
Jan Hajič
hajicj@gmail.com

17. 2. 2011

Semantic Collocation Recognition
PFL054 2010/11 Term project report

Jan Hajič
17. 2. 2011

hajicj@gmail.com

Jan Hajič
hajicj@gmail.com

17. 2. 2011
1. Task description

The aim of the project is to provide a best-effort solution to a binary classification task of
Semantic Collocation Recognition (SCR). The classifier will work with word pairs and should
distinguish semantic collocations from non-semantic collocations. The task is restricted to two-
word Czech collocations from a supplied data set.

1.1 Semantic collocations

The term collocation denotes a meaningful and grammatical word combination that frequently or
typically occurs in a natural language. Semantic collocations then refer to collocations such that
their meaning is not compositional – cannot be derived as the “sum” of meanings of its parts.
Semantic collocations, therefore, are themselves lexical units; that means, for instance, that they
should be listed separately in a lexicon.

Consider the following expressions: “I think”, “brown house”, “brown envelope”, “ground zero”,
“hot chocolate”. The first two are simple collocations, the other three are semantic collocations,
according to our definition.

From now on, we will use the terms collocation and semantic collocation interchangeably.

1.2 Motivation

Given the lexical independence of semantic collocations, SCR is one of the core tasks of
lexicography and corpus linguistics. As semantic collocations are “hidden” items of the lexicon,
any NLP task which takes lexical features into consideration benefits from an SCR system –
which applies to more or less any NLP task nowadays. An SCR system may significantly
improve natural language generation, word sense disambiguation, information retrieval,
automatic summarization or machine translation, to name a few.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
2. Data

The Czech collocations data set (henceforth referred to simply as the data) contains 9232 entries.
There are 97 columns: two for the lemmas of the collocation candidate, three columns of manual
classification, the final classification column (generated from the manual classifications), which
is our response variable, and 91 features.

The features are further described in Appendix A and B.

The data set was extracted from the Prague Dependency Treebank, version 2.0.

We have used several different data setups in our experiments (some arrangements had to be
made for technical restrictions – allotted CPU time on distant machines, etc.); generally,
however, the data split was 6232 training – 3000 test data for our final evaluation of the model
(this split was chosen to get a slightly pessimistic reading). We performed cross-validation
whenever possible (again, due to CPU time limitations, more extensive feature selection
experiments had to do without cross-validation).

3. Methods used

We focused on three machine learning methods:
 - k-Nearest Neighbor learning,
 - Naïve Bayes classifiers,
 - Adaptive Boosting.

All of those are supervised learning methods – based on a set of training instances (x1, y1), (x2,
y2), … (xm, ym), where xi is a feature vector from the set of F1 × F2 × … × Ft = F (called the

feature space) and yi is the classification of the instance into one of the classes C1 … Ck ∈ CL set
of all classes, we want to find a classifying function h: F1 × F2 × … × Ft → CL (called a
hypothesis) such that it best approximates the true classification r: F1 × F2 × … × Ft → CL. Note
that best is a vague term: it may signify accuracy as well as a host of other measures (most
notably recall, precision, f-score or a weighted combination of those four).

A special and frequent case of classification is binary classification, when |CL| = 2. That
amounts to classification being simply a yes-no questions, with positive classification C1 = 1 and
negative classification C2 = –1.

Jan Hajič
hajicj@gmail.com

17. 2. 2011

Fig. 1: k-NN algorithm. Choosing k: for
k = 3, we would classify the data point as
blue, for k=5, it would end up red.

3.1 k-Nearest Neighbor learning

The k-Nearest Neighbor machine learning method, or kNN, is based on a very simple and
intuitive notion: assuming we have a relevant set of features, points close to each other in the
feature space tend to be classified similarly. Therefore, all we have to do is choose a metric and
then decide the classification of a data point x by majority voting: assign x to the most frequent
class among k nearest neighbors from the training data set.

There are two relevant parameters of a k-NN model: the choice of the metric and the choice of k.
Since we are dealing with continuous numerical features, the natural choice of a metric is
Euclidean distance. The choice of optimal k is more complicated and has to be determined
empirically.

