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1 Task 
The task of text categorization can be described as follows: given a set of documents, we want to 

assign to each document one or more text categories or no category.  

In this term project, we want categorize documents from the well-known Reuters-21578 corpus 

which is a collection of 21578 articles published on Reuters in 1987.  

We have chosen only three most frequent text categories as the target categories: 

Mergers/Acquisitions (ACQ) 

Earnings and Earnings Forecasts (EARN)  

Money/Foreign Exchange (MONEY-FX) 

Since this categories may overlap, we have at total 8 target labels for each subset of these 

categories. We want to train a classifier that will assign a target label to a given document. 

2 Approach 
In the text categorization task, we want to compare two different approaches. Both approaches are 

based on building an ensemble of binary classifiers. In the first approach, we will use a simple 

majority voting method to assign a target label. In the second approach, we will use the outputs of 

this ensample as the input for another classifier.  

Our ensemble of classifiers will consist of 8 classifiers: for each text category (ACQ, EARN, MONEY-FX) 

we will train 3 binary classifiers with different machine learning methods: 

 Support Vector Machine (SVM) 

 Random Forest (RF) 

 Naïve Bayes (NB) 

The output of each of these binary classifiers will be TRUE or FALSE – assigning or not assigning a 

given label.  

In the majority voting approach, if two of classifiers will output TRUE, we will assign the particular 

text category to an input document. The target label will be determined as the composition of these 

assigned text categories. 

In the second approach, we will train a decision tree that will use these eight binary outputs. The 

decision tree will directly assign the target label.  

2.1 Features 
In the text categorization task, the first step is to transform text documents into a set of features 

suitable for classifier learning methods. Convenient transformation could be representing the 

document as a set of words, ignoring their order in the text.  Thus we will split the text documents 

into the words and then each feature will correspond to occurrence of a particular term in the text.  



Thus the feature values can be represented as a term-document matrix – a matrix which rows 

describes the documents and the columns corresponds to particular terms. 

There are several ways how to determine the values of entries in the term-document matrix. We can 

use following metric: 

Metric name Value Description 

Term occurrence TRUE/FALSE Describes the occurrence/unoccurrence of a 
term in the document 

Term frequency Integer 
number  

Describes how many time a particular term 
appears in the document 

Term frequency – inverse 
document frequency 

Real number The term frequency is offset by its frequency in 
the corpus 

 

This approach could lead to huge feature space. To decrease computational complexity and avoid 

related issues such as overfitting, we want to use statistical methods to select only important words 

and filter unimportant words. It is evident that the most frequent words (STOP words), such as “the”, 

“and”, “he”, do not bring any information about the text category. We want to remove also very 

infrequent words in the texts – if a word appears only few time in the corpus, it is not the useful one. 

Another improvement can be done by term stemming - “merging” multiple forms of one word to 

one. For example, an occurrence word “accounts” can be merged into an occurrence of term 

“account”. We suppose that this approach can improve the performance of the output classifier. 

 

3 Data  
As we mentioned earlier, the Reuters-21578 corpus consists of 21578 articles. This corpus is 

distributed in a SQML or XML form and the documents are already divided into several groups – 

splits. In this term project, we will use the Lewis split that divides this documents into the training 

and testing set.  The training set contains 13624 documents and the testing set contains 6188 

documents. The distribution of text categories in these sets is as follows: 

 Training set Test set 

EARN 2861 1085 

ACQ 1633 716 

MONEY-FX 538 180 

EARN & ACQ 16 3 

Other 8576 4204 

Total 13624 6188 

 



 

 

 

 

 

 

 

 

 

We see that we have only 5 target labels, because there is no combination of multiple labels except 

the EARN & ACQ.  

4 Implementation 
In this section, we will describe the details of the implementation of our approach in the text 

categorization task.  

4.1 Data preparation 
XML format of the corpus is not convenient for textual and statistical processing. Thus the first step is 

to process the corpus and to extract text documents along with their categories and store it in more 

convenient format.  

