
Introduction to Machine Learning
NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

NPFL054, 2019 Hladká & Holub Lecture 3, page 1/31

http://ufal.mff.cuni.cz/course/npfl054


Lecture #3, Part II
The idea of Decision Trees and Random Forests

Decision Tree is a learning method suitable for both classification and
regression tasks

Example classification task: WSD
see the NPFL054 web page → Materials → wsd-attributes.pdf

NPFL054, 2019 Hladká & Holub Lecture 3, page 2/31



Lecture #3, Part II
The idea of Decision Trees and Random Forests

Decision Tree is a learning method suitable for both classification and
regression tasks

Example classification task: WSD
see the NPFL054 web page → Materials → wsd-attributes.pdf

NPFL054, 2019 Hladká & Holub Lecture 3, page 2/31



Decision tree structure

A decision tree T = (V ,E ) is a rooted tree where V is composed of internal
decision nodes and terminal leaf nodes.

• Nodes
• Root node
• Internal nodes with conditions on

selected features
• Leaf nodes with TARGET OUTPUT

VALUES

• Decisions

NPFL054, 2019 Hladká & Holub Lecture 3, page 3/31



Decision trees — learning from training data

Decision tree learning
• Building a decision tree TD = (V ,E ) is based on a training data set

D = {〈x, y〉 : x ∈ X , y ∈ Y }.
• Each node is associated with a set t, t ⊆ D. The root node is associated

with t = D.
• Each leaf node is asociated with a fixed output value.

NPFL054, 2019 Hladká & Holub Lecture 3, page 4/31



Building a decision tree from training data

A very basic idea: Assume binary decisions.
• Step 1 Create a root node.

• Step 2 Select decision d and add child nodes to an existing node.

Step 2 is then applied recursively.

NPFL054, 2019 Hladká & Holub Lecture 3, page 5/31



Building a decision tree from training data

The learning process, i.e. building the tree starts from the root node and
continues top-down. The root node is associated with the whole training set.

Example

1. Assume decision
if A4 = TRUE .

2. Split the training set t according
to this decision into two subsets
– “yellow” and “blue”.

t

SENSE ... A4 ...
FORMATION TRUE
FORMATION FALSE
PHONE TRUE
CORD TRUE
DIVISION FALSE

... ... ...

NPFL054, 2019 Hladká & Holub Lecture 3, page 6/31



Building a decision tree from training data

3. Add two child nodes, “yellow” and
“blue”, to the root. Associate each
of them with the corresponding
subsets tL and tR , respectively.
The subsets are always disjoint.

tL

SENSE ... A4 ...
FORMATION TRUE
CORD TRUE
PHONE TRUE

... ... ...

tR

SENSE ... A4 ...
FORMATION FALSE
DIVISION FALSE

... ... ...

NPFL054, 2019 Hladká & Holub Lecture 3, page 7/31



Building a decision tree from training data

• Step 4 Repeat recursively steps (2) and (3) for both child nodes and their
associated training subsets.

• Step 5 Stop recursion for a node if a stopping criterion is fulfilled. Then
create a leaf node with an output value.

NPFL054, 2019 Hladká & Holub Lecture 3, page 8/31



Learning decision tree – example training data

Two continuous features A1 and A2, and three target classes

NPFL054, 2019 Hladká & Holub Lecture 3, page 9/31



Learning decision tree – example first split

First split divides the training data set into two partitions by condition A2 ≥ a2

NPFL054, 2019 Hladká & Holub Lecture 3, page 10/31



Learning decision tree – example second split

Second split is defined by A1 ≥ a1 and applies only if A2 ≥ a2

NPFL054, 2019 Hladká & Holub Lecture 3, page 11/31



Learning decision tree – example resulting tree

Two splits in the example produce a tree with two inner nodes and three leaves

NPFL054, 2019 Hladká & Holub Lecture 3, page 12/31



Prediction on test data

Once a decision tree predictor is built, an unseen instance is predicted by starting
at the root node and moving down the tree branch corresponding to the feature
values asked in decisions.

NPFL054, 2019 Hladká & Holub Lecture 3, page 13/31



Prediction on test data – example

Decision tree predictor for the WSD-line task
According to existing feature values in a given test instance you can use the
decision tree as a predictor to get the classification of the instance.

NPFL054, 2019 Hladká & Holub Lecture 3, page 14/31



Decision trees for classification and for regression
Decision trees can be used both for classification and regression tasks

Classification trees

• Categorical output value

Figure: Tree for predicting the sense of line
based on binary features.