Less rudimentary version of the algorithm perform scaling (since features with greater standard
deviation naturally have a greater weight in non-scaling kNN) and/or weigh the neighbors’ votes
in inverse proportion to their distance from the data point being classified.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
3.2 Naïve Bayes classifiers

Naïve Bayes classifiers are simple classifiers based on a direct application of Bayes’s theorem.
Suppose we want to classify an instance into a class from a given set of classes CL of classes C1,
C2 … Ck. For each class C, we want to determine the probability P(C|F1,F2…Fn) for F1 ...Fn
features and then choose argmaxC(P(C|F1,F2…Fn)). By Bayes’s theorem, we have:

()
)...,(

)()|...,(
...,|

21

21
21

n

n

n
FFFP

CPCFFFP
FFFCP =

If we had conditionally independent features, we could rewrite this as:

()
)...,(

)()|()...|()|(
...,|

21

21
21

n

n

n
FFFP

CPCFPCFPCFP
FFFCP =

These conditional and class apriori probabilities we can easily estimate using our training data
(simply by computing frequency ratios).

We generally do not have independent features. But we when we assume we do have them and
compute probabilities according to the second equation, Naïve Bayes classifiers actually perform
surprisingly well.

Note that P(F1,F2…Fn) stays the same throughout the data, so we may omit the term from our
argmax search.

3.2 Decision Trees and AdaBoost.M1

As a third method, we utilized boosting with the Adaboost.M1 algorithm.

Let us pose the following question (as did Kearns[2]): can multiple weak learners be combined
into a strong learner?

Boosting is a class of meta-algorithms that attempts to answer ‘yes’ to that question: they
combine weak learners into a strong one. Typically, a boosting algorithm will be iteratively
adding weak classifiers with respect to some distribution of weights over the training instances.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
AdaBoost specifically is an adaptive boosting algorithm: it takes into account the performance of
previously fitted weak learners when building a new one. (It was also the first boosting algorithm
to do so.) In subsequent learners, it changes the distribution over training instances to favor those
previously misclassified.

The adaboost.M1 implementation in the R system uses decision trees as the weak learners; we
will briefly describe them.

3.2.1 Decision Trees

Intuitively, Decision Trees classify an instance by running it through a set of yes-no questions
about its features. Suppose you are trying to decide whether to take a specific subject. In
deciding, you ask yourself a set of questions to guide you through the decision process.

Each question is represented by a node of the decision tree, the final decisions are represented by
its leaves. To each edge is mapped a yes/no answer to the parent node’s question. Our subject-
taking decision process can then represented by the following decision tree:

We can state the problem in the following way: each non-leaf node represents a split in the data,
each leaf represents a subset of data that will be classified uniformly. We want to minimize
classification errors, which means splitting the data into subsets that are classified as
homogenously as possible.

Is the subject compulsory?

Is it interesting?

Do I want the credits?

Am I in a good mood?

TAKE

TAKE

TAKE DON’T TAKE

DON’T TAKE

yes

yes

yes

yes

no

no

no

no

Jan Hajič
hajicj@gmail.com

17. 2. 2011
Growing a good decision tree resides with choosing the correct splits that will partition the data
into the most homogenous subsets. We therefore need a splitting criteria, a way to evaluate each
suggested split, and so compare them and choose the optimal one.

A problem with growing decision trees is that in the process of growing it, we do not know how
it will eventually perform – we can only have local splitting criteria, we can only measure the
immediate effects, i.e.: with the splits we now have, what is the next best split? Thus, we may
opt for a split that (to borrow any drunk’s excuse) seemed like a good idea at the time, only to
run into dead ends later – and we may have missed a slightly worse split that, however, has
relevant follow-up.

However, there is no way to work around this problem other than the ability to backtrack, which
would, in turn, severely increase training times (the problem of growing an optimal decision tree
is essentially NP-complete[1]) and, if we allowed locally suboptimal feature thresholds,
dramatically inflate the search space. In practice, we make do with greedy local splitting criteria
(and perhaps permit very limited backtracking).

What are these splitting criteria? We have already determined that the “goodness” of a
partitioning depends on the homogeneity – or, purity – of the classes that correspond to the leaf
nodes. A good split is one that results in purer classes than not splitting, and the larger the
difference, the better the split.

