
Introduction to Machine Learning
NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

NPFL054, 2018 Hladká & Holub Lecture 11, page 1/44

http://ufal.mff.cuni.cz/course/npfl054

Neural Networks fundamentals
. . . and key ideas of Deep Learning

• Foreword on Neural Networks and Deep Learning
– Remarks on the relation of Machine Learning and Data Science
– Motivations for deep architectures
– Remarks on historical development and current visions

• Perceptron
– Prerequisites for Neural Networks
– Single unit perceptron learner, Single Layer Perceptron (SLP)
– Basic NN topologies – one layer, multi-layered, feedforward vs. recurrent
– Multi-Layer Perceptron (MLP) and the idea of back-propagation training

• Magic power of deep architectures – key inventions of last decade
– Last decade: A Deep Learning breakthrough

. . . when Deep Learning became convincing in practise
– Example applications of Deep Learning that work

• References

NPFL054, 2018 Hladká & Holub Lecture 11, page 2/44

Foreword on “Deep Learning tsunami”
What are Deep architectures / Deep learning methods?
• “Deep architectures are composed of multiple levels of non-linear operations,

such as in neural nets with many hidden layers . . . ”
• “Deep learning methods aim at learning feature hierarchies with features

from higher levels of the hierarchy formed by the composition of lower level
features. Automatically learning features at multiple levels of abstraction
allows a system to learn a complex functions mapping the input to the output
directly from data.” — Bengio, 2009

In the same paper, Bengio claims that “insuficient depth can be detrimental for
learning”: “an architecture with insuficient depth can require many more
computational elements, potencially exponentially more (with respect to input
size), than architectures whose depth is matched to the task”.

Deep Learning tsunami?
In 2015 a leading researcher in the field of Natural Language Processing (NLP),
Chris Manning, reports that “Deep Learning tsunami” hit the major NLP
conferences with its full force.
NPFL054, 2018 Hladká & Holub Lecture 11, page 3/44

Deep Machine Learning – an excellent textbook!

NPFL054, 2018 Hladká & Holub Lecture 11, page 4/44

Classical vs. deep Machine Learning
Cited from: Deep Learning, MIT Press, 2016.

NPFL054, 2018 Hladká & Holub Lecture 11, page 5/44

Deep learning – history

Cited from: www.codesofinterest.com/p/what-is-deep-learning.html

NPFL054, 2018 Hladká & Holub Lecture 11, page 6/44

Machine Learning in the context of Data Science

How to read the Data Science Venn Diagram
For more comments see http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

NPFL054, 2018 Hladká & Holub Lecture 11, page 7/44

The perfect Data Scientist

NPFL054, 2018 Hladká & Holub Lecture 11, page 8/44

Prerequisites for Neural Networks

You should already know

• Linear and Logistic Regression

• Gradient Descent algorithm

• Maximum Likelihood Estimation

NPFL054, 2018 Hladká & Holub Lecture 11, page 9/44

Single-layer perceptron (SLP)

biological inspiration machine learning
neuron SLP algorithm
other neurons x = 〈x1, . . . , xm〉
connection weights feature weights Θ1, . . . ,Θm
amount of neuron activation

∑m
i=1 xi Θi

"firing" neuron output positive classification
"not firing" neuron output negative classification

NPFL054, 2018 Hladká & Holub Lecture 11, page 10/44

SLP

• is on-line learning
• Look at one example, process it and go to the next example

• is error-driven learning
• One example at a time
• Make prediction, compare it with true prediction
• Update Θ if different

NPFL054, 2018 Hladká & Holub Lecture 11, page 11/44

Binary classification with SLP

Neuron
• Input: instance x
• Incoming connections: feature weights Θ1, . . . ,Θm, Θ =< Θ1, . . . ,Θm >

• Action: compute activation a = ΘTx
• Output: if a > 0 output +1 otherwise −1

Prefer non-zero threshold ΘTx > ∆
• Introduce a bias term Θ0 into the neuron.
• Then a = Θ0 + ΘTx
• Output: if a > 0 output +1 otherwise −1

NPFL054, 2018 Hladká & Holub Lecture 11, page 12/44

Binary classification with SLP
Training algorithm

Data = {〈x, y〉 : x = 〈x1, . . . , xm〉, y ∈ {−1,+1}}

1. Initialize weights Θi ← 0 for all i = 1, . . . ,m
2. Initialize bias Θ0 ← 0
3. for iter = 1, . . . ,MaxIter do
4. for all 〈x, y〉 ∈ Data do
5. a ← Θ0 + ΘTx // compute activation for x
6. if ya ≤ 0 then // update weights and bias
7. Θi ← Θi + yxi for all i = 1, . . . ,m
8. Θ0 ← Θ0 + y
9. end if
10. end for
11. end for
12. Return Θ?

