
Text categorization on Reuters corpus
Ivana Lukšová

Introduction to Machine Learning, 2014

1 Task
The task of text categorization can be described as follows: given a set of documents, we want to

assign to each document one or more text categories or no category.

In this term project, we want categorize documents from the well-known Reuters-21578 corpus

which is a collection of 21578 articles published on Reuters in 1987.

We have chosen only three most frequent text categories as the target categories:

Mergers/Acquisitions (ACQ)

Earnings and Earnings Forecasts (EARN)

Money/Foreign Exchange (MONEY-FX)

Since this categories may overlap, we have at total 8 target labels for each subset of these

categories. We want to train a classifier that will assign a target label to a given document.

2 Approach
In the text categorization task, we want to compare two different approaches. Both approaches are

based on building an ensemble of binary classifiers. In the first approach, we will use a simple

majority voting method to assign a target label. In the second approach, we will use the outputs of

this ensample as the input for another classifier.

Our ensemble of classifiers will consist of 8 classifiers: for each text category (ACQ, EARN, MONEY-FX)

we will train 3 binary classifiers with different machine learning methods:

 Support Vector Machine (SVM)

 Random Forest (RF)

 Naïve Bayes (NB)

The output of each of these binary classifiers will be TRUE or FALSE – assigning or not assigning a

given label.

In the majority voting approach, if two of classifiers will output TRUE, we will assign the particular

text category to an input document. The target label will be determined as the composition of these

assigned text categories.

In the second approach, we will train a decision tree that will use these eight binary outputs. The

decision tree will directly assign the target label.

2.1 Features
In the text categorization task, the first step is to transform text documents into a set of features

suitable for classifier learning methods. Convenient transformation could be representing the

document as a set of words, ignoring their order in the text. Thus we will split the text documents

into the words and then each feature will correspond to occurrence of a particular term in the text.

Thus the feature values can be represented as a term-document matrix – a matrix which rows

describes the documents and the columns corresponds to particular terms.

There are several ways how to determine the values of entries in the term-document matrix. We can

use following metric:

Metric name Value Description

Term occurrence TRUE/FALSE Describes the occurrence/unoccurrence of a
term in the document

Term frequency Integer
number

Describes how many time a particular term
appears in the document

Term frequency – inverse
document frequency

Real number The term frequency is offset by its frequency in
the corpus

This approach could lead to huge feature space. To decrease computational complexity and avoid

related issues such as overfitting, we want to use statistical methods to select only important words

and filter unimportant words. It is evident that the most frequent words (STOP words), such as “the”,

“and”, “he”, do not bring any information about the text category. We want to remove also very

infrequent words in the texts – if a word appears only few time in the corpus, it is not the useful one.

Another improvement can be done by term stemming - “merging” multiple forms of one word to

one. For example, an occurrence word “accounts” can be merged into an occurrence of term

“account”. We suppose that this approach can improve the performance of the output classifier.

3 Data
As we mentioned earlier, the Reuters-21578 corpus consists of 21578 articles. This corpus is

distributed in a SQML or XML form and the documents are already divided into several groups –

splits. In this term project, we will use the Lewis split that divides this documents into the training

and testing set. The training set contains 13624 documents and the testing set contains 6188

documents. The distribution of text categories in these sets is as follows:

 Training set Test set

EARN 2861 1085

ACQ 1633 716

MONEY-FX 538 180

EARN & ACQ 16 3

Other 8576 4204

Total 13624 6188

We see that we have only 5 target labels, because there is no combination of multiple labels except

the EARN & ACQ.

4 Implementation
In this section, we will describe the details of the implementation of our approach in the text

categorization task.

4.1 Data preparation
XML format of the corpus is not convenient for textual and statistical processing. Thus the first step is

to process the corpus and to extract text documents along with their categories and store it in more

convenient format.

This involves also first preprocessing of the text – we remove the numbers and other non-alphabetic

characters and the text is transformed to lower case letters. Texts along with their categories is

stored in the data.frame representation.

4.2 Creation of term-document matrix
We have used the tm library to create and represent the term document matrix. With this library,

we are able to perform statistical filtering such as removing the STOP words, words steming and to

select the metric to represent the values in the matrix.

Example of usage of the tm library:

control=list(bounds=list(local=c(1,Inf)),language="english",stopwords=TRUE,

wordLengths=c(3,Inf), weighting=weightTf)

tdm=DocumentTermMatrix(corpus,control=control)

This library allows us to remove also the very unfrequent words by the controling the sparse

parameter:

tdm=removeSparseTerms(tdm, 0.40)

This function call removes those terms which have at least a 40 percentage of sparse (i.e., terms

occurring 0 times in a document) elements.

The TDM can be very sparse, thus we use the method as.compressed.matrix of the library

maxent to store the matrix in the compressed matrix.csr format.