This involves also first preprocessing of the text – we remove the numbers and other non-alphabetic 

characters and the text is transformed to lower case letters.  Texts along with their categories is 

stored in the data.frame representation.  

4.2 Creation of term-document matrix 
We have used the tm library to create and represent the term document matrix. With this library, 

we are able to perform statistical filtering such as removing the STOP words, words steming and to 

select the metric to represent the values in the matrix. 

Example of usage of the tm library: 

control=list(bounds=list(local=c(1,Inf)),language="english",stopwords=TRUE,

wordLengths=c(3,Inf), weighting=weightTf) 

tdm=DocumentTermMatrix(corpus,control=control) 

This library allows us to remove also the very unfrequent words by the controling the sparse 

parameter: 

tdm=removeSparseTerms(tdm, 0.40) 

This function call removes those terms which have at least a 40 percentage of sparse (i.e., terms 

occurring 0 times in a document) elements. 

The TDM can be very sparse, thus we use the method as.compressed.matrix of the library 

maxent to store the matrix in the compressed matrix.csr format. 



Example of terms used as the columns of TDM: 

[1]  "also"  "april" "bank"   "billion"  "company" "corp"   "cts"  

[8]  "dlr"   "dlrs"  "due"    "exchange" "first"   "inc"    "international" 

[15] "last"  "march" "market" "may"      "mln"     "net"    "new"  

[22] "one"   "pct"   "reuter" "said"     "share"   "shares" "shr"  

[29] "stock" "three" "told"   "two"      "will"    "year" 

 

4.2.1 Term-document matrix for testing 
For test purposes, we have to store original terms used in the learning process, because we have to 

find their occurences in the test documents. So we have to create another term document matrix 

with defined columns. This can be done in the folowing way: we computed the TDM as mentioned in 

the previous paragraph and then we remove all columns that are not in the original TDM matrix: 

result <- as.DocumentTermMatrix(cbind(newMatrix[,which(colnames(newMatrix) 

%in% colnames(origMatrix))],tmpMatrix),weighting=weighting) 

4.3 Binary classifiers ensemble training 
The binary classifiers are trained using following libraries: e1071 for NB and SVM and 

randomForest for randomForest method. Each binary classifier is trained on the same TDM matrix 

and the ensemble is represented by a list of classifiers. 

4.4 Voting & decision tree 
The output of the ensemble for a particular text category (EARN, ACQ, MONEY-FX) is summed and if 

the value is greater then 2, the text category is assigned to the given text document. The final target 

label is determined by concatenating these assigned categories. 

For the decision tree, we use the library rpart. In the training process, we take the binary output of 

the ensemble classifiers and create a decision tree that directly assign the target category. We use 70 

% of instances for training the binary classifiers and 30 % of instances for training of the decision 

tree. 

5 Experiments and evaluation 

5.1 Experiments 
In first experiments, we have trained the ensemble of binary classifiers. The experiments are initially 

drawn on smaller data set with no parameter tuning. Then we have tried to set up the parameters to 

increase the performance and finally, we have performed the 5-fold crossvalidation. 

5.1.1 Learning parameters 
Because the classifier training process could be time-consuming on huge training set, the parametes 

of the binary classifiers have been tuned on smaller data set (5000 documents). It turned out that the 

baseline accuracy of classifiers is relatively high and the parameter tuning have no significant impact 

on the accuracy. 

 

 



ML method Parameter Value 

SVM cost 300 

RF ntree 500 for category 
MONEY-FX, 200 for 
other categories  

The list of  learning parameters 

The most important parameters are the parameters of creation of the term-document matrix, which 

were set as shown in the following table: 

Parameter Value 

Stem true 

Weighting Term frequency – inverse document frequency 

Sparse 0.98 

 

5.2 Evaluation 
For the evaluation of binary classifiers, we have used following performace metrics: 

Metric Formula 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where TP means true positive, TN true negative, FN false negative, FP false positive instances. 

