
PFL054 Term project
2011/2012

Semantic Pattern Classification
Ema Krejčová

1 Introduction

The aim of the project is to construct classifiers which should assign semantic patterns
to six given verbs, as accurately as possible. Each verb has a set of usual usage patterns
(based on the Pattern Dictionary of English Verbs), defined by its semantic and syntactic
characteristics. It is assumed that if we are able to automatically assign these patterns,
it will help us in the general problem of word sense disambiguation which is vital in
many fields of computational linguistics.

1.1 The data

The data obtained for this task consist of six text files, one for each verb. Each file
contains 250 sentences with the verb, extracted from BNC, with manually annotated
pattern tag. In each sentence, the verb in question is highlighted by angle brackets. For
each sentence, also a part-of-speech tag list and a dependency structure (both automat-
ically assigned) are included in the file. There is also a named entity list, provided by a
Named Entity Recognizer, but this list was not used in this task.

The verbs in question are ally (with 6 semantic patterns), arrive (6 patterns), cry
(18 patterns), halt (3 patterns), plough (17 patterns), and submit (5 patterns).

These data represent the training data for the construction of the classifiers. There
are 300 more sentences (50 for each verb) for testing the classifiers, but these were not
available for the development process, they will be only used for testing and evaluation
afterwards.

1.2 Data preprocessing

First what had to be done was to convert the given sentences into feature vectors which
could be then processed by the classifiers. For this I created a Perl script which took as
its input the text file {verb}.txt and outputted a list of feature vectors.

The default set of 275 features1 was given by the assignment (see Appendix A). Apart
from morphosyntactic features that were extracted directly from the POS tagging and
dependency structures, there were also semantic features, based on 50 semantic classes
extracted from WordNet, which were also given by the assignment.

Most of the features were binary, represented in the output feature list as values “n”
and “y”, and a few were categorical, represented by character strings. If needed, the
feature script can convert these values to numeric.

The task was then divided in two steps:

1In fact, the assignment contained 283 features. But since two of the given semantic classes were
empty and each semantic class was used to define four features, eight features would necessarily consist
of constant zeroes, so I did not implement these eight features.

1

A. use the default feature set (or its subset), experiment with at least three classifi-
cation methods, choose the one which seems best and tune it for each of the given
verbs.

B. choose three of the six verbs and create new feature lists for them, possibly better
than the default features used in step A. Then again, develop a model which will
assign the patterns as best as possible.

Apart from the feature extraction from the data, the whole experiment was carried
out in the R environment.

2 Baseline for the experiment

As a baseline for the experiment, with which the accuracy of the developed models with
be compared, we will use the accuracy of a simple classifier, which assigns to each verb
its most frequent pattern tag in the training data. The distribution of patterns differs
for different verbs – sometimes there is one pattern which is much more frequent than
the others, so even this simple classifier is quite successful.

To get a single number for all six verbs, we will use a weighted average, with weights
of verbs defined by their frequency in the BNC. The formula is the following:∑

v pv ∗ Av∑
v pv

where pv represents the relative frequency of the verb v, and Av the accuracy of the
corresponding classifier. The frequencies are shown in Table 1.

pally 0.0083%
parrive 0.1307%
pcry 0.0257%
phalt 0.0183%
pplough 0.0076%
psubmit 0.0483%∑

v pv 0.2389%

Table 1: Relative frequencies of the verbs

The baseline accuracy computed on all 250 training instances is shown in Table 2.

ally 47.6%
arrive 68%
cry 52.4%
halt 83.6%
plough 32.4%
submit 70.8%
weighted average 66.2%

Table 2: Baseline accuracy

2

3 Task A

For this task, I divided the development data for each verb into two parts – 30 sentences
were randomly selected as development test data, the rest was used as development
train data.

I experimented with three classification methods – Naive Bayes, Decision Trees and
Support Vector Machines. For each method, first a specific baseline was computed,
which is the accuracy of the classifier with default parameters (i.e. default in the R
system) and the full feature set. Next, the tuning process for each method and each
verb was the following:

1. from the default set, remove features which have just a single value or have two
values, but one of them appears less than four times

2. from the remaining features, select those which improve the accuracy most

3. tune the method’s parameters

4. evaluate the accuracy – by 5-fold cross-validation on the development train data,
with a 95% confidence interval. Just for comparison, also the accuracy on devel-
opment test data was computed.