For evaluating splits, there is a well-established set of formulae from which to choose. Of those,
we picked for our model Gini index. Gini index defines the impurity of node t as:

∑
≠

=
ij

tiptjpti)|()|()(

This essentially is the expected error rate: suppose the classification rule for a randomly selected
instance from the class is “classify instance to class i with probability P(i|t).” Then, Gini index
measures the probability that we were wrong: that the instance actually belongs to class j.

Other usual (im)purity measures are information gain (based on entropy, can be scaled for its
bias towards features that partition the data into many subsets – which tends to generalize poorly,
overfit and have problems with unseen data) and misclassification error.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
3.2.2 AdaBoost

As we’ve said, AdaBoost is the first adaptive boosting algorithm. It was presented by Freund and
Schapire[3] in 1995 and proved a large success. The idea of adaptation is very intuitive: the
subsequent weak learners should not repeat the mistakes of the learners we already have.
Therefore, in the classifiers to come, we will make them focus on the harder-to-classify instances
– those the previous classifiers have made errors on – by increasing their weights. The more
problematic an instance is, the more weight it will be gaining throughout the boosting process
until at some point, it is sure to draw enough attention of the weak classifiers (unless the
algorithm stops – a fixed number of iterations may be selected, or an improvement threshold:
when there isn’t enough improvement between iterations for some time, the algorithm decides it
will not get better and stop).

Recall the notation from the beginning of Section 3. The algorithm (for binary classification,
which is what applies to our experimentation) is as follows:

1. Initialize a distribution D1. D1(i) =
m

1
 for i = 1, … , m

2. Let T be the number of iterations we want the algorithm to perform. For t = 1 … T:
2.1 Find the classifier ht: F→{0,1} that minimizes the error on the training

instances over distribution Di (proportion of misclassified instances, which are
weighed individually by the distribution)

2.2 If the error is greater than 0.5, stop.

2.3 Choose a coefficient αt (often:
error

error
t

−
=

1
ln

2

1
α).

(Note that always error < 1, so αt is well-defined.)

2.4 Update the distribution:
t

ititt

t
Z

xhyiD
iD

))(exp()(
)(1

α−
=+ , where Zt is a

normalization factor chosen so that the updated D sums to 1.
3. Output the final classifier H(x):

= ∑

=

T

t

tt xhsignxH
1

)()(α

If we examine the equation in 2.4, we see that)(itit xhyα− evaluates as positive if and only if yi

and hi(x) do not match – i.e. x is misclassified by the weak learner hi. That exactly corresponds to
what we wanted – misclassified instances have their weight boosted, correctly classified ones on
the other hand lose significance for upcoming classifiers.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
AdaBoost can fit rather well complicated data that a single decision tree couldn’t. However, its
positive discrimination of notoriously hard instances also lead to great sensitivity to outliers and
noisy data in general. Also, it – inevitably – takes asymptotically at least T–times as much time
to complete as a single decision tree. While not prohibitive, this increase, in practice, can be
rather significant.

4. Experimentation

We used several core data setups which we utilized in accordance with the specific experiment
requirements. Essentially, this meant different data sizes and cross-validation parameters
according to the computational demands of the experiment. The limitations on computation were
sometimes rather severe: our personal computer couldn’t handle the computations, so they had to
be done in the MFF Rotunda lab by remote access with SSH – with a one-hour limit of CPU time
imposed upon remotely activated processes.

We therefore utilized three different setups:

- S1. “Light”: Intended for exhaustive feature selection experiments. Uses only a third of
the data (3077 randomly chosen instances), of those 2077 for training, 1000 for testing.
No cross-validation was possible. Therefore, experiments done under the S1 setup could
not be relied on too, much per se; however, since their results were intended as heuristics
for further feature selection, this did not matter too much. Typically, S1 experiments
exhaustively searched and evaluated feature pairs or triplets.

- S2. “Heavy”: Intended for experiments where we could afford to do more rigorous
evaluation. Uses all the data in a 6232/3000 train/test split and performs three-fold cross-
validation.

- S3. “Flexible”: Sometimes, neither S1 or S2 satisfied our requirements. Under S2 fall all
other setups (we will state them explicitly whenever needed).

The baseline accuracy (zero-classifier, everything classified as negative, non-collocations) on the
complete data set is 0.789. (This translates to an accuracy of 0.895 removing roughly half of the
errors we can expect.)

