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Lecture 9 – Outline

• Chi-square tests

• Curse of dimensionality

• Feature selection heuristics

• Bayes error

NPFL054, 2017 Hladká & Holub Lecture 9, page 2/27



Curse of dimensionality
Source: Wikipedia

The curse of dimensionality refers to various phenomena that arise when analyzing
and organizing data high-dimensional spaces (often with hundreds or thousands of
dimensions) that do not occur in low-dimensional settings.

Data sparsity
The common theme of these problems is that when the dimensionality increases,
the volume of the space increases so fast that the available data become sparse.
This sparsity is problematic for any method that requires statistical significance.
In order to obtain a statistically sound and reliable result, the amount of data
needed to support the result often grows exponentially with the dimensionality.

Dissimilarity of data points
Also organizing and searching data often relies on detecting areas where objects
form groups with similar properties; in high dimensional data however all objects
appear to be sparse and dissimilar in many ways which prevents common data
organization strategies from being efficient.
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Curse of dimensionality – example in high dimension

High dimensional data is difficult to work because there are not enough
observations to get good/reliable statistical estimates

Consider a simple example. Random vector of binary variables with the same
Bernoulli distributions. (X1,X2, . . . ,Xn).

• Observe the frequency of different vector values if e.g.
Pr(Xi = 1) = 1/2 or
Pr(Xi = 1) = 1/10.

• If Pr(Xi = 1) = 1/10, then Pr(1, 1, . . . , 1) = 1/10n (!)
Thus, the need for data grows exponentially with the number of
features!

−→ See the curse demo, Part I.
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Curse of dimensionality – data sparsity

High-dimensional data is difficult to work not only because there are not enough
observations to get good estimates . . . but also because data distributed in a
high dimensional space necesarily tends to be very sparse!

This fact implies long distances between randomly distributed points

Example
Consider a simple example. Uniformly distributed random points in a unit
n-dimensional hypercube.
– What will be their average/expected distance from the origin?

−→ See the curse demo, Part II.
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Randomly distributed points in a hypercube

Unit hypercube
• The corners of the n-dimensional hypercube with sidelength 1 are all those
points with coordinates being either 0 or 1.

• Volume of a unit hypercube is 1
• Length of the diagonal of the n-dimensional unit hypercube is

√
n

What is the proportion of points with the distance from the origin ≤ 1?

• two dimensions ∼ πr2/4 = π/4

• three dimensions ∼ 4
3πr3/8 = π/6

• n dimensions ∼ ? . . . goes to zero!
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Curse of dimensionality – a geometric illustration
Source: “The curse of dimensionality” by Mario Köppen

Ratio of the volumes of unit hypersphere and embedding hypercube
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Curse of dimensionality – a hyperball in a unit cube
Source: “The curse of dimensionality” by Mario Köppen

“Spherical hedgehog”
While volume of the n-dimensional hypercube is 1, the length of its diagonal (

√
n) goes

to infinity for increasing n, and volume of the embedded hypersphere goes to 0.
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Curse of dimensionality

. . . also, in high-dimensional spaces there are long distances between
randomly selected points . . .

Another example with uniformly distributed random points in an n-dimensional
hypercube:

• What will be the mutual distance between two randomly selected points?
−→ See the curse demo, Part III.

“Near neighbours” often do not exist!
– Instead, typically you have only many “far neighbours”. . .

. . . and you cannot recognize the “similar ones”
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Curse of dimensionality – demo code

# to generate a vector of N random distances in a hypercube of dim dimensions
distances.cube = function(N, dim) {

distances = numeric(N)
for(i in 1:N) {

x = runif(dim); y = runif(dim) # two random points in the cube
distances[i] = sqrt(sum((x-y)^2)) # Euclidean distance

}
return(distances)

}

# example plot with empirical density in 3 dimensions
plot(((1:500)*5/500)[1:173],

table(cut(distances.cube(10^6, 3), breaks = (0:500)*5/500))[1:173]/10^6,
xlim = c(0,5), ylim = c(0,0.017),
yaxt="n", xlab="Random distances in dimension 3", ylab="")
axis(2, at=c(0,0.005,0.01,0.015))
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Demo – distances of random points in a hypercube
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Random distances in dimension 9
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Feature extraction and feature selection

Processes and terminology related to feature extraction/selection

NPFL054, 2017 Hladká & Holub Lecture 9, page 12/27



Why we need feature selection?