Example of terms used as the columns of TDM:

[1] "also" "april" "bank" "billion" "company" "corp" "cts"

[8] "dlr" "dlrs" "due" "exchange" "first" "inc" "international"

[15] "last" "march" "market" "may" "mln" "net" "new"

[22] "one" "pct" "reuter" "said" "share" "shares" "shr"

[29] "stock" "three" "told" "two" "will" "year"

4.2.1 Term-document matrix for testing
For test purposes, we have to store original terms used in the learning process, because we have to

find their occurences in the test documents. So we have to create another term document matrix

with defined columns. This can be done in the folowing way: we computed the TDM as mentioned in

the previous paragraph and then we remove all columns that are not in the original TDM matrix:

result <- as.DocumentTermMatrix(cbind(newMatrix[,which(colnames(newMatrix)

%in% colnames(origMatrix))],tmpMatrix),weighting=weighting)

4.3 Binary classifiers ensemble training
The binary classifiers are trained using following libraries: e1071 for NB and SVM and

randomForest for randomForest method. Each binary classifier is trained on the same TDM matrix

and the ensemble is represented by a list of classifiers.

4.4 Voting & decision tree
The output of the ensemble for a particular text category (EARN, ACQ, MONEY-FX) is summed and if

the value is greater then 2, the text category is assigned to the given text document. The final target

label is determined by concatenating these assigned categories.

For the decision tree, we use the library rpart. In the training process, we take the binary output of

the ensemble classifiers and create a decision tree that directly assign the target category. We use 70

% of instances for training the binary classifiers and 30 % of instances for training of the decision

tree.

5 Experiments and evaluation

5.1 Experiments
In first experiments, we have trained the ensemble of binary classifiers. The experiments are initially

drawn on smaller data set with no parameter tuning. Then we have tried to set up the parameters to

increase the performance and finally, we have performed the 5-fold crossvalidation.

5.1.1 Learning parameters
Because the classifier training process could be time-consuming on huge training set, the parametes

of the binary classifiers have been tuned on smaller data set (5000 documents). It turned out that the

baseline accuracy of classifiers is relatively high and the parameter tuning have no significant impact

on the accuracy.

ML method Parameter Value

SVM cost 300

RF ntree 500 for category
MONEY-FX, 200 for
other categories

The list of learning parameters

The most important parameters are the parameters of creation of the term-document matrix, which

were set as shown in the following table:

Parameter Value

Stem true

Weighting Term frequency – inverse document frequency

Sparse 0.98

5.2 Evaluation
For the evaluation of binary classifiers, we have used following performace metrics:

Metric Formula

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F-measure 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where TP means true positive, TN true negative, FN false negative, FP false positive instances.

5.3 Binary classifier evaluation
The binary classifiers evaluation using 5-fold cross validation is shown in the following table:

Classifier Text Category Accuracy Precision Recall F-measure

SVM EARN 0.9740508 0.9290037 0.9496512 0.9391728

 ACQ 0.9490624 0.7464374 0.8756654 0.8057058

 MONEY-FX 0.9808239 0.7278682 0.8240421 0.7726801

RF EARN 0.9747619 0.9483746 0.9313143 0.9397214

 ACQ 0.9562365 0.8489979 0.7768948 0.8112193

 MONEY-FX 0.9854449 0.9309424 0.6862000 0.7890224

NB EARN 0.7631424 0.4664369 0.8380253 0.5991958

 ACQ 0.7306981 0.2825586 0.7948315 0.4168544

 MONEY-FX 0.69572941 0.09514365 0.78673155 0.16966013

Binary classifiers 5-fold mean

Classifier Text Category 95 % conf. interval of F-measure mean

SVM EARN 0.9390999 - 0.9392456

 ACQ 0.8054914 - 0.8059203

 MONEY-FX 0.7714580 - 0.7739021

RF EARN 0.9396566 - 0.9397861

 ACQ 0.8108813 - 0.8115573

 MONEY-FX 0.7888146 - 0.7892303

NB EARN 0.5990844 - 0.5993072

 ACQ 0.4165261 - 0.4171827

 MONEY-FX 0.1693700 - 0.1699503

Binary classifiers F-measure confidence intervals

5.3.1 Best achieved results of binary classifiers
We achieved the best results with following methods:

Text category Classifier F-measure 95 % conf. interval of F-measure mean

EARN RF 0.9397214 0.9396566 - 0.9397861

ACQ RF 0.8112193 0.8108813 - 0.8115573

MONEY-FX RF 0.7890224 0.7888146 - 0.7892303

Best binary classifiers for each text category

5.3.2 Stemming impact
Interesting experiment is how the word stemming can improve the performance, which is shown in

the table below:

Classifier Text Category Without stemming With stemming

SVM EARN 0.9678353 0.9740508

ACQ 0.9347072 0.9490624

MONEY-FX 0.9753024 0.9808239

RF EARN 0.9746064 0.9747619

ACQ 0.9512080 0.9562365

MONEY-FX 0.9850299 0.9854449

NB EARN 0.6546847 0.7631424

ACQ 0.6667027 0.7306981

MONEY-FX 0.5996128 0.6957294

Stemming impact on accuracy

5.4 Ensemble evaluation
Evaluation of the ensemble classifiers using 3-fold cross-validation is show in the following tables:

