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1 Project Description 

A word may have more than one meaning or sense (polysemous). For instance, the word 

“light” may have a meaning of “a source of lighting or illumination” as in “Turn off the light”. 

It can also have a meaning of “not heavy” as in “My new phone is small and light”. The 

meaning can usually be differentiated or disambiguated by observing the context where the 

word is used. In a written text or sentence, the context can be described in the simplest case 

as the information of the surrounding words. In a more complex case, as in the use of word 

bank in “I’ll meet you at the bank”, the disambiguation requires more than just the 

information from the surrounding words. Since, the bank may have a meaning of “a financial 

institution (a building)” but can also have a meaning of “river bank”. Both meanings are 

possible and the correct meaning will depend on the shared knowledge between the speakers. 

Word sense disambiguation is the task to decide, given a text or sentence, the correct 

meaning of a certain word inside the text. In this project, we experimented in disambiguating 

the word senses of three different words: hard, line, and serve. We use the data developed by 

(Leacock). The data contains sentences with the target word (word to be disambiguated) 

tagged and disambiguated using the senses from WordNet (Fellbaum). There will be one 

word that we need to disambiguate in each sentence and hence, the meaning of the word will 

be disambiguated using this one sentence context.  

We will use three different machine learning methods to do the classification of the word 

into their respective sense. The performance of each method will be measured by its accuracy, 

i.e. the number of sentences with correct prediction divided by the total number of sentences 

predicted. 

We will describe the data and the features we use in Section 2. Section 3 will provide 

theoretical background on the selected machine learning methods. In Section 4, we will 

describe our experiments and our analysis of the results. The conclusions of the work will be 

given in Section 5. 

2 Data and Features Description 

In this section, we describe the data that we used and the features extracted from each 

sentence in the data. 

2.1 Development Data 

The data consists of 3,833 sentences for the word “hard”, 3,646 sentences for the word “line”, 

and 3,848 sentences for the word “serve”. There are 3 different senses for “hard”, 6 senses for 

“line”, and 4 senses for “serve”. The sentences was further processed and enriched with 

morphological (part-of-speech and lemma) and dependency information. The tokens in the 

sentence are separated by space and the word to be disambiguated is enclosed in “< word >" 

tag. Below is the excerpt from the data for the word “hard”: 
 

ID: "hard-a.sjm-082_3:" 

SENSE: HARD1 



SENTENCE: `` it 's <hard> to explain . 

MORPH: ``/`` it/PRP 's/VBZ hard/JJ to/TO explain/VB ./. 

WLT: ``|``|``it|it|PRP 's|be|VBZ hard|hard|JJ to|to|TO 

explain|explain|VB .|.|. 

PARSE: nsubj(hard-4, it-2);cop(hard-4, 's-3);root(ROOT-0, hard-

4);aux(explain-6, to-5);xcomp(hard-4, explain-6) 

 

Table 1 shows the description of each line in the data.  

Table 1 Description of the Data 

Name Description 

ID Identification number of the sentence 

SENSE The correct sense of the word 

SENTENCE The sentence where the word is used 

MORPH Morphological tag of each word (Penn Treebank Tag Set) 

WLT Morphological tag with lemma of each word 

PARSE Syntactic dependency of each word (Stanford Dependency Parser) 
 

We randomized and split our data into two parts, training and test data. The training data is 

used for classification and for tuning the learning parameters. The test data is used to measure 

the final accuracy of the learning methods. The distribution of the senses for each word is 

shown in Table 2. The distribution of the senses for the training and test data is more or less 

the same. Hence, we expect to get a good performance on the test data by tuning the learners 

to get a satisfying performance on the training data.  