After the first step, the feature set was reduced significantly:

ally arrive cry halt plough submit
of features 98 104 111 122 129 107

I decided to select the features first and then tune the parameters, because it seemed
plausible that the most useful features will be most useful regardless of the parameters
of the method (that parameter tuning might improve absolute performance, but the
relative contribution of the features should not change much).

In the following, the accuracy on train set refers to the average accuracy achieved by
5-fold cross-validation on the development train data (220 instances). The accuracy on
test set refers to the accuracy on the development test data (the remaining 30 instances).

3.1 Naive Bayes

The baseline accuracy for NB (with the default feature set and default parameters
implemented in the R system) is in Table 3:

The selection of a suitable subset of features was done by the greedy algorithm, i.e.
starting with an empty set one feature at a time was tested (using 5-fold cross-validation)
and the one which improved the performance most was added to the set. In the case
of Naive Bayes, two features were taken at the beginning (i.e. all possible pairs were
tested at the beginning), because the algorithm implemented in the R system requires at
least two features. The selection process was stopped when the overall accuracy stopped
increasing significantly, which was usually somewhere around 35 features or earlier (for
a graphical representation see Figure 1).

All 220 instances from the development train set were used for training the model
in each round.

3

verb
accuracy confidence accuracy
on train set interval on test set

ally 58.2% ± 12.9% 60%
arrive 62.3% ± 12.4% 66.7%
cry 63.2% ± 3.7% 63.3%
halt 74.5% ± 3.7% 83.3%
plough 63.6% ± 6.9% 60%
submit 77.7% ± 6.1% 80%
weighted average 66.3% 69.8%

Table 3: Baseline accuracy for the Naive Bayes classifier

When the set of features was established, the laplace parameter of the method was
tuned – values of 0,1,2, and 3 were tested, using 5-fold cross-validation. However, for
all the verbs, the value of 0 came best.

Table 4 shows the optimized results:

verb # of features laplace
accuracy confidence accuracy
on train set interval on test set

ally 32 0 68.2% ± 10.7% 70%
arrive 19 0 77.3% ± 7.2% 63.3%
cry 29 0 76.4% ± 6.5% 73.3%
halt 29 0 88.2% ± 5.4% 86.7%
plough 33 0 75% ± 8.5% 46.7%
submit 17 0 90% ± 6.5% 96.7%
weighted average 80.2% 72.6%

Table 4: Naive Bayes classifier – optimized results

For comparison, I tried also to tune the laplace parameter with all the features,
with no prior selection. The results are in Table 5.

verb # of features laplace
accuracy confidence accuracy
on train set interval on test set

ally 98 2 60% ± 10.1% 60%
arrive 104 3 68.2% ± 4.9% 76.7%
cry 111 0 63.2% ± 3.7% 73.3%
halt 122 3 81.8% ± 9.6% 83.3%
plough 129 0 63.6% ± 6.9% 56.7%
submit 107 2 81.4% ± 5.4% 90%
weighted average 70.9% 78.3%

Table 5: Naive Bayes classifier – tuned results, but no feature selection

The results of the classifier were considerably better, when only some features were
selected.

4

(a) The verb ally (b) The verb arrive

(c) The verb cry (d) The verb halt

(e) The verb plough (f) The verb submit

Figure 1: Feature selection. The dark dot shows where the selection was stopped.

5

3.2 Decision Trees

Baseline (“non-tuned”) accuracy for the Decision Tree classifier is shown in Table 6:

verb
accuracy confidence accuracy
on train set interval on test set

ally 55% ± 6.7% 63.3%
arrive 66.8% ± 9.1% 73.3%
cry 61.8% ± 7% 53.3%
halt 83.6% ± 9.4% 83.3%
plough 58.2% ± 10.9% 50%
submit 83.6% ± 5% 90%
weighted average 70.3% 74.2%

Table 6: Baseline accuracy for the Decision Tree classifier

With Decision Trees the greedy algorithm did not prove useful for feature selection.
It chose a subset of features, but the performance with this subset was not better than
the performance achieved when the choice was left to the rpart function implemented
in R (i.e. when the function rpart was called with all the features and chose the features
for splits by itself).