 Accuracy 95 % conf. interval of Accuracy

Voting 0.9093767 0.9093176 - 0.9094359

Decision tree 0.9088767 0.9088344 - 0.9089191

Expected accuracy of each method

 Precision Recall F-measure 95 % conf. interval of F-measure mean

ACQ 0.7704301 0.8452576 0.8060259 0.8055891 - 0.8064626

EARN 0.9472786 0.9291158 0.9380626 0.9379196 - 0.9382057

MONEY-FX 0.7849511 0.7750386 0.7797479 0.7771721 - 0.7823238

EARN & ACQ - - - -

No target label 0.9374280 0.9255048 0.9314139 0.9313877 - 0.9314401

Expected performance of the majority voting method on target labels

 Precision Recall F-measure 95 % conf. interval of F-measure mean

ACQ 0.7941893 0.8131361 0.8011995 0.8009801 - 0.8014189

EARN 0.9443781 0.9314942 0.9378891 0.9378629 - 0.9379154

MONEY-FX 0.7634673 0.7507496 0.7566472 0.7544534 - 0.7588409

EARN & ACQ - - - -

EAEN & MONEY.FX - - - -

No target label 0.9374280 0.9255048 0.9314139 0.9313877 - 0.9314401

Expected performance of the decision tree method on target labels

We see that the majority voting method has slightly better performace:

 Accuracy 95 % conf. interval of Accuracy

Voting 0.9093767 0.9093176 - 0.9094359

The best achieved accuracy

In the next picture, we see that the learned decision tree is quite simple and it takes only the input of

the SVM and RF binary classifier. There is no leaf for the combination of text categories, thus such

decision tree is not able to recognize the document with multiple basic text categories.

5.5 Evaluation on test set

5.5.1 Evaluation of best binary classifiers
We have evaluated the best binary classifier for each text category on test data set. The results are

shown in the following table:

Text category Method Accuracy Precision Recall F-measure

ACQ RF 0.9571752 0.8197183 0.8094576 0.8145556

EARN RF 0.9132191 0.6787800 0.9613971 0.7957398

MONEY-FX RF 0.9812540 0.7424242 0.5444444 0.6282051

Best binary classifiers performance on test set

5.5.2 Evaluation of ensemble methods
In the following table we see the result of the voting classifier and ensemble classifier trained on the

all training data and evaluated on the test data:

 Accuracy

Voting 0.8408209

Decision tree 0.8403361

Accuracy of ensemble methods on test set

 Precision Recall F-measure

ACQ 0.7557716 0.8687151 0.8083171

EARN 0.6724694 0.9612903 0.7913505

MONEY-FX 0.5826087 0.7444444 0.6536585

EARN & ACQ - - -

No target label 0.9553747 0.8097050 0.8765289

Performance of the majority voting method on target labels

 Precision Recall F-measure

ACQ 0.8166432 0.8086592 0.8126316

EARN 0.6559950 0.9631336 0.7804332

MONEY-FX 0.5542636 0.7944444 0.6529680

EARN & ACQ - - -

No target label 0.9462514 0.8166032 0.8766599

Performance of the decision tree method on target labels

expected

 No label ACQ EARN EARN & ACQ MONEY-FX

p
re

d
ic

te
d

No label 3403 78 33 2 46

ACQ 99 622 3 0 0

ACQ& MONEY-FX 3 5 0 0 0

EARN 499 8 1043 1 0

EARN & ACQ 2 3 2 0 0

EARN & MONEY-FX 2 0 4 0 0

MONEY-FX 96 0 0 0 134

Confusion matrix for the majority voting method

 expected

No label ACQ EARN EARN & ACQ MONEY-FX

p
re

d
ic

te
d

No label 3433 120 39 2 37

ACQ 128 577 1 0 0

EARN 530 17 1045 1 0

EARN & ACQ 0 0 0 0 0

MONEY-FX 113 2 0 0 143

Confusion matrix for the decision tree method

6 Conclusion
We have seen that from three used machine learning methods, the SVM and RF shows very good

performances (f-measure about 93 % for ACQ, 80 % for EARN and 78 % for MONEY-FX) and the NB

classifier has poorer accuracy which is near the baseline accuracy (f-measure about 60 % for ACQ,

42% for EARN and 17 % for MONEY-FX). The performance of each method is similar for every text

category. We have also seen that the stemming has positive effect on the performance, mainly for

the NB classifier. The best binary classifier is RF for each text category.

The performance of the trained classifiers is slightly worse on the test data. For the best binary

classifier (RF), the f-measure is about 81 % for ACQ, 80 % for EARN and 63 % for MONEY-FX. For the

two ensemble methods, the both have similar results: f-measure about 81% for ACQ, 78% for EARN

and 65% for MONEY-FX and the majority voting method has slightly better accuracy. We see that the

text categories with more occurrences such as ACQ and EARN are better learnable then the

categories with little occurrences as MONEY-FX.

We can conclude that we are able to categorize the documents into the three main text categories,

but we have too little learning examples to be able to recognize their combination. Further

development could include improving the decision tree ensemble predictor by designing new

possibly useful features.