5.3 Binary classifier evaluation 
The binary classifiers evaluation using 5-fold cross validation is shown in the following table: 

Classifier Text Category Accuracy Precision Recall F-measure 

SVM EARN 0.9740508 0.9290037 0.9496512 0.9391728 

 ACQ 0.9490624 0.7464374 0.8756654 0.8057058 

 MONEY-FX 0.9808239 0.7278682 0.8240421 0.7726801 

RF EARN 0.9747619 0.9483746 0.9313143 0.9397214 

 ACQ 0.9562365 0.8489979 0.7768948 0.8112193 

 MONEY-FX 0.9854449 0.9309424 0.6862000 0.7890224 

NB EARN 0.7631424 0.4664369 0.8380253 0.5991958 

 ACQ 0.7306981 0.2825586 0.7948315 0.4168544 

 MONEY-FX 0.69572941 0.09514365 0.78673155 0.16966013 

Binary classifiers 5-fold mean 

 

Classifier Text Category 95 % conf. interval of F-measure mean 

SVM EARN 0.9390999 - 0.9392456 

 ACQ 0.8054914 - 0.8059203 

 MONEY-FX 0.7714580 - 0.7739021 

RF EARN 0.9396566 - 0.9397861 

 ACQ 0.8108813 - 0.8115573 



 MONEY-FX 0.7888146 - 0.7892303 

NB EARN 0.5990844 - 0.5993072 

 ACQ 0.4165261 - 0.4171827 

 MONEY-FX 0.1693700 - 0.1699503 

Binary classifiers F-measure confidence intervals 

5.3.1 Best achieved results of binary classifiers 
We achieved the best results with following methods: 

Text category Classifier F-measure 95 % conf. interval of F-measure mean 

EARN RF 0.9397214 0.9396566 - 0.9397861 

ACQ RF 0.8112193 0.8108813 - 0.8115573 

MONEY-FX RF 0.7890224 0.7888146 - 0.7892303 

Best binary classifiers for each text category 

5.3.2 Stemming impact  
Interesting experiment is how the word stemming can improve the performance, which is shown in 

the table below: 

Classifier Text Category Without stemming With stemming 

SVM EARN 0.9678353 0.9740508 

ACQ 0.9347072 0.9490624 

MONEY-FX 0.9753024 0.9808239 

RF EARN 0.9746064 0.9747619 

ACQ 0.9512080 0.9562365 

MONEY-FX 0.9850299 0.9854449 

NB EARN 0.6546847 0.7631424 

ACQ 0.6667027 0.7306981 

MONEY-FX 0.5996128 0.6957294 

Stemming impact on accuracy 

5.4 Ensemble evaluation 
Evaluation of the ensemble classifiers using 3-fold cross-validation is show in the following tables: 

 Accuracy 95 % conf. interval of Accuracy 

Voting 0.9093767 0.9093176 - 0.9094359 

Decision tree 0.9088767 0.9088344 - 0.9089191 

Expected accuracy of each method 

 

 Precision  Recall F-measure 95 % conf. interval of F-measure mean 

ACQ 0.7704301 0.8452576 0.8060259 0.8055891 - 0.8064626 

EARN 0.9472786 0.9291158 0.9380626 0.9379196 - 0.9382057 

MONEY-FX 0.7849511 0.7750386 0.7797479 0.7771721 - 0.7823238 

EARN & ACQ - - - - 

No target label 0.9374280  0.9255048 0.9314139 0.9313877 - 0.9314401 

Expected performance of the majority voting method on target labels 

 

 



 Precision  Recall F-measure 95 % conf. interval of F-measure mean 

ACQ 0.7941893 0.8131361 0.8011995 0.8009801 - 0.8014189 

EARN 0.9443781 0.9314942 0.9378891 0.9378629 - 0.9379154 

MONEY-FX 0.7634673 0.7507496 0.7566472 0.7544534 - 0.7588409 

EARN & ACQ - - - - 

EAEN & MONEY.FX - - - - 

No target label 0.9374280  0.9255048 0.9314139 0.9313877 - 0.9314401 

Expected performance of the decision tree method on target labels 

We see that the majority voting method has slightly better performace: 

 Accuracy 95 % conf. interval of Accuracy 

Voting 0.9093767 0.9093176 - 0.9094359 

The best achieved accuracy 

In the next picture, we see that the learned decision tree is quite simple and it takes only the input of 

the SVM and RF binary classifier. There is no leaf for the combination of text categories, thus such 

decision tree is not able to recognize the document with multiple basic text categories. 