For the parameter tuning I used the R function tune.rpart and tuned the param-
eters cp (with values 0.1, 0.05, 0.01, 0.005, and 0.001) and minsplit (with values 2, 4,
and 8). The final results are shown in Table 7, the resulting trees are in Figure 2.

verb # of features cp minsplit
accuracy confidence accuracy
on train set interval on test set

ally 14 0.01 4 57.7% ± 12.2% 56.7%
arrive 4 0.05 2 69.5% ± 6.5% 66.7%
cry 12 0.01 4 65% ± 9.1% 50%
halt 2 0.05 2 81.8% ± 7.2% 83.3%
plough 12 0.005 4 60.5% ± 4.3% 63.3%
submit 7 0.005 8 82.7% ± 8.1% 83.3%
weighted average 71.9% 69.1%

Table 7: Tuned parameters for the Decision Tree classifier

3.3 Support Vector Machines

Similarly to the previous classifiers, first the baseline (“non-tuned”) accuracy was com-
puted for the SVM classifier. It is shown in Table 8.

The greedy algorithm for feature selection did not prove useful for the SVM classifier
either. Therefore, I used all the features from the default set (apart from the constant
or almost constant ones) for parameter tuning.

Parameter tuning was done by the R function tune.svm, and parameters gamma and
cost were tuned. Values for gamma were 0.0625, 0.125, 0.25, 0.5, values for cost were
1, 2, 5, 10, 50, 100.

The final results are shown in Table 9.

6

(a) The verb ally (b) The verb arrive

(c) The verb cry (d) The verb halt

(e) The verb plough (f) The verb submit

Figure 2: Decision trees

7

verb
accuracy confidence accuracy
on train set interval on test set

ally 55.9% ± 16.8% 53.3%
arrive 68.6% ± 7.6% 63.3%
cry 53.2% ± 9.3% 46.7%
halt 83.6% ± 6.7% 83.3%
plough 38.2% ± 11.4% 40%
submit 70.9% ± 9.7% 70%
weighted average 66.9% 63.3%

Table 8: Baseline accuracy for the SVM classifier

verb gamma cost
accuracy confidence accuracy
on train set interval on test set

ally 0.0625 10 64.1% ± 15.8% 53.3%
arrive 0.0625 2 71.4% ± 5.9% 66.7%
cry 0.0625 5 67.3% ± 5.1% 73.3%
halt 0.0625 1 83.6% ± 6.7% 83.3%
plough 0.0625 5 66.8% ± 9.1% 66.7%
submit 0.0625 2 85% ± 4.3% 93.3%
weighted average 74.2% 73.6%

Table 9: Tuned parameters for the SVM classifier

3.4 Results for the Task A

In conclusion to the Task A it can be said that all three methods achieved better perfor-
mance than baseline. Interestingly, the specific baselines, computed as the performances
of the classifiers without tuning any parameters, did not exceed much the primitive base-
line, which corresponds to assigning the most frequent pattern to every verb. However,
tuning the parameters brought some improvement, and surprisingly the Naive Bayes
classifier comes as best. The results are summarized in Table 10.

method baseline tuned performance
Naive Bayes 66.3% 80.2%
Decision Trees 70.3% 71.9%
SVM 66.9% 74.2%

Table 10: Overall results of Task A

The classifier, which I chose in the part A of the experiment, is therefore the Naive
Bayes classifier, with the laplace parameter set to 0 and with the reduced feature set for
each verb (see section 3.1 for details).

Apart from selecting the best possible classifier, we can have a look whether we can
learn something interesting about the features from the selections performed with the
Naive Bayes classifier and the Decision Tree. Table 11 shows which features were chosen
by either of these classifiers and which appeared in both.