Features without useful information make noise in the data!

Goal of the feature selection process
= to efficiently find a minimum set of features that contain all the substantial
information needed for predicting the target value

More compact feature set can lead to
• improved model interpretability,
• shorter training times,
• enhanced generalisation by reducing overfitting.
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Benefits of succesfull feature selection

• Better performance
– enhanced generalization by reducing overfitting

→ irrelevant input features may lead to overfitting
→ removing them can improve prediction performance

– some learning methods do not work well with highly dependent features
→ removing them can improve prediction performance

• Better interpretability
– lower model complexity and improved model interpretability
– better chance to analyse the impact/importance of the features

• Technical
– feasible/shorter training times
– reduced feature space dimension in the dataset
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Introduction to practical feature selection

Practical feature selection methods are heuristic

Feature selection methods can be basically divided into
• filters – select feature subsets as a pre-processing step, independently of the
learning method

• wrappers – use a machine learning algorithm in conjunction with internal
cross validation procedure to score feature subsets by measuring their
predictive power

• embedded methods – perform feature selection during the process of
training
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Filters, wrappers, and embedded methods

• Filters select features based on criteria independent of any supervised
learner. Therefore, the performance of filters may not be optimum for a
chosen learner.

• Wrappers use a learner as a black box to evaluate the relative usefulness of a
feature subset. Wrappers search the best feature subset for a given
supervised learner, however, wrappers tend to be computationally expensive.

• Instead of treating a learner as a black box, embedded methods select
features using the information obtained from training a learner.

Example
A well-known example is SVM-RFE (support vector machine based on recursive
feature elimination). At each iteration, SVM-RFE eliminates the feature with the
smallest weight obtained from a trained SVM.
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Feature ranking
∼ aka variable importance metrics/measures

• We need a (real) function to evaluate how useful a feature is

• Frequently/mostly used:
Information Gain, Gini Index, Chi-square, correlation coefficient, etc.

• see Wikipedia: “Feature Selection”
• see the FSelector package in R

• Disadvantages: such methods consider only one variable’s contribution
without other variables’ influences

• However, using them you can easily recognize
• really useful ones
• completely unuseful ones
• highly dependent/correlated ones
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Simple methods in R: the FSelector package

> packageDescription(’FSelector’)

Description
This package provides functions for selecting attributes from a given dataset.
Attribute subset selection is the process of identifying and removing as much of
the irrevelant and redundant information as possible.
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Practical methods for feature selection
Selected examples

• Filters and wrappers
• greedy forward selection
• greedy backward elimination

• Variable importance produced by ensembles
• by Random Forests
• by Adaboost

• SVM-RFE – Recursive Feature Elimination

• Feature selection by Lasso
• – will be explained/discussed later in the lecture on Regularization
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Variable importance (AdaBoost) – cry

Example of the variable importance distribution
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SVM-RFE feature selection algorithm

Example of succesfully combined heuristics
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SVM-RFE – cry
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SVM-RFE – submit
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Bayes classifier and Bayes error

Imagine that you are able to develop a really optimal classifer.
Is the zero test error always feasible?
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Bayes classifier and Bayes error

Imagine that you are able to develop a really optimal classifer.
Is the zero test error always feasible?

The Bayes classifier minimises the probability of misclassification

Thus, by definition, error produced by the Bayes classifier is irreducible and is
called Bayes error.
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What is the lowest possible error rate

Bayes classifier assigns each example to the most likely class, given its feature
values

ŷ = maxy Pr(y | x)

The Bayes classifier produces the lowest possible test error rate,
so called Bayes error rate

1− E (maxy Pr(y | x))
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What is the lowest possible error rate

Practical view on your development data

Are there identical feature vectors in your data set?
• Get the same feature vectors
• How many of them have the same target value?
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