In this tutorial we will work with 'Forbes2000' dataset, which is a part of HSAUR library in R. Forbes2000 data set lists a ranking of the world’s biggest companies, measured by sales, profits, assets and market value. To get more info about Forbes2000 data set, use help(Forbes2000).

We will try to predict profit of the companies using Decision Trees model.

Part I The data set – elementary exploration

```r
> library(HSAUR)                        # loading the library with Forbes data set
> str(Forbes2000)                       # structure of the data set
'data.frame': 2000 obs. of 8 variables:
$ rank      : int 1 2 3 4 5 6 7 8 9 10 ...
$ name      : chr "Citigroup" "General Electric" "American Intl Group" "ExxonMobil" ...
$ country   : Factor w/ 61 levels "Africa","Australia",..: 60 60 60 60 56 60 56 28 60 ...
$ category  : Factor w/ 27 levels "Aerospace & defense",..: 2 6 16 19 19 2 2 8 9 20 ...
$ sales     : num 94.7 134.2 76.7 222.9 232.6 ...
$ profits   : num 17.85 15.59 6.46 20.96 10.27 ...
$ assets    : num 1264 627 648 167 178 ...
$ marketvalue: num 255 329 195 277 174 ...

> head(Forbes2000)                      # displays the beginning of the data
> levels(Forbes2000$category)           # look at the categories

# *************************************************
# How many companies are reporting positive profit?  
# *************************************************
> table(Forbes2000$profits > 0)
FALSE  TRUE
290 1705

> table(Forbes2000$profits < 0)
FALSE  TRUE
1715 280

> table(Forbes2000$profits == 0)
FALSE  TRUE
1985 10

# Observation: 1705 + 280 + 10 does not sum up to the total data set size!
> nrow(Forbes2000)                      
[1] 2000
```
... because there are some missing values
> table(is.na(Forbes2000$profits))
FALSE TRUE
 1995 5

**
Data transformation
**
> F = Forbes2000 # just to make a copy
for simplicity, NA values will be replaced by zeros, and then
the numerical values 'profits' will be reduced to a binary attribute
> F$profits[is.na(F$profits)] = 0 # NAs are replaced by 0
> F$profits = factor(F$profits > 0.2) # transformation to a binary variable
> table(F$profits)
FALSE TRUE
 1044 956

Part II Building a simple Decison Tree

Now we will do a binary classification task. The binary value 'profit' will be predicted using one
categorical feature (category) and three numerical features (sales, assets, marketvalue).

**
TRAINING AND BASIC EVALUATION
**
to randomly split the data into two disjoint subsets
> set.seed(123); s = sample(2000)
> data.train = s[1:1000] # indices of training examples
> data.test = s[1001:2000] # indices of test examples
> length(unique(c(data.train, data.test))) # just to check

to train the model/hypothesis using the train data set
> library(rpart)
> forbes.train = F[data.train, 1:8]
> model = rpart(profits ~ category + sales + assets + marketvalue, forbes.train)

to display the resulting DT
> plot(model, branch=1, uniform=T); text(model, use.n=T, digits=3, all=T)

a nicer visualisation
> library(rpart.plot)
> rpart.plot(model)

to evaluate the prediction using the test set
> forbes.test = F[data.test, 1:8]
> prediction <- predict(model, forbes.test, type="class")
> table(prediction)

simple evaluation
> model.cm = table(prediction, forbes.test$profits) # confusion matrix
> message("Accuracy = ", sum(diag(model.cm))/1000)
Details of the decision tree structure are described in the model

```
> print(model)
n= 1000

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1000 497 FALSE (0.5030000 0.4970000)
   2) marketvalue< 4.44 450  87 FALSE (0.8066667 0.1933333) *
   3) marketvalue>=4.44 550 140 TRUE (0.2545455 0.7454545)
      6) category=Materials,Media,Semiconductors, Software & services,Technology hardware & equipment 85  37 FALSE (0.5647059 0.4352941)
      12) marketvalue< 13.2 53  13 FALSE (0.7547170 0.2452830) *
      13) marketvalue>=13.2 32   8 TRUE (0.2500000 0.7500000) *
    7) category=Aerospace & defense,Banking, Business services & supplies, Capital goods,Chemicals,Conglomerates,Construction, Consumer durables,Diversified financials, Drugs & biotechnology,Food drink & tobacco, Food markets,Health care equipment & services, Hotels restaurants & leisure, Household & personal products,Insurance, Oil & gas operations, Retailing, Telecommunications services, Trading companies, Transportation, Utilities 465  92 TRUE (0.1978495 0.8021505) *
```
Part III Learning parameters