8

verb features NB features DT both

ally

f2, f6, f8, f9, f12, f15, f16, f19, f6, f8, f9, f10, f12, f14, f20, f6, f8, f9, f12, f20, f26
f20, f21, f26, f29, f35, f36, f38, f25, f26, f72, f142, f252,
f39, f40, f47, f51, f55, f57, f62, f268, f274
f70, f73, f104, f128, f138, f193,
f210, f232, f266, f272

arrive
f4, f5, f6, f7, f26, f35, f36, f39, f19, f141, f154, f274 f154
f41, f45, f46, f57, f73, f154, f168,
f196, f217, f244, f272

cry

f2, f3, f4, f12, f13, f15, f16, f22, f8, f10, f12, f22, f36, f62, f12, f22, f62, f271, f274
f24, f26, f27, f29, f32, f37, f41, f63, f71, f193, f271, f274
f46, f48, f55, f57, f58, f62, f69,
f81, f124, f140, f143, f202, f271,
f274

halt

f0, f1, f2, f3, f6, f16, f18, f21, f22, f71, f274 f71, f274
f24, f27, f28, f33, f52, f54, f57,
f58, f59, f63, f70, f71, f73, f106,
f143, f154, f170, f206, f222, f274

plough

f1, f6, f7, f9, f14, f16, f21, f23, f4, f6, f11, f12, f22, f35, f71, f6, f71, f105, f232, f271,
f28, f45, f52, f56, f57, f71, f96, f105, f137, f232, f271, f274 f274
f98, f105, f111, f126, f148, f150,
f161, f181, f184, f205, f209, f211,
f232, f234, f252, f253, f271, f274

submit
f0, f1, f3, f4, f5, f7, f8, f12, f15, f4, f7, f14, f37, f69, f71, f274 f4, f7, f69, f71
f16, f26, f29, f36, f69, f71, f75,
f124

Table 11: Features selected as most useful. For description of all features see Appendix A.

If we were to find some general tendency, we see the feature most often considered
useful is f274 – the presence of a specific prepositional modifier. It appears for all the
six verbs in the DT classifier and for three of the verbs in the NB classifier. Among
others that appear often are f271 – the presence of a phrasal verb particle, f12 – nominal
following the target verb, and f6 – the VBG tag on the target verb (which means the
verb is in gerund or present participle form).

4 Comparison with A. Tamchyna’s results

I had the opportunity to compare my results with those of my colleague Aleš Tamchyna
[2]. Despite the fact we worked with identical data in the experiment, we obtained
different results. To some extent, this was to be expected, because the methods we used
are probabilistic in principle and some randomness is always present. But of course I
cannot rule out the possibility of an error in my computation.

Our conclusions from the Task A are different: The classifier which comes as best in
A. Tamchyna’s experiment, is SVM. In my experiment, it is Naive Bayes.

And what are the visible differences in our approaches:

• the number of features removed from the default set – A. Tamchyna removed
features that have only one value or their second value appears only once, he
ended with cca 140-150 features for each verb. I removed also features, which had
their second value less than four times, which yielded cca 100-120 features for each
verb. This difference probably does not influence the results very much.

9

• the ranges of the classifiers’ parameters for tuning – here we differ quite a lot,
especially for the DT and SVM classifiers we ended with very different parame-
ters. However, the tuned performance (weighted average) of our classifiers on the
development data is quite close:

DT classifier SVM classifier

AT 72.9 % 74.6%
EK 71.9 % 74.2%

• the Naive Bayes classifier – there is the biggest difference in the result:

NB classifier

AT 71.6 %
EK 80.2 %

There is also probably the biggest difference in approach – I greatly reduced the
feature set for this classifier using the greedy algorithm (see section 3.1), for each verb
there remained only up to 33 features. This considerably improved the performance. It
seems reasonable, because the training data is relatively small, and having too many
features is rather a disadvantage, their combinations are not present enough times and
classifier is not able to learn them. On the other hand, the greedy algorithm which I
used for selecting the most useful features might have the same problem, and it is also
possible that the selected features are suitable for our development data, but unsuitable
for different data.

5 Comparison with V. Kŕıž’s results

Vincent Kŕıž’s diploma thesis is also focused on finding classifiers for automatic pattern
assignment, but of course deals with the problem much more thoroughly. He works
with more verbs and experiments in much more detail with selecting the best features
and tuning the best parameters for each verb and each classification method. For this
comparison, I am going to look only on his results for the six verbs I used here and only
with morpho-syntactic features (V. Kŕıž then also experimented with different types of
semantic features).

V. Kŕıž did not use the Naive Bayes classifier, but instead he worked with the
k-nearest neighbours classifier and AdaBoost, which I did not. Concerning feature
selection, he achieved the best results with a set he calls Best58 – a list of 58 features
chosen by a greedy algorithm (for details see [1], pp. 74–75).