Regression trees

• Numerical output value

Figure: Tree for predicting the salary of a
baseball player based on the number of
years that he has played in the major
leagues (Year) and the number of hits that
he made in the previous year (Hits). See
the ISLR Hitters data set.

NPFL054, 2019 Hladká & Holub Lecture 3, page 15/31



Classification and regression trees

Each terminal node in the decision tree is associated with one of the regions in the
feature space. Then

Classification trees
• output value: the most common
class in the data associated with the
terminal node

Regression trees
• output value: the mean output
value of the training instances
associated with the terminal node

NPFL054, 2019 Hladká & Holub Lecture 3, page 16/31



Building a tree = recursive data partitioning

Building a decision tree is in fact a recursive partitioning process

Tree growing
The growing process is
based on subdividing the
feature space recursively
into non-overlapping
regions.

NPFL054, 2019 Hladká & Holub Lecture 3, page 17/31



Recursive data partitioning – regression case

NPFL054, 2019 Hladká & Holub Lecture 3, page 18/31



Historical excursion

• ID3 ∼ Iterative Dichotomiser
• AID ∼ Automatic Interaction Detection
• CART ∼ Classification and Regression Trees

Probably most well-known is the “C 5.0” algorithm developed by Quinlan for commercial
use, which has also become the industry standard. C 5.0 is an improved extension of
C 4.5. Single-threaded version is distributed under the terms of the GNU General Public
License.

NPFL054, 2019 Hladká & Holub Lecture 3, page 19/31



Learning a decision tree – key problems

Building a decision tree means to make a hierarchical sequence of splits. Each
practical algorithm must be able to efficiently decide the following key questions:

(1) How to choose a suitable splitting condition?

(2) When to stop the splitting process?

A practical answer to problem (1) is to employ entropy or another similar
measure. Each node is defined by an associated subset of examples with a specific
distribution of target values. After a split, the entropy in child nodes should
decrease in comparison with entropy in the parent node.

The splitting process should be duly stopped just to not produce model that
overfits the training data. To avoid overfitting, practical implementations usually
use pruning after building a relatively deep tree.

NPFL054, 2019 Hladká & Holub Lecture 3, page 20/31



Learning a decision tree – key problems

Building a decision tree means to make a hierarchical sequence of splits. Each
practical algorithm must be able to efficiently decide the following key questions:

(1) How to choose a suitable splitting condition?

(2) When to stop the splitting process?

A practical answer to problem (1) is to employ entropy or another similar
measure. Each node is defined by an associated subset of examples with a specific
distribution of target values. After a split, the entropy in child nodes should
decrease in comparison with entropy in the parent node.

The splitting process should be duly stopped just to not produce model that
overfits the training data. To avoid overfitting, practical implementations usually
use pruning after building a relatively deep tree.

NPFL054, 2019 Hladká & Holub Lecture 3, page 20/31



Learning a decision tree – key problems

Building a decision tree means to make a hierarchical sequence of splits. Each
practical algorithm must be able to efficiently decide the following key questions:

(1) How to choose a suitable splitting condition?

(2) When to stop the splitting process?

A practical answer to problem (1) is to employ entropy or another similar
measure. Each node is defined by an associated subset of examples with a specific
distribution of target values. After a split, the entropy in child nodes should
decrease in comparison with entropy in the parent node.

The splitting process should be duly stopped just to not produce model that
overfits the training data. To avoid overfitting, practical implementations usually
use pruning after building a relatively deep tree.

NPFL054, 2019 Hladká & Holub Lecture 3, page 20/31



Tree growing and tree pruning

Practical implementations of decision tree learning usually work in two main
phases:

1 Tree growing
2 Tree pruning

Basic underlying idea
• First, grow a large tree that fits the training data quite well.
• Second, prune this tree to avoid overfitting.

NPFL054, 2019 Hladká & Holub Lecture 3, page 21/31



Building a decision tree — how to avoid overfitting

Generally, overfitting can be avoided by
• applying a stopping criterion that prevents some sets of training instances

from being subdivided,
• removing some of the structure of the decision tree after it has been

produced.

Practically preferred strategy
• Grow a large tree T0, stop the splitting process when only some minimum

node size (say 5) is reached.
• Then prune T0 using some pruning criteria.

NPFL054, 2019 Hladká & Holub Lecture 3, page 22/31



Building a decision tree — how to avoid overfitting

Generally, overfitting can be avoided by
• applying a stopping criterion that prevents some sets of training instances

from being subdivided,
• removing some of the structure of the decision tree after it has been

produced.