Exercises

1. Try and play with parameters of `rpart()` and observe how the prediction accuracy changes.

2. Use additional feature 'country' (categorical variable). Does it help to predict profits?

3. Build a deeper tree by setting `cp`

\[
M\text{.deep} = \text{rpart(profits} \sim \text{category + sales + assets + marketvalue, forbes.train, cp = 0.001)}
\]

\[
\text{plot(M.deep, branch=1, uniform=T); text(m, use.n=T, digits=3, all=T)}
\]

– Is this deeper model better?

\[
\text{plot(M.deep, branch=1, uniform=T); text(m, use.n=T, digits=3, all=T)}
\]
see the cp values
printcp(M.deep)

Root node error: 497/1000 = 0.497

<table>
<thead>
<tr>
<th>CP</th>
<th>nsplit</th>
<th>rel error</th>
<th>xerror</th>
<th>xstd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5432596</td>
<td>0.000000</td>
<td>1.07646</td>
<td>0.031736</td>
</tr>
<tr>
<td>2</td>
<td>0.0271630</td>
<td>1.05674</td>
<td>0.46278</td>
<td>0.026776</td>
</tr>
<tr>
<td>3</td>
<td>0.0070423</td>
<td>3.02401</td>
<td>0.43863</td>
<td>0.026271</td>
</tr>
<tr>
<td>4</td>
<td>0.0060362</td>
<td>6.37626</td>
<td>0.44668</td>
<td>0.026443</td>
</tr>
<tr>
<td>5</td>
<td>0.0050302</td>
<td>8.36419</td>
<td>0.45473</td>
<td>0.026611</td>
</tr>
<tr>
<td>6</td>
<td>0.0040241</td>
<td>15.32797</td>
<td>0.46278</td>
<td>0.026776</td>
</tr>
<tr>
<td>7</td>
<td>0.0030181</td>
<td>19.31187</td>
<td>0.46278</td>
<td>0.026776</td>
</tr>
<tr>
<td>8</td>
<td>0.0020121</td>
<td>21.30584</td>
<td>0.45875</td>
<td>0.026694</td>
</tr>
<tr>
<td>9</td>
<td>0.0010060</td>
<td>23.30181</td>
<td>0.46680</td>
<td>0.026858</td>
</tr>
<tr>
<td>10</td>
<td>0.0010000</td>
<td>25.29980</td>
<td>0.47887</td>
<td>0.027096</td>
</tr>
</tbody>
</table>

plotcp(M.deep)
Compare the test results

```r
# prediction using the original model
> prediction.model = predict(model, forbes.test, type="class")
> table(prediction.model)

prediction
FALSE  TRUE
  505   495

> model.cm = table(prediction.model, forbes.test$profits)
> model.cm

prediction FALSE TRUE
 FALSE  405  100
 TRUE   136  359

> message("Accuracy = ", sum(diag(model.cm))/1000)
Accuracy = 0.764

# prediction using M.deep
> prediction.M.deep = predict(M.deep, forbes.test, type="class")
> table(prediction.M.deep)

prediction.M.deep
FALSE  TRUE
  511   489

# confusion matrix
> M.deep.cm = table(prediction.M.deep, forbes.test$profits)
> M.deep.cm

prediction.M.deep FALSE TRUE
 FALSE  406  105
 TRUE   135  354

> message("Accuracy = ", sum(diag(M.deep.cm))/1000)
Accuracy = 0.76
```