The comparison of our results is the following:

DT classifier SVM classifier NB classifier kNN classifier AdaBoost

VK 74.3% 74.8% x 73.1% 76%
EK 71.9% 74.2% 80.2% x x

V. Kŕıž reports the SVM classifier as best. It is because he computes a weighted
average over all the 30 verbs he worked with. When computed only over our 6 verbs, it
is AdaBoost which gives the best result. However, it is still below the result of Naive
Bayes which came out in my experiment.

10

6 Task B

In the task B, I experimented with adding “dictionary” features, i.e. features of the
type “is a word in the neigbourhood of the target verb equal to X?”. I chose the verbs
plough, cry, and arrive.

As a starting point, I took the results from the part A. I used the Naive Bayes
classifier with a reduced set of features. As the initial set of features for all the verbs I
used the features that appeared at least three times in the selections in the part A (see
Table 11). These were: f1, f2, f3, f4, f6, f7, f12, f15, f16, f21, f26, f29, f36, f57, f71, f73,
and f274. To this set, I added new features for each verb.

The new features were created based on the patterns, which contain a lexical set,
e. g. pattern 1 for the verb plough:

[[Human = Farmer] ˆ [Animal |{horse|ox|bull}]] plough (Location |
{field|acre|furrow|land|area|moorland|field|fallow|pasture|stetch|round|soil|...} = Field)

In some cases, I also added words which were not explicitly mentioned in the pattern,
but can logically occur there, e.g. in the pattern 7 for the verb plough:

[Human | Institution] plough [Money] [{into} Business Enterprise | Activity]

Here I replaced the given type [Money] with a set {money|cash|profit|capital|million|thousand}.
For descriptions of all the added features see Appendix B.

6.1 Results of the Task B

The results of Task B are summarized in Table 12. Even with the initial 17 features
only, the classifier performed better than baseline (see Table 2) for the verbs plough and
cry. Adding new features improved the performance for all the three verbs, but not
above the level achieved in Task A (shown here in the last column, for details see Table
4).

verb
NB with initial features NB with added features Task A

acc. on conf. acc. on
laplace

acc. on conf. acc. on acc. on
train set int. test set train set int. test set train set

plough 43.2% 8.2% 46.7% 1 64.5% 3.2% 60% 75%

cry 58.2% 8.4% 56.7% 1 65.9% 8.2% 66.7% 76.4%

arrive 64.5% 5.5% 56.7% 3 74.1% 6.5% 70% 77.3%

Table 12: Overall results of Task B

The results of Task B show that “dictionary” features might be of some help. How-
ever, it is necessary to select properly the initial set of features, which I did not do.
Therefore, the classifiers are not tuned to their best possible performance, I just wanted
to experiment with new features to see whether they might be of any use. Also, to find
the most suitable dictionary features, we would probably need more development data.
It is necessary to have enough examples for each pattern and look carefully into them
to extract the words which are most significant for each pattern.

11

Appendix A

List of Default Features

Syntactic properties of the target verb (TV):

f0 TV in passive voice
f1 modality 1 – TV with would or should
f2 modality 2 – TV with can,could, may, must, ought, might
f3 negation – TV negated

Morphological tags on TV:

f4 VBN tag on TV
f5 VBD tag on TV
f6 VBG tag on TV
f7 VBP tag on TV
f8 VB tag on TV

Properties of the words following and preceding the TV (+- 3 positions):