Table 2 Distribution of Senses for word hard, line, and serve 

hard 

Sense All train test 

HARD1 3057 79.75 % 2458 80.17 % 599 78.10 % 

HARD2 447 11.66 % 341 11.12 % 106 13.82 % 

HARD3 329 8.58 % 267 8.71 % 62 8.08 % 

 

Line 

Sense All train test 

cord 336 9.21 %   (9.32 %) 281 9.75 % 55 7.63 % 

division 323 (322) 8.86 %   (8.93 %) 258 8.95 % 64 8.88 % 

formation 297 8.14 %   (8.24 %) 233 8.08 % 64 8.88 % 

phone 385 (381) 10.56 % (10.57 %) 308 10.68 % 73 10.12 % 

product 1949 (1915) 53.45 % (53.13 %) 1508 52.31 % 407 56.45 % 

text 356 (353) 9.76 %   (9.79 %) 295 10.23 % 58 8.04 % 
* number in brackets are corrected numbers since some sentences in the data do not contain 

word ”line" 

 

serve 

Sense All train test 

SERVE10 1586 41.22 % 1276 41.45 % 310 40.26 % 

SERVE12 1119 29.08 % 901 29.27 % 218 28.31 % 

SERVE2 753 19.57 % 593 19.26 % 160 20.78 % 

SERVE6 390 10.13 % 308 10.01 % 82 10.65 % 

 



2.2 Features Set 

The features used in word sense disambiguation can be differentiated into features that use 

surrounding surface words as information, such as bag of words or collocations information, 

and features that use syntactic or dependency information, e.g. tense of the word, presence of 

adjective at previous one position, and many others. In our work, we defined features that are 

more heavily incline to the later. This is because we consider that the use of plain words will 

not generalize enough for different words. Although, it might be possible that the use of 

simple plain surrounding words might produce better results. 

We defined 116 features that consist of binary and categorical features extracted from the 

information available in the data. The features were defined based on the observation of the 

sentences inside the data. In the experiment, all the features will be converted into binary 

features. The complete list of features and their definitions are listed in Table 3.  

As can be seen from the table, the feature such as TW_PHONE_BEFORE (63) is a feature that 

depends on the information of the surface (plain) words, i.e. whether the plain word “phone” 

occurs before the target word. In the other hand, the feature TW_NN_DEP_N (56) is a feature that 

uses dependency information of whether the target word has a dependency nn (noun 

compound modifier) with a noun word. 

Table 3 Features Description 

* TW: target word (word to be disambiguated) 

No. Feature Name Description No. Feature Name Description 

1 TW_ACOMP presence of acomp(*, TW) 59 TW_NSUBJ_DEP_N nsubject of target word is 

NN|NNS 

2 TW_ADVCL presence of advcl(TW, *) 60 TW_NSUBJ_DEP_P nsubject of target word is 

NNP|NNPS|PRP 

3 TW_ADVMOD presence of advmod(TW, 

*) 

61 TW_NUM presence of num(TW, *) 

4 TW_AMOD presence of amod(*, TW) 62 TW_OBJECT presence of any object 

5 TW_AMOD_DEP_JJ amod of target word is JJ 63 TW_PHONE_BEFORE presence of cue words 

(.*phone.*|direct|subscribe.

*|toll-.*) before the TW 

6 TW_APOSS_BEFORE presence of "'s" before TW 64 TW_PLURAL_OB presence of any object in 

the plural form 

7 TW_APOSS_DEP_N aposs of target word is 

NN|NNS 

65 TW_PLURAL_SB presence of any subject in 

the plural form 

8 TW_AUXPASS presence of auxpass(TW, 

*) 

66 TW_POSS_DEP_NP poss of target word is 

NNP|NNPS 

9 TW_CCOMP presence of ccomp(TW, *) 67 TW_POSS_DEP_P poss of target word is 

PRP|PRP$ 

10 TW_COLON_AFTER presence of ":" after TW 68 TW_PREPC_P_CAT prepositional clausal 

modifier of TW 

11 TW_COMPLM presence of complm(TW, 

*) 

69 TW_PREP_AS_DEP_N prep_as of target word is 

NN|NNS 

12 TW_CONJ_AND_NN presence of and(TW, NN) 

or and(NN, TW) 

70 TW_PREP_BETWEEN presence of 

prep_between(TW, *) 

13 TW_CSUBJ presence of csubj(TW, *) 71 TW_PREP_CAT prepositional modifier of 

TW 

14 TW_CSUBJPASS presence of csubjpass(TW, 

*) 

