EXAMPLES IN R

Barbora Hladká, Martin Holub Institute of Formal and Applied Linguistics Charles University in Prague 2013/14

LITERATURE

```
Getting started with R
    -- e.g. http://data.princeton.edu/R/gettingStarted.html
An introduction available on the web:
    http://cran.r-project.org/doc/manuals/R-intro.html
R Language Definition
    -- available at http://cran.r-project.org/doc/manuals/R-lang.html
An Introduction to R
    by W. N. Venables, D. M. Smith and the R core team
R for Beginners
    by Emmanuel Paradis
... and a lot of other sources ...
```


GENERAL COMMANDS/FUNCTIONS

```
# to assign a value to an object
> x <- 2
# or (the same)
> x = 2
# to get basic attributes of an object
> mode(x)
> length(x)
> str(x)
# overview of an object's contents
> summary(x)
> table(x)
# to get the list of your objects
> ls()
# to remove an object from the memory
> rm(x)
```

```
# to remove all objects
```

> rm(list=ls())
\# to find help on any R function
> help(function)
\# or simply
> ?function
\# to save the history of your commands (the default file is ".Rhistory")
> savehistory()

SOME OF THE ELEMENTARY ARITHMETIC AND LOGICAL OPERATORS

```
# + - * / ^
# %% (modulo)
# %/% (integer division)
# comparison
# < > <= >= == !=
# logical
# ! & (&&) | (||) xor(x,y)
# to get the description of operators and precedence rules
> ?Syntax
> ?Logic
> ?Arith
# some of the basic mathematical functions
# log(), exp(), sin(), cos(), tan(),
# asin(), acos(), atan(),
# abs(), sqrt(), round(), choose(n,k)
```


CREATING VECTORS

```
# to concatenate a number of elements, e.g. to create a vector of numbers
```

$>a<-c(0,1,2,3)$
\# to select some of the elements from a vector
$>a[4]$
$>a[c(1,3)]$
$>a[-1]$
\# some basic operations with vectors
$>\operatorname{sum}(a) ; \operatorname{prod}(a)$
$>\min (a) ; \max (a)$
$>$ length(a)
> which.min(a); which.max(a)
> mean(a)
$>$ median(a)
\# to create a regular sequence
$>b<-1: 4$
$>\operatorname{prod}(1: 10)$
$>\operatorname{seq}(1,10,0.1)$
$>\operatorname{rep}(1 / 6,100)$
\# Arithmetic operations are performed on each element of vectors $>a+1$
$>a * b$
$>\mathrm{a}==\mathrm{b}$
$>\operatorname{prod}(\mathrm{a}==\mathrm{b})$
$>\operatorname{prod}(a+1==b)$

R IS SOMETIMES TRICKY -- SOME EXAMPLES

\# observe the difference between
$>x<-1: 20 ; x[x>5 \& x<15]<-0 ; x$
\# and
$>x<-1: 20 ; x[x>5$ \&\& $x<15]<-0 ; x$
\# - WHY???
\# -- to discover the difference between \& and \&\& -- look at >? Logic
\# try the following:
$>x>5$
$>x>5 \& x<15$
$>x>5$ \&\& $x<15$
\# \&\& gives only one value
\# while \& works with all vector elements
\# positive numbers are considered as true, zeros are false
$>c(1,2,3) \& c(2,3,3)$
$>c(1,2,3)$ \&\& $c(0,3,3)$
$>c(1,2,3) \& c(2,3,3)$
$>c(1,2,3) \quad \& \& c(0,3,3)$

COMPARE SELECTION USING VECTOR OF INDEXES VS. LOGICAL VECTOR

```
> x[c(1,2,4)]
> x[c(T,T,F,T)] # logical vector is repeated
# thus
> x[x>10] # is the same as x[x>10 & TRUE]
# BUT
> x[x>10 && TRUE] # is the same as x[FALSE]
```


COMPARING NUMBERS

\# be careful when comparing numbers; try the following:
> $0.9==1.1$ - 0.2
> all.equal(0.9, 1.1-0.2)
> 1:5 == 1:5
> identical(1:5, 1:5)
$>\operatorname{seq}(0.2,1,0.2) * 5$
$>\operatorname{seq}(0.2,1,0.2) * 5==1: 5$
$>$ identical(seq(0.2,1,0.2) * 5, 1:5)
$>$ all.equal(seq(0.2,1,0.2) * 5, 1:5)

```
# another example
> d45 <- pi*(1/4 + 1:10)
> tan(d45)
> tan(d45) == rep(1,10)
> all.equal(tan(d45), rep(1,10))
> all.equal(tan(d45), rep(1,10), tol=0) # to see difference
```