Practically preferred strategy
• Grow a large tree T0, stop the splitting process when only some minimum

node size (say 5) is reached.
• Then prune T0 using some pruning criteria.

NPFL054, 2019 Hladká & Holub Lecture 3, page 22/31



Decision Trees – weak spots

• data splitting
— deeper nodes can learn only from small data portions

• sensitivity to training data set (unstable algorithm)
— learning algorithm is called unstable if small changes in the training set
cause large differences in generated models

NPFL054, 2019 Hladká & Holub Lecture 3, page 23/31



Decision trees — implementation in R

There are two widely used packages in R
• rpart
• tree

The algorithms used are very similar.

References
• An Introduction to Recursive Partitioning Using the RPART Routines

by Terry M. Therneau, Elizabeth J. Atkinson, and Mayo Foundation
(available online)

• An Introduction to Statistical Learning with Application in R
Chapters 8.1, 8.3.1, and 8.3.2
by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
(available online)

• R packages documentation — rpart, tree
(available online)

NPFL054, 2019 Hladká & Holub Lecture 3, page 24/31



Random Forests — an extension of Decision Trees
Resampling approach

Resampling can be used as a way to produce diversity among base learners

• Distribute the training data into K portions

• Run the learning process to get K different models

• Collect the output of the K models use a combining function to get a final
output value

NPFL054, 2019 Hladká & Holub Lecture 3, page 25/31



Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while the
examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick it
after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.

NPFL054, 2019 Hladká & Holub Lecture 3, page 26/31



Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while the
examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick it
after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.

NPFL054, 2019 Hladká & Holub Lecture 3, page 26/31



Random Forests

• an ensemble method based on decision trees and bagging

• builds a number of random decision trees and then uses voting

• introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

• very good (state-of-the-art) prediction performance

• a nice page with description
www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

• important: Random Forests helps to
• avoid overfitting (by random sampling the training data set)
• select important/useful features (by random sampling the feature set)

NPFL054, 2019 Hladká & Holub Lecture 3, page 27/31



Building Random Forests

The algorithm for building a tree in the ensemble
1 Having a training set of the size n, sample n cases at random – with

replacement, and use the sample to build a decision tree.

2 If there are M input features, choose a less number m� M. When building
the tree, at each node a random sample of m features is selected as split
candidates from the full set of M available features. Then the best split on
these m features is used to split the node. A fresh sample of m features is
taken at each split.
– m is fixed for the whole procedure

3 Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!

NPFL054, 2019 Hladká & Holub Lecture 3, page 28/31



R packages for Random Forests

• randomForest: Breiman and Cutler’s random forests for classification and
regression
– Classification and regression based on a forest of trees using random inputs.

• RRF: Regularized Random Forest
– Feature Selection with Regularized Random Forest. This package is based
on the ’randomForest’ package by Andy Liaw. The key difference is the RRF
function that builds a regularized random forest.
– http://cran.r-project.org/web/packages/RRF/index.html

• party: A Laboratory for Recursive Partytioning
– a computational toolbox for recursive partitioning
– cforest() provides an implementation of Breiman’s random forests
– extensible functionality for visualizing tree-structured regression models is
available

NPFL054, 2019 Hladká & Holub Lecture 3, page 29/31



Examination requirements

• You should understand the basic ideas of building and using Decision Trees
for classification task. You should also understand Random Forests, which is
an important and effective extension of simple Decision Trees.

• You should be able to practically use rpart() and randomForest()
packages in R.

• Later, we will revisit Decision Trees and go into more details. Also, later we
will discuss Random Forests again, in connection with general ensemble
methods.

NPFL054, 2019 Hladká & Holub Lecture 3, page 30/31



References

• Breiman Leo, Friedman Jerome H., Olshen Richard A., Stone Charles J.
Classification and Regression Trees. Chapman & Hall/CRC, 1984.

• Hunt, E. B. Concept Learning: An Information Processing Problem, Wiley.
1962.

• Morgan, J. N., Sonquist, J. A. Problems in the analysis of survey data, and a
proposal. Journal of the American Statistical Association 58, pp. 415–434.
1963.

• Quinlan, J. R. Discovering rules from large collections of examples: A case
study, in D. Michie, ed., Expert Systems in the Micro Electronic Age.
Edinburgh University Press. 1979.

• Quinlan, J. R. C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, California. 1993.

NPFL054, 2019 Hladká & Holub Lecture 3, page 31/31


