
Introduction to Machine Learning
NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

NPFL054, 2017 Hladká & Holub Lecture 7, page 1/27

http://ufal.mff.cuni.cz/course/npfl054


Ensemble learning methods

Outline
• Combining classifiers into ensembles – general scheme

• Generating random samples by bootstrapping

• Bagging vs. boosting

• Bagging – example classifier

• Random Forests

• Simple boosting – the regression case

• Classification with AdaBoost

NPFL054, 2017 Hladká & Holub Lecture 7, page 2/27



Ensemble classifiers – a motivation exercise

Consider the following task – we have a binary classification problem and a
number of predictors, each with error less than 0.5. Will the resulting majority
voting ensemble have an error lower than the single classifers?

Depends on the accuracy and the diversity of the base learners!

Illustrative example
Particular settings – assume that you have

• 21 classifiers
• each with error p = 0.3
• their outputs are statistically independent

Compute the error of the ensemble under these conditions!

NPFL054, 2017 Hladká & Holub Lecture 7, page 3/27



Solution of the exercise

How many classifiers will produce error output?
Key idea: The number of them will be binomially distributed! ∼ Bi(21, 0.3)

> plot(0:21, dbinom(0:21, 21, 0.3))
> dbinom(11, 21, 0.3)
[1] 0.01764978
> pbinom(10, 21, 0.3)
[1] 0.9736101

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Wrong predictions

de
ns

ity

Conslusion: Accuracy of the ensemble will be more than 97.3%!
NPFL054, 2017 Hladká & Holub Lecture 7, page 4/27



General scheme of combining classifiers

NPFL054, 2017 Hladká & Holub Lecture 7, page 5/27



Resampling approach

Resampling can be used as a way to produce diversity among base learners

• Distribute the training data into K portions

• Run the learning process to get K different models

• Collect the output of the K models use a combining function to get a final
output value

NPFL054, 2017 Hladká & Holub Lecture 7, page 6/27



Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while the
examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick it
after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.

NPFL054, 2017 Hladká & Holub Lecture 7, page 7/27



Same algorithm, different classifiers
Combining classifiers to improve the performance

Ensemble methods – key ideas
• combining the classification results from different classifiers to produce the
final output

• using (un)weighted voting
• different training data – e.g. bootstrapping
• different features
• different values of the relevant paramaters
• performance: complementarity −→ potential improvement

Two fundamental approaches
• Bagging works by taking a bootstrap sample from the training set
• Boosting works by changing the weights on the training set

NPFL054, 2017 Hladká & Holub Lecture 7, page 8/27



Bagging and boosting — the difference

• Bagging: each predictor is trained independently

• Boosting: each predictor is built on the top of previous predictors trained
– Like bagging, boosting is also a voting method. In contrast to bagging,
boosting actively tries to generate complementary learners by training the
next learner on the mistakes of the previous learners.

NPFL054, 2017 Hladká & Holub Lecture 7, page 9/27



Are ensembles effective?

Combining multiple learners
• the more complementary the learners are, the more useful their combining is
• the simpliest way to combine multiple learners is voting
• in weighted voting the voters (= base-learners) can have different weights

Unstable learning
• learning algorithm is called unstable if small changes in the training set cause
large differences in generated models

• typical unstable algorithm is the decision trees learning
• bagging or boosting techniques are a natural remedy for unstable algorithms

NPFL054, 2017 Hladká & Holub Lecture 7, page 10/27



Bagging

• Bagging is a voting method that uses slightly different training sets
(generated by bootstrap) to make different base-learners. Generating
complementary base-learners is left to chance and to unstability of the
learning method.

• Generally, bagging can be combined with any approach to learning.