0 , Θ?

NPFL054, 2018 Hladká & Holub Lecture 11, page 13/44

Binary classification with SLP
Test

1. a ← Θ?
0 + Θ?T

x // compute activation for x
2. return sgn(a)

NPFL054, 2018 Hladká & Holub Lecture 11, page 14/44

Error driven learning – updating Θ parameters

If we can see the given example in the future, we should do a better job.

For illustration
• Assume a positive example 〈x,+1〉, and current Θ0 and Θ.
• Do prediction and assume y(Θ0 + ΘTx) < 0, i.e. misclassification
• Hence, update Θ0 and Θ

• Θ′
0 = Θ0 + 1

• Θ′
i = Θi + 1 ∗ xi , i = 1, . . . , m

• Now, try to process the next example which is by chance the same example x
• Compute

a′ = Θ′0 + (Θ′)Tx = Θ0 + 1 + (Θ + x)Tx =
= Θ0 + 1 + ΘTx + xTx > Θ0 + ΘTx = a

• x is a positive example so we have moved the activation in the proper
direction

NPFL054, 2018 Hladká & Holub Lecture 11, page 15/44

Perceptron learning – the underlying idea

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary.
• If a response yi is misclassified, then yi (ΘTxi + Θ0) < 0.
• Therefore the learning goal is to minimize the sum of distances

D(Θ,Θ0) = −
∑
i∈M

yi (ΘTxi + Θ0),

whereM indexes the set of misclassified points.
In fact, the algorithm uses the gradient descent method to minimize this
piecewise linear criterion. The gradient (assumingM is fixed) is given by

δD(Θ,Θ0)
δΘ = −

∑
i∈M

yixi, and δD(Θ,Θ0)
δΘ0

= −
∑
i∈M

yi ,

which is the rationale for parameter updates (the learning rate α is taken to be 1):

Θ←− Θ + αyixi, and Θ0 ←− Θ0 + αyi .

NPFL054, 2018 Hladká & Holub Lecture 11, page 16/44

Geometric interpretation of SLP

A hyperplane of an m-dimensional space is a “flat” subset with dimension m − 1.
Any hyperplane can be written as the set of points x satisfying

Θ0 + ΘTx = 0, where Θ =

Θ1
...

Θm

 , x = 〈x1, . . . , xm〉

NPFL054, 2018 Hladká & Holub Lecture 11, page 17/44

Geometric interpretation of SLP

Assume Θ0 = 0

• Θ points in the direction of the positive examples and away from the
negative examples.

• Having Θ normalized, ΘTx is the length of projection of x onto Θ, i.e. the
activation of x with no bias.

NPFL054, 2018 Hladká & Holub Lecture 11, page 18/44

Geometric interpretation of SLP

Assume Θ0 6= 0

• After the projection is computed, Θ0 is added to get the overall activation.

• Then ΘTx + Θ0 > 0 ?
• If Θ0 < 0, Θ0 shifts the hyperplane away from Θ.

• If Θ0 > 0, Θ0 shifts the hyperplane towards Θ.

NPFL054, 2018 Hladká & Holub Lecture 11, page 19/44

Properties of SLP algorithm

Learning parameter MaxIter

• many passes → overfitting
• only one pass → underfitting

Convergence
• Does the SLP algorithm converge?

• If the training data IS linearly separable, the SLP algorithm yields a hyperplane
that classifies all the training examples correctly.

• If the training data IS NOT linearly saparable, the SLP algorithm could never
possibly classify each example correctly.

• After how many updates the algorithm converges?

NPFL054, 2018 Hladká & Holub Lecture 11, page 20/44

Properties of SLP algorithm

Recall the notion of margin of hyperplane
— Assume a hyperplane g : Θ0 + ΘTx = 0

• The geometric margin of 〈x, y〉 w.r.t. a hyperplane g is

ρg (x, y) = y(Θ0 + ΘTx)/||Θ||

• The margin of Data w.r.t. a hyperplane g is

ρg (Data) = argmin〈x,y〉∈Dataρg (x, y)

• Define optimal hyperplane g?

g? = argmaxgρg (Data), g? : Θ?
0 + Θ?T

x = 0

Let γ = ρg? (Data)

NPFL054, 2018 Hladká & Holub Lecture 11, page 21/44

Perceptron Convergence Theorem

Suppose the perceptron algorithm is run on a linearly separable data set Data with
margin γ > 0. Assume that ||x|| ≤ 1 for all examples in Data. Then the algorithm
will converge after at most 1

γ2 updates.