4.1 k-NN

We used k-NN mostly to get a feel for the feature space: how are the data distributed, what kind
of results can we expect based on their structure. We experimented with k and feature selection.
The data for k-NN experiments was scaled.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
The first step in feature selection was evaluating the performance of all feature pairs. This was
done under the S1 setup with k = 5, so we interpreted the result as a certain heuristic for further
feature selection. (The best pairs scored around 0.85 on accuracy and 0.66 on f-score.) The
average results were:

PAIRS Avg.accuracy Avg. recall Avg. precision Avg. f-score

All pairs 0.835 0.441 0.543 0.482
20 best pairs 0.846 0.635 0.669 0.651

Best pair 0.848 0.694 0.665 0.679

Next, we found the best features – “best” meaning “the average performance of feature sets it
participated in was highest”. We measured performance simply as the sum of the four
elementary evaluation measures (accuracy, recall, precision, f-score). We then took the 20 best
features, formed all best feature triplets and evaluated them (again under S1). The triplets yielded
the following performance:

Pairwise 20-best
feature triplets

Avg.accuracy Avg. recall Avg. precision Avg. f-score

All triplets 0.835 0.548 0.624 0.583
20 best triplets 0.852 0.617 0.659 0.637

Best triplet 0.854 0.648 0.652 0.650

We can see that the performance of pairs and heuristically generated triplets is not exactly stellar;
in fact, in f-score, the set of 20-best triplets performs worse than 20-best pairs. It would seem that
the features truly behave rather unpredictably: while the average performance of all 20-best
feature triplets is better – at least in f-score – than that of all feature pairs, 20-best triplets
generated from the 20-best features from all pairs bring no improvement over the 20-best feature
pairs. Also, the best pair of features performs better than the best triplet in f-score (not in
accuracy) and its recall in on par with the best 20-random features model.

Note: the best-performing pair was Mutual Dependency (x5) with Cosine Similarity in tf vector
space (x78) – a combination of an direct association and context measure.

The careful conclusion we draw from this is: iteratively increasing the feature set will probably
not be successful, because for different feature set sizes, the combinations that fared well
previously will not perform as well when “cross-bred” with each other.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
The logical follow-up question is: does the choice of features matter at all, or is the classifier
performance only dependent on the number of features? We will seek to answer by choosing 100
random feature sets of different sizes and evaluating intra-set standard deviations, plus training a
model on all the available features. This time, we can use the S2 setup. We will also compare
randomly chosen feature triplets with our heuristically chosen ones to see whether our heuristic
makes sense.

100 feature sets of
N random features

Avg.Acc
.

Avg.Rec Avg.Pr. Avg.F. SD.Acc SD.Rec SD.Pr SD.F

N = 3 0.842 0.522 0.658 0.569 0.017 0.137 0.048 0.125
N = 5 0.852 0.580 0.673 0.620 0.009 0.066 0.021 0.045

N = 20 0.868 0.646 0.703 0.673 0.005 0.021 0.013 0.015

N = 50 0.873 0.680 0.710 0.694 0.003 0.012 0.009 0.014

All features 0.875 0.695 0.709 0.701 0.001 0.005 0.004 0.004

We can also see that the 50-random average and all-feature results are essentially the same, but
since there is greater deviation for the 50-random averages, odds are there will be a set of 50
features which will perform better than the all-feature model. And, indeed, the best-performing
set of 50 features does perform better.

We also found the best-performing sets for N = 3, 5 and 20 and compared the results:

Best feature set of
N random features

Accuracy Recall Precision F-score

N = 3 0.858 0.664 0.660 0.661

N = 5 0.871 0.625 0.723 0.670
N = 20 0.879 0.688 0.725 0.706

N = 50 0.880 0.703 0.722 0.712

So, random choice beats our heuristic in the best model department, too.

Our best 50-feature model thus effectively eliminates nearly half the errors and can achieve an f-
score over 0.71. Note that the top precision effectively does not change between 5 and 50
features, what changes is recall: increasing the dimension helps to “round up” more instances we
may have previously missed.