NPFL054, 2017 Hladká & Holub Lecture 7, page 11/27



Bagging – algorithm

Bootstrap AGGregatING
1 for i ← 1 to K do
2 Traini ← bootstrap(Data)
3 hi ← TrainPredictor(Traini)

Combining function
• Classification: hfinal(x) = MajorityVote(h1(x), h2(x), . . . , hK(x))
• Regression: hfinal(x) = Mean(h1(x), h2(x), . . . , hK(x))

NPFL054, 2017 Hladká & Holub Lecture 7, page 12/27



Random Forests

• an ensemble method based on decision trees and bagging

• builds a number of random decision trees and then uses voting

• introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

• very good (state-of-the-art) prediction performance

• a nice page with description
www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

• important: Random Forests helps to
• avoid overfitting (by random sampling the training data set)
• select important/useful features (by random sampling the feature set)

NPFL054, 2017 Hladká & Holub Lecture 7, page 13/27



Building Random Forests

The algorithm for building a tree in the ensemble
1 Having a training set of the size n, sample n cases at random – with

replacement, and use the sample to build a decision tree.

2 If there are M input features, choose a less number m� M. When building
the tree, at each node a random sample of m features is selected as split
candidates from the full set of M available features. Then the best split on
these m features is used to split the node. A fresh sample of m features is
taken at each split.
– m is fixed for the whole procedure

3 Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!

NPFL054, 2017 Hladká & Holub Lecture 7, page 14/27



Regularized Random Forests

• a recent extension of the original Random Forest
– introduced by Houtao Deng and George Runger (2012)

• produces a compact feature subset

• provides an effective and efficient feature selection solution for many practical
problems

• overcomes the weak spot of the ordinary RF: Random Forest importance
score is biased toward the variables having more (categorical) values

• a useful page: https://sites.google.com/site/houtaodeng/rrf
– a presentation
– a sample code
– links to papers
– a brief explanation of the difference between RRF and guided RRF

NPFL054, 2017 Hladká & Holub Lecture 7, page 15/27



R packages for Random Forests

• randomForest: Breiman and Cutler’s random forests for classification and
regression
– Classification and regression based on a forest of trees using random inputs.

• RRF: Regularized Random Forest
– Feature Selection with Regularized Random Forest. This package is based
on the ’randomForest’ package by Andy Liaw. The key difference is the RRF
function that builds a regularized random forest.
– http://cran.r-project.org/web/packages/RRF/index.html

• party: A Laboratory for Recursive Partytioning
– a computational toolbox for recursive partitioning
– cforest() provides an implementation of Breiman’s random forests
– extensible functionality for visualizing tree-structured regression models is
available

NPFL054, 2017 Hladká & Holub Lecture 7, page 16/27



Boosting

Boosting combines the outputs of many “weak” classifiers (“rules of thumb”) to
produce a powerfull “commitee.”

Motivation
• How to extract rules of thumb that will be the most useful?
• How to combine moderately accurate rules of thumb into a single highly
accurate prediction rule?

Basic idea
• Boosting is a method that produces a very accurate predictor by combininig
rough and moderately accurate predictors.

• It is based on the observation that finding many rough predictors (rules of
thumb) can be easier than finding a single, highly accurate predictor.

NPFL054, 2017 Hladká & Holub Lecture 7, page 17/27



Simple boosting with regression trees

1 Initialization: Set h(x) = 0 and ri = yi for all i = 1, . . . , n in the training set

2 For b = 1, . . . ,B, repeat
(a) Fit a tree hb with only d splits to the training set (X , r)
(b) Update h by adding the new tree

h(x)←− h(x) + λhb(x)
(c) Update the residuals

ri ←− ri − λhb(xi)

3 Output the boosted model

h(x) =
B∑

b=1
λhb(x)

NPFL054, 2017 Hladká & Holub Lecture 7, page 18/27



Boosting with regression trees – tuning parameters

• The number of trees B

• The shinkage parameter

• The number d of splits in each tree
— trees with just d = 1 split are called “stumps”

NPFL054, 2017 Hladká & Holub Lecture 7, page 19/27



Boosting — Adaboost (Adaptive Boosting)

AdaBoost is a boosting method that repeatedly calls a given weak learner, each
time with different distribution over the training data. Then we combine these
weak learners into a strong learner.

• originally proposed by Freund and Schapire (1996)

• great success
— “AdaBoost with trees is the best off-the-shelf classifier in the world.”