Proof: The perceptron algorithm is trying to find Θ that points roughly in the
same direction as Θ?. We are interested in the angle α between Θ and Θ?. Every
time the algorithm makes an update, α changes. Thus we approve that α
decreases. We will show that

1 ΘT Θ? increases a lot

2 ||Θ|| does not increase much

NPFL054, 2018 Hladká & Holub Lecture 11, page 22/44

Perceptron Convergence Theorem

Θ0 is the initial weight vector, Θk is the weight vector after k updates.

1. We will show that Θ?Θk grows as a function of k:

Θ?Θk definition of Θk

= Θ?(Θk−1 + yx) vector algebra=

= Θ?Θk−1 + yΘ?x
Θ?has marginγ

≥ Θ?Θk−1 + γ

Therefore Θ?Θk ≥ kγ

NPFL054, 2018 Hladká & Holub Lecture 11, page 23/44

Perceptron Convergence Theorem

2. We update Θk because y(Θk−1)Tx < 0

||Θk ||2 = ||Θk−1 + yx||2 quadratic rule of vectors=

||Θk−1||2 + y2||x||2 + 2yΘk−1x
assumption on||x|| and a<0

≤ ||Θk−1||2 + 1 + 0

Therefore ||Θk ||2 ≤ k

NPFL054, 2018 Hladká & Holub Lecture 11, page 24/44

Perceptron Convergence Theorem

Putting 1. and 2. together, we can write

√
k

2.
≥ ||Θk ||

Θ? is a unit vector
≥ (Θ?)T Θk 1.

≥ kγ ⇒ k ≤ 1/γ2

NPFL054, 2018 Hladká & Holub Lecture 11, page 25/44

Perceptron Convergence Theorem

• The proof says that if the perceptron gets linearly separable data with γ, then
it will converge to a solution that separates the data.

• The proof does not speak about the solution, other than the fact that it
separates the data. The proof makes use of the maximum margin hyperplane.
But the perceptron is not guaranteed to find m.m. hyperplane.

NPFL054, 2018 Hladká & Holub Lecture 11, page 26/44

Multi-class classification with SLP
Training

Y = {1, . . . , k}
There will be a weight vector for each class Θ1, . . . ,Θk

1. Initialize weights Θk ← 〈0, . . . , 0〉 for all i = 1, . . . , k
2. for iter = 1, . . . ,MaxIter do
3. for all 〈x, y〉 ∈ Data do
4. compute ΘiT

x for all i = 1, . . . , k
5. ŷ = argmaxi ΘiT

x
6. if y and ŷ are different then
7. Θy ← Θy − x
8. Θŷ ← Θŷ + x
9. end if
10. end for
11. end for
12. Return Θ1?

, . . . ,Θk?

NPFL054, 2018 Hladká & Holub Lecture 11, page 27/44

Mutliclass classification with SLP
Test

1. return argmaxi (Θi?

)Tx

NPFL054, 2018 Hladká & Holub Lecture 11, page 28/44

Perceptron – different activation/output functions

Generally, output of each network layer is produced by an activation function f :

h = f (WTx + b)

• identity ∼ linear regression
– traditional MSE loss for regression

• sigmoid family
– logistic (sigmoid) ∼ logistic regression
– tanh, “hard tanh”

• ReLU
– often appears to be better than a sigmoid

• softmax
– most often used as the output of a classifier
– to model probability distribution over k classes
– used in connection with negative log-likelihood loss

NPFL054, 2018 Hladká & Holub Lecture 11, page 29/44

Deep feedforward architecture

Fully connected layers have their own
– sets of parameters (weights and biases)
– outputs (activation values)

NPFL054, 2018 Hladká & Holub Lecture 11, page 30/44

Universal approximation function theorem

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states
that a feedforward network with a linear output layer and at least one hidden layer
with any “squashing” activation function (such as the logistic sigmoid activation
function) can approximate any Borel measurable function from one
finite-dimensional space to another with any desired non-zero amount of error,
provided that the network is given enough hidden units.
[. . .]
The universal approximation theorem means that regardless of what function we
are trying to learn, we know that a large MLP will be able to represent this
function. However, we are not guaranteed that the training algorithm will be able
to learn that function.