72 TW_PREP_INCL_N prep_including of target 

word is NN|NNS 

15 TW_DET_CAT determiner of the target 

word 

73 TW_PREP_OF presence of prep_of(TW, *) 

16 TW_DOBJ presence of dobj(TW, *) 74 TW_PREP_OF_DEP_N prep_of of target word is 

NN|NNS 

17 TW_DOBJ_OF TW is dobj 75 TW_PREV1_ADJ previous word before TW is 

adjective 

18 TW_IOBJ presence of iobj(TW, *) 76 TW_PREV1_ADV previous word before TW is 

adverb 

19 TW_MARK_CAT marker of TW  77 TW_PREV1_IN_CAT preposition of the previous 

word before TW 



20 TW_MODALITY1 presence of aux(TW, 

would | should) 

78 TW_PREV1_L_BE previous word TW has 

lemma “be” 

21 TW_MODALITY2 presence of aux(TW, can | 

could | may | must | 

ought | might) 

79 TW_PREV1_MD previous word before TW is 

modal 

22 TW_NEGATION presence of neg(TW, *) 80 TW_PREV1_NOM previous word before TW is 

nominal-like 

23 TW_NEXT1_ADJ next word after TW is 

adjective 

81 TW_PREV1_TENSE_CAT tense of previous word 

before TW 

24 TW_NEXT1_ADV next word after TW is 

adverb 

82 TW_PREV1_TO previous word before TW is 

“to” 

25 TW_NEXT1_IN_CAT preposition of the next 

word after TW 

83 TW_PREV1_VRB previous word before TW is 

verb 

26 TW_NEXT1_L_BE next word after TW has 

lemma “be” 

84 TW_PREV1_WHP previous word before TW is 

wh-pronoun 

27 TW_NEXT1_MD next word after TW is 

modal 

85 TW_PREV1_WRB previous word before TW is 

wh-adverb 

28 TW_NEXT1_NOM next word after TW is 

nominal-like 

86 TW_PREV2_ADJ second previous word 

before TW is adjective 

29 TW_NEXT1_TENSE_CAT tense of next word after 

TW 

87 TW_PREV2_ADV second previous word 

before TW is adverb 

30 TW_NEXT1_TO next word after TW is “to” 88 TW_PREV2_IN_CAT preposition of the previous 

second word before TW 

31 TW_NEXT1_VRB next word after TW is verb 89 TW_PREV2_L_BE second previous word TW 

has lemma “be” 

32 TW_NEXT1_WHP next word after TW is wh-

pronoun 

90 TW_PREV2_MD second previous word 

before TW is modal 

33 TW_NEXT1_WRB next word after TW is wh-

adverb 

91 TW_PREV2_NOM second previous word 

before TW is nominal-like 

34 TW_NEXT2_ADJ second word after TW is 

adjective 

92 TW_PREV2_TENSE_CAT tense of second previous 

word before TW 

35 TW_NEXT2_ADV second word after TW is 

adverb 

93 TW_PREV2_TO second previous word 

before TW is “to” 

36 TW_NEXT2_IN_CAT preposition of the second 

word after TW 

94 TW_PREV2_VRB second previous word 

before TW is verb 

37 TW_NEXT2_L_BE second word after TW has 

lemma “be” 

95 TW_PREV2_WHP second previous word 

before TW is wh-pronoun 

38 TW_NEXT2_MD second word after TW is 

modal 

96 TW_PREV2_WRB second previous word 

before TW is wh-adverb 

39 TW_NEXT2_NOM second word after TW is 

nominal-like 

97 TW_PREV3_ADJ third previous word before 

TW is adjective 

40 TW_NEXT2_TENSE_CAT tense of second word after 

TW 

98 TW_PREV3_ADV third previous word before 

TW is adverb 

41 TW_NEXT2_TO second word after TW is 

“to” 

99 TW_PREV3_IN_CAT preposition of the previous 

third word before TW 

42 TW_NEXT2_VRB second word after TW is 

verb 

100 TW_PREV3_L_BE third previous word TW has 

lemma “be” 

43 TW_NEXT2_WHP second word after TW is 

wh-pronoun 

101 TW_PREV3_MD third previous word before 

TW is modal 

44 TW_NEXT2_WRB second word after TW is 

wh-adverb 

102 TW_PREV3_NOM third previous word before 

TW is nominal-like 

45 TW_NEXT3_ADJ third word after TW is 

adjective 

103 TW_PREV3_TO third previous word before 

TW is “to” 