 

5.5 Evaluation on test set 

5.5.1 Evaluation of best binary classifiers 
We have evaluated the best binary classifier for each text category on test data set. The results are 

shown in the following table: 

 

Text category Method Accuracy Precision Recall F-measure 

ACQ RF 0.9571752 0.8197183 0.8094576 0.8145556 

EARN RF 0.9132191 0.6787800 0.9613971 0.7957398 

MONEY-FX RF 0.9812540 0.7424242 0.5444444 0.6282051 



Best binary classifiers performance on test set 

 

5.5.2 Evaluation of ensemble methods 
In the following table we see the result of the voting classifier and ensemble classifier trained on the 

all training data and evaluated on the test data: 

 Accuracy 

Voting 0.8408209 

Decision tree 0.8403361 

Accuracy of ensemble methods on test set 

 Precision  Recall F-measure 

ACQ 0.7557716 0.8687151  0.8083171 

EARN 0.6724694 0.9612903  0.7913505 

MONEY-FX 0.5826087 0.7444444  0.6536585 

EARN & ACQ - - - 

No target label 0.9553747 0.8097050  0.8765289 

Performance of the majority voting method on target labels 

 Precision  Recall F-measure 

ACQ 0.8166432 0.8086592 0.8126316 

EARN 0.6559950 0.9631336 0.7804332 

MONEY-FX 0.5542636 0.7944444 0.6529680 

EARN & ACQ - - - 

No target label 0.9462514 0.8166032 0.8766599 

Performance of the decision tree method on target labels 

expected 

 No label ACQ EARN EARN & ACQ MONEY-FX 

p
re

d
ic

te
d

 

No label 3403 78 33 2 46 

ACQ 99 622 3 0 0 

ACQ& MONEY-FX 3 5 0 0 0 

EARN 499 8 1043 1 0 

EARN & ACQ 2 3 2 0 0 

EARN & MONEY-FX 2 0 4 0 0 

MONEY-FX 96 0 0 0 134 

Confusion matrix for the majority voting method 

  expected 

No label ACQ EARN EARN & ACQ MONEY-FX 

p
re

d
ic

te
d

 

No label 3433 120 39 2 37 

ACQ 128 577 1 0 0 

EARN 530 17 1045 1 0 

EARN & ACQ 0 0 0 0 0 

MONEY-FX 113 2 0 0 143 

Confusion matrix for the decision tree method 

 



6 Conclusion 
We have seen that from three used machine learning methods, the SVM and RF shows very good 

performances (f-measure about 93 % for ACQ, 80 % for EARN and 78 % for MONEY-FX) and the NB 

classifier has poorer accuracy which is near the baseline accuracy (f-measure about 60 % for ACQ,  

42% for EARN and 17 % for MONEY-FX). The performance of each method is similar for every text 

category. We have also seen that the stemming has positive effect on the performance, mainly for 

the NB classifier. The best binary classifier is RF for each text category. 

The performance of the trained classifiers is slightly worse on the test data. For the best binary 

classifier (RF), the f-measure is about 81 % for ACQ, 80 % for EARN and 63 % for MONEY-FX. For the 

two ensemble methods, the both have similar results: f-measure about 81% for ACQ, 78% for EARN 

and 65% for MONEY-FX and the majority voting method has slightly better accuracy. We see that the 

text categories with more occurrences such as ACQ and EARN are better learnable then the 

categories with little occurrences as MONEY-FX. 

We can conclude that we are able to categorize the documents into the three main text categories, 

but we have too little learning examples to be able to recognize their combination. Further 

development could include improving the decision tree ensemble predictor by designing new 

possibly useful features. 

 

 

 