FACTORS

\# A factor stores both values and possible levels of a categorial variable \# levels (usually a small number) are "names" of categorial values.
> people $=$ factor $(c(1,1,1,0,1,0,0,0,1,0,1,1,1,1)$,
labels=c("male", "female")
)
> plot(people)
> nationality = factor(c("CZ", "CZ", "SK", "SK", "IND", "CZ", "RU", "MEX", "SRB", "CZ", "CZ", "SRB")
)
> nationality
> table(nationality)
> plot(nationality)
\# you can change the set of levels:
> levels(nationality)
[1] "CZ" "IND" "MEX" "RU" "SK" "SRB"
> levels(nationality) = c(levels(nationality), "PL", "DE")
> levels(nationality)
[1] "CZ" "IND" "MEX" "RU" "SK" "SRB" "PL" "DE"

```
> plot(nationality)
```


WRITING YOUR OWN FUNCTIONS IN R

```
> f <- function(a,b) a*b
> f(17,3)
> fact <- function(n) prod(1:n)
> fact(10)
# does not work for 0
# you can also use recursion
> fact <- function(n) if(n==0) 1 else n*fact(n-1)
# to edit your function
> fact <- edit(fact)
> fact <- emacs(fact)
```


ELAPSED TIME

```
# to measure the elapsed time
> system.time({m = matrix(sample(1:6, 6*10^6, replace=T),nrow=6,ncol=10^6)})
    user system elapsed
    0.280 0.044 0.322
```


TO EXIT R

$>q()$

RANDOM SEQUENCES, RANDOM GENERATORS

```
# a random sample from an existing vector
> sample(x, 10)
> sample(1:1000, 100)
# a random sequence
> sample(1:100, 100, replace=T)
# a random permutation
> sample(1:10, 10, replace=F)
```


RANDOM SEQUENCES OF NUMBERS WITH GIVEN DISTRIBUTION

```
# UNIFORM
> runif(10)
> plot(runif(1000))
> hist(runif(1000))
> hist(runif(1000), breaks=seq(0,1, by=1/20))
> floor(runif(100,0,100)) + 1 # to generate random integers
# NORMAL
> rnorm(10)
> plot(rnorm(5000))
# BINOMIAL
> rbinom(10, 1, 0.5)
> rbinom(10, 10, 0.5)
> plot(rbinom(1000, 10, 0.5))
> table(rbinom(1000, 10, 0.5))
```

 \(\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
 \(\begin{array}{llllllllll}2 & 13 & 42 & 120 & 204 & 238 & 218 & 109 & 43 & 9\end{array} 2\)
 > hist(rbinom(1000, 10, 0.5), breaks=0:10)
> hist(rbinom(1000, 10, 0.7), breaks=0:10) \# a fake coin

DENSITY FUNCTION

```
# UNIFORM
> dunif(-2:2)
> plot(seq(-2,2,0.01), dunif(seq(-2,2,0.01)), type="l")
# NORMAL
> dnorm(-5:5)
```

```
> plot(seq(-5,5,0.01), dnorm(seq(-5,5,0.01)), type="l")
# BINOMIAL
> plot(factor(rbinom(100000,10,0.5)))
> dbinom(0:10,10,0.5)
> plot(0:10, dbinom(0:10,10,0.5))
```


CUMULATIVE DISTRIBUTION FUNCTION

```
# UNIFORM
> plot(seq(-2,2,0.01), punif(seq(-2,2,0.01)), type="l")
# NORMAL
> plot(seq(-5,5,0.01), pnorm(seq(-5,5,0.01)), type="l")
# BINOMIAL
> plot(0:10, pbinom(0:10,10,0.5))
> barplot(pbinom(0:10,10,0.5))
```


QUANTILE FUNCTION

-- qunif, qnorm, qbinom

OTHER DISTRIBUTIONS ALSO AVAILABLE

-- e.g. the negative binomial (nbinom)

***** Exercises

```
*** Exercise 1
```

Question:
How many times would you need to roll a die to get number 1 ?

```
# Probability p(i) = p("number 1 is rolled only after i trials")
# p(i) = (5/6)^(i-1)*(1/6)
# Expected number of trials to get number 1 is
# SUM( p(i)*i ) for i = 1,..., infinity
# Because the value of p(i)*i goes to zero quickly, it is
# sufficient to compute the sum of first 100 members of the sequence.
```