As the last experiment for k-NN, we used (with the S2 setup) the set of 14 features found by
Pavel Pecina, Ph.D. in his dissertation[4] to generally provide the most relevant information about
the data set for classification models:

Jan Hajič
hajicj@gmail.com

17. 2. 2011
 x6 – Log frequency biased MD,
 x23 – First Kulczynski,
 x39 – Unigram subtuple measure,
 x41 – S cost,
 x57 – Left context phrasal entropy,
 x58 – Right context phrasal entropy,
 x59 – Left divergence,
 x62 – Reverse cross entropy,
 x68 – Reverse confusion probability,
 x75 – Phrase work coocurrence,
 x77 – Cosine context similarity in bl vector space,
 x81 – Dice context similarity in tf v.s.,
 x82 – Dice context similarity in tf.idf v.s.
(We will refer to this feature set as Pecina’s set further in our work) The k-NN classifier then
gave us the following result:

 Accuracy Recall Precision F-score
Pecina feature set 0.868 0.608 0.726 0.662

Conclusions drawn from the experiments:

The heuristic based on pairwise feature performance does not guarantee improvement in iterative
dimension-increase feature selection with k-NN, or not directly.

The structure of our (scaled) data is such that up to 50, higher dimensionality means better-
defined neighborhoods. However, we haven’t conducted experiments to determine whether a
small set of features is actually responsible and the reason why a 50-random choice erforms
better is simply because members of this core feature set occur more often in sets of 50 features
than in 20. We have a certain clue that it may only partially be so: at least in the very first step,
using our dimensionality-increase iterative feature selection with the additive feature
performance heuristic does not work (using an assumed core feature set only for generating the
higher-dimensional samples did not present an improvement). Also, this dimensionality result
tells us that we don’t have to fear adding dimensions at least up to 50: chances are we will not
introduce too much noise.

With these results in mind, we move towards

Jan Hajič
hajicj@gmail.com

17. 2. 2011
4.2 Naïve Bayes

The most significant difference between the data sets used for k-NN models and Naïve Bayes
classifiers is that in Naïve Bayes, we can use the non-numerical features, most importantly
morphological tags (t1 and t2). Also, scaling is not relevant for Naïve Bayes. However, we
expect it to be much more sensitive to the actual feature set used, rather than the number of
features. That is due to the independence assumption for Naïve Bayes: choosing features which
are more correlated generally results in significantly poorer performance.

To compare the properties of our feature-pair heuristic under k-NN and Naïve Bayes, we have
also obtained classification results for all feature pairs:

PAIRS Avg.accuracy Avg. recall Avg. precision Avg. f-score
All pairs 0.728 0.448 0.589 0.412

20 best pairs 0.877 0.733 0.673 0.700
Best pair 0.891 0.798 0.679 0.734

Best pair 3xS2 0.871 0.798 0.663 0.724

The best pair is consists of – the morphological tag of the first word (t1) and Mutual dependency
(x5). That sounds somewhat familiar. Also, the best pair performed so well we decided to test it
under S2 multiple times (to obtain 9-fold cross-validation) as well, to get a more reliable reading.
The results are not quite as cheerful, but not too much worse for the heuristic to be a total scam,
at least on the higher end.

Given the properties arising from the independence assumption (and seeing them confirmed by
the vastly different average performances vs. the 20-best performances of feature pairs) of Naïve
Bayes, we did not bother doing experiments with randomly chosen feature sets. Instead, we used
our manually selected set from December and the principles we used, together with the heuristic
on all pairs and Pecina’s results[4], to get the following results under S2:

 Accuracy Recall Precision F-score

Best pair 3xS2 (from previous table) 0.871 0.798 0.663 0.724
kNN best pair (x5, x78) 0.849 0.558 0.676 0.610

Best pair + kNN best pair (t1, x5, x78) 0.873 0.794 0.671 0.727
Pecina’s set 0.789 0.886 0.501 0.640
Pecina’s set + t1, t2 (further called P+POS) 0.821 0.907 0.546 0.681

December set, no POS (x5,x6,x73,x82) 0.854 0.678 0.648 0.662
December set (t1,t2,x5,x6,x73,x82) 0.870 0.788 0.663 0.720

December set without x6 0.877 0.751 0.690 0.719
etc.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
We can see that using POS tags without doubt improves performance, so the ability to use these
features does prove a significant advantage over the k-NN method.

