression
— Classification and regression based on a forest of trees using random inputs.

® RRF: Regularized Random Forest
— Feature Selection with Regularized Random Forest. This package is based
on the 'randomForest’ package by Andy Liaw. The key difference is the RRF
function that builds a regularized random forest.
—http://cran.r-project.org/web/packages/RRF/index.html

® party: A Laboratory for Recursive Partytioning
— a computational toolbox for recursive partitioning
— cforest () provides an implementation of Breiman's random forests
— extensible functionality for visualizing tree-structured regression models is
available
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Examination requirements

® You should understand the basic ideas of building and using Decision Trees
for both classification and regression task.

® Decision Trees — splitting criteria: typical heuristics
® Decision Trees — pruning and overfitting: the complexity parameter
® Decision Trees — practical use of the rpart () package

® You should understand Random Forests, which is an important and effective
extension of simple Decision Trees.

® You should be able to practically use rpart() and randomForest ()
packages in R.

® Also, later we will discuss Random Forests again, in connection with more
general ensemble methods.
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References — more details on Decision Trees

® Breiman Leo, Friedman Jerome H., Olshen Richard A., Stone Charles J.
Classification and Regression Trees. Chapman & Hall/CRC, 1984.

® Hunt, E. B. Concept Learning: An Information Processing Problem, Wiley.
1962.

® Morgan, J. N., Sonquist, J. A. Problems in the analysis of survey data, and a
proposal. Journal of the American Statistical Association 58, pp. 415-434.
1963.

® Quinlan, J. R. Discovering rules from large collections of examples: A case
study, in D. Michie, ed., Expert Systems in the Micro Electronic Age.
Edinburgh University Press. 1979.

® Quinlan, J. R. C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, California. 1993.
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