Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

• Test of independence

Are two variables, expressed in a contingency table, independent of each other?

Goodness-of-fit test

Does an observed frequency distribution differ from a hypothesized theoretical probability distribution?

• Test of homogeneity

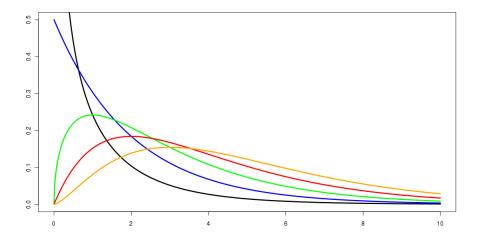
Does two observed frequency distributions of the same categorical variable come from populations with different probability distributions?

 $-\,$ works with a 2-way contingency table similarly as the independence test

Sum of k independent standard normal variables

Let $Z_i \sim N(0, 1)$ be independent variables with standard normal distribution. Then what is the distribution of $\sum_{i=1}^k Z_i^2$?

```
show.sum.Z.square <- function(k) {</pre>
# shows the empirical distribution of the sum of
# k independent standard normal variables
# mean = k, variance = 2k
sum.Z2 = 0
for(i in 1:k){ sum.Z2 = sum.Z2 + rnorm(10^6)^2 }
cat("Sample statistics:\n")
print(summary(sum.Z2))
cat("\nSample variance: ", var(sum.Z2), "\n")
plot(cut(sum.Z2, 200))
```

A test of independence assesses whether observations on two variables, expressed in a contingency table, are independent of each other.

We observe two categorical variables. $O_{i,j}$ are the observed frequencies arranged in an contingency table. Expectations $E_{i,j}$ can be computed using estimated marginal probabilities. Pearson's χ^2 test is based on the following formula for Pearson's cumulative test statistic

$$X^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

Pearson's cumulative test statistic X^2 has approximately χ^2_{df} distribution, where the degrees of freedom is

$$df = (Rows - 1) \times (Cols - 1)$$

Then we compare the test statistic with χ^2 critical value $\chi^2_k(\alpha)$, which is defined by

$$\Pr\left\{X^2 > \chi_k^2(\alpha)\right\} = \alpha$$

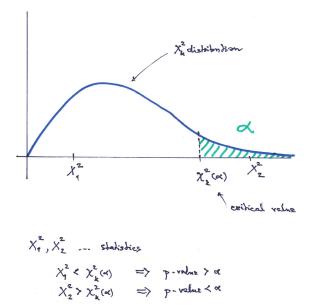
Practical note

 χ^2 critical value can be computed as a quantile.

> qchisq((1-alpha), df=k)

TODO: Get familiar with functions {p|d|q}chisq() available in R.

Critical value $\chi^2_k(\alpha)$ of the χ^2 distribution χ^2_k



Hladká & Holub

The Chi-Squared Goodness of Fit Test is a test for comparing a theoretical distribution with the observed data from a sample.

Example 1

Rolling a die – after 600 rolls you got the following distribution

1	2	3	4	5	6
95	108	101	85	110	101

Question: Is the die fair? = Does it have the uniform distribution?

Example 2

Our hypothesis is that our classifier accuracy is 78 %. However, a test on 100 randomly chosen instances gives the following result

correct error 81 19

Question: Should we reject the hypothesis?

Pearson's χ^2 goodness-of-fit test is based on the following formula for Pearson's cumulative test statistic

$$X^2 = \sum_{i=1}^m \frac{(O_i - E_i)^2}{E_i}$$

If the observed variables O_i have multinomial distribution, then Pearson's cumulative test statistic X^2 has approximately χ^2_{m-1} distribution.

 χ^2 Goodness-of-fit test — example

Example based on real data

SENSES	estimated probabilities	test set observations			
cord division	9.2% 8.9%	37 51			
formation phone	8.1% 10.6%	52 44			
product	53.5%	268			
text	9.8%	48			
> x = c(37, 51, 52, 44, 268, 48) > p = c(9.2, 8.9, 8.1, 10.6, 53.5, 9.8)/100					

Chi-square tests

- Theory and practical use
- Independence test
- Goodness-of-fit test