f9 nominal-like, TV - 3 f27 modal, TV - 3 f45 wh-adverb, TV - 3
f10 nominal-like, TV - 2 f28 modal, TV - 2 f46 wh-adverb, TV - 2
f11 nominal-like, TV - 1 f29 modal, TV - 1 f47 wh-adverb, TV - 1
f12 nominal-like, TV + 1 f30 modal, TV + 1 f48 wh-adverb, TV + 1
f13 nominal-like, TV + 2 f31 modal, TV + 2 f49 wh-adverb, TV + 2
f14 nominal-like, TV + 3 f32 modal, TV + 3 f50 wh-adverb, TV + 3
f15 adjective, TV - 3 f33 preposition “to”, TV - 3 f51 verb, TV - 3
f16 adjective, TV - 2 f34 preposition “to”, TV - 2 f52 verb, TV - 2
f17 adjective, TV - 1 f35 preposition “to”, TV - 1 f53 verb, TV - 1
f18 adjective, TV + 1 f36 preposition “to”, TV + 1 f54 verb, TV + 1
f19 adjective, TV + 2 f37 preposition “to”, TV + 2 f55 verb, TV + 2
f20 adjective, TV + 3 f38 preposition “to”, TV + 3 f56 verb, TV + 3
f21 adverb, TV - 3 f39 wh-pronoun, TV - 3 f57 lemma “to be”, TV - 3
f22 adverb, TV - 2 f40 wh-pronoun, TV - 2 f58 lemma “to be”, TV - 2
f23 adverb, TV - 1 f41 wh-pronoun, TV - 1 f59 lemma “to be”, TV - 1
f24 adverb, TV + 1 f42 wh-pronoun, TV + 1 f60 lemma “to be”, TV + 1
f25 adverb, TV + 2 f43 wh-pronoun, TV + 2 f61 lemma “to be”, TV + 2
f26 adverb, TV + 3 f44 wh-pronoun, TV + 3 f62 lemma “to be”, TV + 3

Presence of elements syntactically dependent on TV:

f63 nominal subject
f64 clausal subject
f65 direct object
f66 indirect object
f67 passive nominal subject
f68 passive clausal subject
f69 clausal complement
f70 complementizer (“that”, “whether”, etc.)
f71 any object
f72 adverbial modifier
f73 adverbial clause modifier
f74 purpose clause modifier
f75 temporal modifier

Semantic classes of the words immediately preceding or following the TV and its
subjects and objects:

f76 TV -1 class: origin f84 TV -1 class: living f92 TV -1 class: human
f77 TV +1 class: origin f85 TV +1 class: living f93 TV +1 class: human
f78 subject class: origin f86 subject class: living f94 subject class: human
f79 object class: origin f87 object class: living f95 object class: human
f80 TV -1 class: natural f88 TV -1 class: plant f96 TV -1 class: creature
f81 TV +1 class: natural f89 TV +1 class: plant f97 TV +1 class: creature
f82 subject class: natural f90 subject class: plant f98 subject class: creature
f83 object class: natural f91 object class: plant f99 object class: creature