46 TW_NEXT3_ADV third word after TW is 

adverb 

104 TW_PREV3_VRB third previous word before 

TW is verb 

47 TW_NEXT3_IN_CAT preposition of the third 

word after TW 

105 TW_PREV3_WHP third previous word before 

TW is wh-pronoun 

48 TW_NEXT3_L_BE third word after TW has 

lemma “be” 

106 TW_PREV3_WRB third previous word before 

TW is wh-adverb 

49 TW_NEXT3_MD third word after TW is 

modal 

107 TW_PRT presence of prt(TW,  *) 

50 TW_NEXT3_NOM third word after TW is 

nominal-like 

108 TW_PRT_CAT phrasal verb particle of TW 

51 TW_NEXT3_TO third word after TW is “to” 109 TW_PURPCL presence of purpcl(TW, *) 

52 TW_NEXT3_VRB third word after TW is verb 110 TW_TENSE_VB TW has VB tag 



53 TW_NEXT3_WHP third word after TW is wh-

pronoun 

111 TW_TENSE_VBD TW has VBD tag 

54 TW_NEXT3_WRB third word after TW is wh-

adverb 

112 TW_TENSE_VBG TW has VBG tag 

55 TW_NN presence of nn(TW, *) 113 TW_TENSE_VBN TW has VBN tag 

56 TW_NN_DEP_N nn of target word is 

NN|NNS 

114 TW_TENSE_VBP TW has VBP tag 

57 TW_NSUBJ presence of nsubj(TW,*) 115 TW_TMOD presence of tmod(TW, *) 

58 TW_NSUBJPASS presence of nsubjpass(TW, 

*) 

116 TW_XCOMP presence of xcomp(*,TW) 

3 Machine Learning Methods 

We present in this section the overview of the machine learning methods that we used in our 

current work. 

3.1 Selecting Machine Learning Methods 

Selecting the appropriate machine learning methods might not be easy and depends on 

several factors. One possibility in selecting the learners might be to try all possible learners to 

get the best ones. Although, some more data-oriented criteria might also be used for the 

selection, some of them are: 

 Linear separability of the data 

Linearity of the data should be considered when selecting the learners since not all 

learners can produce a non-linear boundary. A linear method might produce a high bias 

for non-linear problems (Manning, chap. 14.6). However, it might not be easy to 

visualize the data with high dimensions to see whether the data is linearly separable or 

not. 
 

 Features dependency 

A learner like Naïve Bayes use independence assumption for its features. If our defined 

features are not independent, the resulting classification performance might be low. We 

observed that most of our features are not independent, as in the use of _NEXT1_ADJ 

and _NEXT1_TO. The occurrence of a class “adjective” in the next position after the 

target word is surely to produce the non-occurrence of word “to”. 
 

 Size of the data 

In we only have small amount of data, the guideline is to use the classifier with high bias, 

such as Naïve Bayes. If the data is big enough, the classifier with low bias, such as k-NN, 

might be used. (Manning, chap. 15.3.1) 

In this work, we selected three machine learning methods to be used in our experiments. 

Other than Naïve Bayes that depends on the features dependency and data size criteria, the 

other machine learning methods seems to be good candidates for the task. In order to decide, 

we added some additional selection criteria that are quite simple, which are based on: 

 The known performance (popularity) of the method: to ensure that we can get the best 

results by building classifiers from learners that are known to produce good 

performances in other classification tasks. 

 Representativeness of the learner’s class (e.g. tree-based, instance-based): to roughly 

compare the different approaches. 

SVM and Random Forests were selected as our first two learners because both are known 

to have good performances. Since Random Forests is in its core a collection of decision trees, 

we decided to omit the Decision Tree learner from the selection. The last method that we 



chose was k-NN as the representative of instance-based learner. At first, we also considered 

to use Naïve Bayes in our experiment. However, our preliminary experiments with Naïve 

Bayes produced unsatisfying results. We think that this was probably caused by the features 

that we used in this experiment which are not completely independent. 