$>\mathrm{n}=100$
$>\mathrm{p}=$ numeric(n$)$
$>\operatorname{for}(\mathrm{i}$ in $1: n)\left\{\mathrm{p}[\mathrm{i}]<-(5 / 6)^{\wedge}(\mathrm{i}-1)^{*}(1 / 6)\right\}$
> plot(p) \# p(i)
> plot $(p$ * $1: n) \quad$ \# $p(i) * i$
> barplot($p^{*}(1: n)$, names.arg = 1:n)
$>\operatorname{sum}(\mathrm{p} * 1: n) \quad \# \operatorname{SUM}(\mathrm{p}(\mathrm{i}) * \mathrm{i})$
\# More R-like solution:
$\left.>\operatorname{sum}(5 / 6)^{\wedge}(1: n-1) *(1 / 6) * 1: n\right)$

```
# To compare the elapsed time:
> system.time( for(j in 1:1000){
                                for(i in 1:n){ p[i] <- (5/6)^(i-1)*(1/6) }; sum(p * 1:n)
                    } )
    user system elapsed
    0.916 0.016 0.964
> system.time( for(j in 1:1000){
                                sum( (5/6)^(1:n - 1)*(1/6) * 1:n )
                    } )
        user system elapsed
    0.028 0.000 0.028
# Another solution is based on using the enormous computational
# power of our computers. Instead of thinking about exact and
# explicite formulas we can "measure" the probability as the
# average of a large number of experimental results.
# To simulate 1,000,000 trials we can use random generator:
> n = 10^6
> x = sample(1:6, n, replace=T)
# Now we will transform the vector x to a 0/1 vector
> x = ifelse(x==1, 1, 0)
# However, the same random vector could be obtained using rbinom:
> x = rbinom(n, 1, 1/6) # which is much faster
# And now the average number of trials needed to get 1 is the same
as the average distance between ones in x, thus the result is
> lenght(x)/sum(x)
# or simply
> n/sum(rbinom(n, 1, 1/6))
```

```
*** Exercise 2
Question:
If you generate 100 random integers from {1,...,100},
what is the probability that n will be generated?
# to generate n numbers from {1,..., n}
> n = 100
> x = sample(1:n, n, replace=T)
# to count how many times n was generated
> sum(ifelse(x==n, 1, 0))
# ... or simply
> sum(x==n)
# or
> sum( sample(1:n, n, replace=T) == n )
```

```
# to test whether n was generated or not
> any(x==n)
# now we can do e.g. 1,000,000 trials and count how
# many times n occurs in the generated random sample
> n = 100; k = 0; N = 10^6
> for(i in l:N){ if( any(sample(l:n, n, replace=T) == n) ) k <- k+1 }
> k/N # to estimate the probability that n is generated in the sample
```

[1] 0.633979
\# Again, much faster solution can be obtained using rbinom
$>\mathrm{n}<-100$
$>\operatorname{sum}(r b i n o m(N, n, 1 / n)>0) / N$
[1] 0.633823 \# the same estimate obtained different way
\# Of course, the obvious exact answer is simply
$>\mathrm{n}<-100$
$>1-((n-1) / n)^{\wedge} n$
[1] 0.6339677 \# the exact probability

*** Exercise 3

Question:
If you generate 10 random integers from $\{1, \ldots, 10\}$, how many different numbers will you get?

```
# To empirically estimate the probabilities we can repeat the experiment
# 1,000,000 times:
#
> n <- 10
> N <- 10^6
> x <- numeric(N)
> for(i in l:N){ x[i] <- length(unique(sample(1:n, n, replace=T))) }
> table(x) # the summary of results
> plot(factor(x))
# A clever solution using recursion:
# p(m,k,n) = p("there are just k different numbers among m numbers
# randomly selected from {1,..., n}")
# -- assuming n>=k, m>=k.
> p <- function(m,k,n){
        if(k==0 || m<k) 0 else
        if(m==1) 1 else
        p(m-1,k,n)*k/n + p(m-1,k-1,n)*(n-k+1)/n
    }
> n=10; x <- numeric(n); for(i in 1:n) x[i] <- p(n,i,n); x
```

[1] 0.000000001 0.000004599 0.000671760 0.017188920 0.128595600 0.345144240
[7] 0.355622400 0.136080000 0.016329600 0.000362880

```
> sum(x) # just to check
```

[1] 1
> barplot(x, names.arg=1:10)

```
*** Homework exercises ***
```

1. How many times do you need to roll a die to get all different numbers? You need to determine the probability distribution. Display the histogram!
... and particularly:
2. What is the probability that you will get all 6 numbers after 6 rolls?
3. How many times do you need to roll a die to have (at least) 95\% chance that you will get all different numbers?

*** Exercise 4 (also homework) ***

In 2001 it was found that the average male height in the Czech Republic is 180.3 cm , while the average female height is $167.2 \mathrm{~cm} .$. We assume that both distributions are normal with mean=180.3 and variance=100, and with mean=167.2 and variance=50, respectively.

Question:
When you meet a man and a woman -- independently(!), then What is more likely?

* that the man will be bigger than 200 or smaller than 165 ?, or
* that the woman will be between 166 and 168 ?

First, compute the probabilities, and then draw a picture with the density functions and display the probabilities as areas under the density curves.

Hint: to fill the area under curve use polygon().