(Breiman 1998)

— “Boosting is one of the most powerful learning ideas introduced
in the last twenty years.” (Hastie et al, 2009)

NPFL054, 2017 Hladká & Holub Lecture 7, page 20/27



Boosting — Adaboost (Adaptive Boosting)

Key questions
• How to choose the distribution?
• How to combine the weak predictors into a single predictor?
• How many weak predictors should be trained?

Schapire’s strategy: Change the distribution over the examples in each iteration,
feed the resulting sample into the weak learner, and then combine the resulting
hypotheses into a voting ensemble, which, in the end, would have a boosted
prediction accuracy.

NPFL054, 2017 Hladká & Holub Lecture 7, page 21/27



Binary classification and AdaBoost.M1

AdaBoost.M1 (Freund and Schapire, 1997) is the most popular boosting
algorithm

• Consider a binary classification task with the training data

Data = {〈xi , yi〉 : xi ∈ X, yi ∈ {−1,+1}, i = 1, . . . , n}

• We need to define distribution D over Data such that
n∑

i=1
Di = 1.

• Assumption: a weak classifier ht has the property

errorD(ht) < 1/2.

NPFL054, 2017 Hladká & Holub Lecture 7, page 22/27



Adaboost (Adaptive Boosting) — key idea
Classifiers are trained on weighted versions of the original training data set, and
then combined to produce a final prediction

• Training examples −→ h1(x)
↓

• Weighted examples −→ h2(x)
↓

• Weighted examples −→ h3(x)
↓
...

• Weighted examples −→ hM(x)

Final hypothesis h(x) = sign
M∑
t=1

αtht(x), where αt are computed by the

boosting algorithm, and weight the contribution of each respective ht

NPFL054, 2017 Hladká & Holub Lecture 7, page 23/27



AdaBoost – iterative algorithm

• Initialize the training distribution D1(i) = 1/n for i = 1, . . . , n
• At each step t

• Learn ht using Dt : find the weak classifier ht with the minimum weighted

sample error errorDt (ht) =
n∑

i=1

Dt(i) δ(h(xi) 6= yi)

• Set weight αt of ht based on the sample error

αt = 1
2 ln

(
1− errorDt (ht)

errorDt (ht)

)
• Update the training distribution

Dt+1 = Dt e−αtyiht (xi )/Zt where Zt is a normalization factor

• Stop when impossible to find a weak classifier being better than chance

• Output the final classifier hfinal(x) = sign
T∑
t=1

αtht(x)

NPFL054, 2017 Hladká & Holub Lecture 7, page 24/27



AdaBoost – training data weighting

Constructing Dt

• On each round, the weights of incorrectly classified instances are increased so
that the algorithm is forced to focus on the hard training examples.

• D1(i) = 1/n for i = 1, . . . , n

• given Dt and ht (i.e. update Dt):

Dt+1(i) = Dt(i)
Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

= Dt(i)
Zt

e−αtyiht(xi ),

where Zt is normalization constant Zt =
∑

i Dt(i) e−αtyiht(xi )

• αt measures the importance that is assigned to ht

As the iterations proceed, examples that are difficult to classify correctly
receive ever-increasing influence

NPFL054, 2017 Hladká & Holub Lecture 7, page 25/27



AdaBoost – base learners weighting

Weights of the base learners αt

• errorDt (ht) < 1
2 ⇒ αt > 0

• the smaller the error, the bigger the weight of the (weak) base learner

• the bigger the weight, the more impact on the (strong) resulting classifier

errorDt (h1) < errorDt (h2) =⇒ α1 > α2

• Dt+1 = 1
Zt
Dt e−αtyiht(xi )

The weights of correctly classified instances are reduced while weights of
misclassified instances are increased.

NPFL054, 2017 Hladká & Holub Lecture 7, page 26/27



AdaBoost.M1 — multiclass problem

Multiclass problem – generalization of the two-class case

• Assume classification task where Y = {y1, . . . , yk}

ht : X → Y ,

Dt+1(i) = Dt(i)
Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

hfinal(x) = argmaxy∈Y
∑

{t | ht(x)=y}

αt .

NPFL054, 2017 Hladká & Holub Lecture 7, page 27/27