12

f100 TV -1 class: animal f156 TV -1 class: software f212 TV -1 class: phenomenal
f101 TV +1 class: animal f157 TV +1 class: software f213 TV +1 class: phenomenal
f102 subject class: animal f158 subject class: software f214 subject class: phenomenal
f103 object class: animal f159 object class: software f215 object class: phenomenal
f104 TV -1 class: artifact f160 TV -1 class: place f216 TV -1 class: communication
f105 TV +1 class: artifact f161 TV +1 class: place f217 TV +1 class: communication
f106 subject class: artifact f162 subject class: place f218 subject class: communication
f107 object class: artifact f163 object class: place f219 object class: communication
f108 TV -1 class: form f164 TV -1 class: occupation f220 TV -1 class: condition
f109 TV +1 class: form f165 TV +1 class: occupation f221 TV +1 class: condition
f110 subject class: form f166 subject class: occupation f222 subject class: condition
f111 object class: form f167 object class: occupation f223 object class: condition
f112 TV -1 class: substance f168 TV -1 class: instrument f224 TV -1 class: existence
f113 TV +1 class: substance f169 TV +1 class: instrument f225 TV +1 class: existence
f114 subject class: substance f170 subject class: instrument f226 subject class: existence
f115 object class: substance f171 object class: instrument f227 object class: existence
f116 TV -1 class: solid f172 TV -1 class: garment f228 TV -1 class: experience
f117 TV +1 class: solid f173 TV +1 class: garment f229 TV +1 class: experience
f118 subject class: solid f174 subject class: garment f230 subject class: experience
f119 object class: solid f175 object class: garment f231 object class: experience
f120 TV -1 class: liquid f176 TV -1 class: furniture f232 TV -1 class: location
f121 TV +1 class: liquid f177 TV +1 class: furniture f233 TV +1 class: location
f122 subject class: liquid f178 subject class: furniture f234 subject class: location
f123 object class: liquid f179 object class: furniture f235 object class: location
f124 TV -1 class: gas f180 TV -1 class: covering f236 TV -1 class: manner
f125 TV +1 class: gas f181 TV +1 class: covering f237 TV +1 class: manner
f126 subject class: gas f182 subject class: covering f238 subject class: manner
f127 object class: gas f183 object class: covering f239 object class: manner
f128 TV -1 class: object f184 TV -1 class: container f240 TV -1 class: modal
f129 TV +1 class: object f185 TV +1 class: container f241 TV +1 class: modal
f130 subject class: object f186 subject class: container f242 subject class: modal
f131 object class: object f187 object class: container f243 object class: modal
f132 TV -1 class: composition f188 TV -1 class: building f244 TV -1 class: possession
f133 TV +1 class: composition f189 TV +1 class: building f245 TV +1 class: possession
f134 subject class: composition f190 subject class: building f246 subject class: possession
f135 object class: composition f191 object class: building f247 object class: possession
f136 TV -1 class: part f192 TV -1 class: 3rdorderentity f248 TV -1 class: purpose
f137 TV +1 class: part f193 TV +1 class: 3rdorderentity f249 TV +1 class: purpose
f138 subject class: part f194 subject class: 3rdorderentity f250 subject class: purpose
f139 object class: part f195 object class: 3rdorderentity f251 object class: purpose
f140 TV -1 class: group f196 TV -1 class: dynamic f252 TV -1 class: quantity
f141 TV +1 class: group f197 TV +1 class: dynamic f253 TV +1 class: quantity
f142 subject class: group f198 subject class: dynamic f254 subject class: quantity
f143 object class: group f199 object class: dynamic f255 object class: quantity
f144 TV -1 class: function f200 TV -1 class: property f256 TV -1 class: social
f145 TV +1 class: function f201 TV +1 class: property f257 TV +1 class: social
f146 subject class: function f202 subject class: property f258 subject class: social
f147 object class: function f203 object class: property f259 object class: social
f148 TV -1 class: vehicle f204 TV -1 class: relation f260 TV -1 class: time
f149 TV +1 class: vehicle f205 TV +1 class: relation f261 TV +1 class: time
f150 subject class: vehicle f206 subject class: relation f262 subject class: time
f151 object class: vehicle f207 object class: relation f263 object class: time
f152 TV -1 class: representation f208 TV -1 class: cause f264 TV -1 class: usage
f153 TV +1 class: representation f209 TV +1 class: cause f265 TV +1 class: usage
f154 subject class: representation f210 subject class: cause f266 subject class: usage
f155 object class: representation f211 object class: cause f267 object class: usage

Miscellaneous

f268 plural subject
f269 plural object
f270 TV used in an infinite phrase (outside subject)
f271 presence of a phrasal verb particle with TV
f272 presence of a prepositional modifier
f273 presence of a marker (subordination conjunction, apart from “that” and “whether”)
f274 presence of a prepositional clausal modifier

All features f0–f270 are binary (yes/no), features f271–f274 are categorical, with the
preposition/marker/particle in question as their value.

13

Appendix B

List of Added Features

plough

• in a window ± 5 words from TV, there is one of the words money, cash, profit,
capital, million, thousand or a word containing digits

• among 5 words following TV, there is the word back

• among 6 words following TV, there is the word into

• in a window ± 5 words from TV, there is one of the words field, acre, land, area,
pasture, soil, ground

• among 5 words following TV, there is the word sea or ocean

• among 5 words following TV, there is the word path or furrow

• among 3 words following TV, there is the word on, onwards or ahead

• among 3 words following TV, there is the word through

cry

• among 4 words following TV, there is the word eyes, heart or head

• among 6 words following TV, there is the word shoulder

• the word following TV is over

• the word following TV is out

• the word following TV is off

• the word following TV is for

• the word following TV is with

• the word following TV contains the string self or selves

arrive

• in a window ± 6 words from TV, there is one of the words document, collection,
exhibition, aid, package, container, letter, cheque, information, mail, goods

• in a window ± 6 words from TV, there is one of the words solution, decision,
figure, result, consensus, agreement, answer, interpretation, conclusion

• the word following TV is at

• the word following TV is to or from

• the word following TV is a punctuation mark

References

[1] Kŕıž, Vincent (2012): Klasifikátor pro sémantické vzory už́ıváńı anglických sloves.
Diploma thesis, MFF UK, Praha.

[2] Tamchyna, Aleš (2012): Semantic Pattern Classification, Final Report. Unpublished
manuscript.

14