— The Deep Learning book

NPFL054, 2018 Hladká & Holub Lecture 11, page 31/44

ML performance – traditional vs. deep

NPFL054, 2018 Hladká & Holub Lecture 11, page 32/44

The deeper the better?

NPFL054, 2018 Hladká & Holub Lecture 11, page 33/44

Back-propagation learning

back-propagation = gradient descent + chain rule

Fitting a neural network
• is generally a very computationally intensive procedure
• key algorithm: “back-propagating erors” (mid 1980s)
• back-propagation algorithm iterates through many cycles of two processes:

forward phase and backward phase
• each iteration during which all training examples are processed = “epoch”

Forward phase – neurons are activated in sequence from the input layer to the
output layer using the existing weights and output signal is produced

Backward phase – the value of cost function is computed by comparing the
output with the true value, then gradient descent method is applied and
derivatives are propagated from neurons in the output layer backwards in the
network successively to the input layer
NPFL054, 2018 Hladká & Holub Lecture 11, page 34/44

Historical overview – last decade

It is a matter of fact that during last decade
Deep Learning indisputably proved its “magic” power . . .

• Why it “suddenly” works? . . .
. . . while earlier it didn’t?

• What were
the milestones,
the breakthrough ideas,
and the key inventions
that effectively made the drammatical development possible
and changed the machine learning world forever?

If you want to learn more — take the opportunity
=⇒ Attend the great course on Deep Learning taught by dr. Milan Straka!

NPFL054, 2018 Hladká & Holub Lecture 11, page 35/44

Key inventions in last decade

• ReLU activation
and its modifications like LReLU, PReLU, SReLU, ELU, . . .

• softmax output + negative log likelihood loss

• better regularization techniques
– e.g. “dropout”

• Gradient Descent with adaptive gradient
– e.g. SGD with momentum, AdaGrad, RMSProp, Adam

NPFL054, 2018 Hladká & Holub Lecture 11, page 36/44

Key inventions in last decade (cont.)

New NN architectures
• convolution NN

– AlexNet, VGG, GoogLeNet (also called Inception), ResNet, . . .

• recurrent NN
– LSTM, GRU

• residual connections
– in CNN: ResNet
– in fully connected layers: highway networks

Distributed representations
– e.g. so called “embeddings”

NPFL054, 2018 Hladká & Holub Lecture 11, page 37/44

Convolutional neural network – example architecture
Cited from: www.codesofinterest.com/p/what-is-deep-learning.html

NPFL054, 2018 Hladká & Holub Lecture 11, page 38/44

Examples of successful applications
Image recognition

ILSVCR contest, domination of CNN since 2012
Second image from ImageNet Classification with Deep Convolutional Neural
Networks by Alex Krizhevsky et al.

NPFL054, 2018 Hladká & Holub Lecture 11, page 39/44

Examples of successful applications
Object detection

http://image-net.org/challenges/LSVRC/2014/

NPFL054, 2018 Hladká & Holub Lecture 11, page 40/44

Examples of successful applications
Image segmentation

http://mscoco.org/dataset/#detections-challenge2016

NPFL054, 2018 Hladká & Holub Lecture 11, page 41/44

A few other examples of successful applications

• Speech recognition, speech synthesis

• Handwriting recognition

• Neural machine translation

• Multimodal tasks: visual question answering, image labelling, image
description translation

• Video game playing

• Maze navigation, Precise robot control

• AlphaGo
“Mastering the game of Go with deep neural networks and tree search”
– by Silver D., et al. (Nature, 529 (7587): 484–489. 2016)

NPFL054, 2018 Hladká & Holub Lecture 11, page 42/44

References (not only) for beginners

• Bengio, Y: Learning Deep Architectures for AI. 2009.
– available online

• Manning, C.: Computational Linguistics and Deep Learning. 2015.
– available online

• Goodfellow I., Bengio Y., Courville A.: Deep Learning Book. 2016.
– http://www.deeplearningbook.org

• Hal Daume III.: A Course on Machine Learning. Second printing, 2017.
– An online set of introductory materials on Machine Learning
– http://ciml.info

NPFL054, 2018 Hladká & Holub Lecture 11, page 43/44

http://www.deeplearningbook.org
http://ciml.info

Examination requirements

Perceptron learning

• learning algorithm for binary and multi-class classification

• properties (we do not require mathematical proofs)

• the link between perceptron learning and gradient descent algorithm

• geometric interpretation

• what is deep feedforward neural network

• the idea of back-propagation training

NPFL054, 2018 Hladká & Holub Lecture 11, page 44/44