Going back to our assumption about the futility of testing random feature sets and a feature
choice pool-limiting heuristic, we’ve attempted to generate random 5-feature sets from the
features in P+POS. The results were less than impressive:

P+POS 5-random Avg.accuracy Avg. recall Avg. precision Avg. f-score
All sets 0.765 0.727 0.529 0.566

20 best sets 0.825 0.773 0.573 0.651
Best set 0.835 0.783 0.583 0.668

It generally seems we could tweak our feature set to suit either recall or precision with no
problem (adding some features aids preicision, some aid recall); using P+POS or the December
set as a certain core, we can still be reasonably sure we will get solid f-score as well.

Feature selection with Naïve Bayes is rather alchemic in nature. Methods to make it less of an
obscure science may include building a correlation matrix between features to favor the
uncorrelated.

If an evolutionary approach is to be successful with Naïve Bayes feature selection, it will need to
keep a very strong exploration parameter.

It is time to bring out the heavy weapons and use:

4.3 Adaboost

Since the Adaboost algorithm is slow compared to the others we used, we could not afford
extensive feature selection or parameter tuning and were confined to making good guesses,
possibly based on previous experience with feature sets from using other methods. However, the
boosting algorithm is so powerful it made do with our guesswork to outperform k-NN and Naïve
Bayes in both accuracy and f-score.

Again, as Adaboost uses decision trees, we are able to use POS tags as features. Furthermore,
these features may just strike the balance between providing well-defined distinct classes and
branching the tree out too much, which would cause overfitting and inability to process unseen
data.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
We have obtained the following results (10-fold cross-validation, 6232-3000 train-test data split,
confidence interval width in all cases under 0.001, i.e. a difference of as little as 0.002 is
statistically significant):

 Accuracy Recall Precision F-score
Naïve Bayes best pair (t1, x5) 0.882 0.655 0.750 0.700

kNN best pair (x5, x78) 0.855 0.573 0.688 0.625
Best pair + kNN best pair (t1, x5, x78) 0.884 0.654 0.761 0.703

Pecina’s set 0.874 0.617 0.737 0.671
P+POS 0.891 0.692 0.772 0.729

P+POS+x , x , x , (randomly picked) 0.889 0.705 0.761 0.732
December set (t1,t2,x5,x6,x73,x82) 0.886 0.665 0.765 0.711
December set without x6 0.870 0.615 0.723 0.664

December set plus x77 0.884 0.655 0.763 0.705
All features 0.902 0.723 0.793 0.756

The conclusion is clear: the power of boosting wins and given pruning (even just with the default
value of the complexity parameter at cp = 0.01), it can filter out irrelevant features well enough
so that using all the features gives us the best results in all departments. (We suppose that
parameter tuning may significantly improve its performance. See future work in the Conclusion
section.)

5. Conclusions

As far as feature selection is concerned, we have concluded that making educated guesses is a
fast way of getting performance that may be suboptimal, but still is better than anything we could
come up with by a more rigorous method now. That is both a tribute to intuition and, more
importantly, a call to broaden our horizons in the machine learning department.

More importantly: choosing a good model matters much more than selecting good features. We
can’t make far-reaching conclusions about parameter tuning because we, well, haven’t tuned
any.

Future work definitely includes more investigating in the way model parameters: how they affect
classifier performance and what is their relationship with feature selection (i.e.: do certain
methods of feature selection prefer certain parameter settings and vice versa?). We have merely
scratched the surface of the challenges our task poses. Since our Bachelor thesis is essentially a
machine learning experiment, we are greatly interested in improving our skills in the field – fast.

Jan Hajič
hajicj@gmail.com

17. 2. 2011
References:

[1] Hyafil, Laurent; Rivest, RL (1976). "Constructing Optimal Binary Decision Trees is NP-
complete". Information Processing Letters 5 (1): 15–17.

[2] Michael Kearns. Thoughts on hypothesis boosting. Unpublished manuscript. 1988

[3] Yoav Freund, Robert E. Schapire. "A Decision-Theoretic Generalization of on-Line Learning
and an Application to Boosting"

[4] Pecina, Pavel: “Lexical Association Measures: Collocation Extraction”, ÚFAL, 2009