3.2 Support Vector Machine (SVM) 

In general, SVM works by predicting a hyperplane that best separates the instances in the 

data into their own classes. SVM tries to find a hyperplane that maximizes the margin 

between these instances. Some instances that are closest to the hyperplane are used as support 

vectors in classification. The occurrences of some instances that reside on the wrong side of 

the class (as noise or outliers) may cause the data to be not linearly separable. Soft margin in 

SVM is introduced to cater this problem by allowing some misclassifications. For instances 

that are not linearly separable in current dimensional space, SVM uses kernel function to map 

the instances into higher dimensional feature space where the instances are expected to be 

separable. Figure 1 shows the illustration of SVM in two-dimensional space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Illustration of Support Vector Machines in two-dimensional space. 

Large Margin Classifier. The basic idea of SVM is to find a separating hyperplane given by 

equation  ⃗⃗ 
 
   that separates the instances in the training data. We will predict an instance  , 

represented as a features vector (  ), to be in class     if  ⃗⃗ 
 
       and      if  ⃗⃗ 

 
    

  . The other constraint is that this separating hyperplane should maximize the distance or 

margin between the instances as shown on the Figure 1. The hyperplane is found by solving the 

problem of: 
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, with     0 for instances that are used as support vectors. Hence, we can consider it as the 

problem of finding the support vectors and their weights. The solutions are in the form: 
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, for any   ⃗⃗⃗⃗  such that     . The classification of an instance x is performed by using the 

formula: 
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Soft Margin. Some noises or outliers may exist in the data, making the data not separable. 

SVM handles this problem by allowing some misclassification of instances. A slack variable 

  is introduced to control the cost of this misclassification. The optimization problem of SVM 

becomes: 
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and the dual problem is: 
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, where C is the regularization term to control overfitting.   

 

Kernel. The usage of kernel is to map the instances to the higher dimensional feature space 

where the instances that might not be linearly separable in current dimension can be separated 

in this higher dimension. Incorporating the kernel inside the basic formula of SVM is simply 

performed by replacing the dot product of    
    to          , so that the formula for the dual 

problem and  the classification become: 
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The common kernel functions used in SVM are: 

 Linear:                 

 Polynomial:                      

 Radial basis function                      

 Sigmoid:                          

Multiclass classification. SVM is originally two-class classifier. In order to support 

multiclass classification, an approach such as one-vs-all method can be used. In this method, 

there will be n classifiers for n classes. Each classifier will be trained to differentiate between 

one selected class versus all other remaining classes. The other method is one-vs-one where 

we train classifier to differentiate two classes out of n classes. We build classifiers for all all 



possible combinations. Hence, in the end, we will have n(n-1)/2 classifiers. The class of an 

instance will be decided by majority votes. 

3.3 Random Forests 

Random Forests is a learning algorithm that use decision tree algorithm (classification tree) 

as its basis. It builds many classification trees by sampling the data and the features used. The 

classification is performed by putting the instance into these trees. The class of the instance is 

based on the majority vote across all the trees. 

 

Decision Tree. A decision tree algorithm builds a single classification tree with each node 

contains a question to decide of how to classify a given instance   (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Illustration of Decision Tree. Instance x represented with two numerical features (x1, x2) 

is classified as c1 or c2 based on the values of the features it has. 

In building the tree, we first start with a single node. A node in the tree contains the 

collection of instances from our training data. Node has a measure of impurity that intuitively 

says that a node that contains high number of instances of the same classes (homogeneous) 

has lower impurity compared to the node with instances of many different classes 

(heterogeneous). Some formulas that are used to measure the degree of impurity   in a node   

are: 

 Misclassification error 

                              

 Information gain (entropy) 

      ∑  (  | )           
   

   
 

 Gini index 

       ∑  (  | )
    

   
 

 

, where                  is the set of possible classes and  (  | ) is a probability of class 

   given node  . In ID3 algorithm, the instances in a node will be split into two different sets 

(nodes) iteratively based on a single feature each time. The feature is selected so that the 

decrease in impurity from parent to the children nodes is maximized.  
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, where    and    are left and right children nodes,   and    are the proportion of the 

instances that go to the left and right nodes, and   represents all possible splits. Hence, the 

selected feature on each split will later be used as the question, to decide where an instance x 

should go when performing classification. The split will continue until no more features to be 

selected or if only one instance is left in the node. If necessary, a pruning can be performed to 

stop the growth of the tree at certain stage to prevent overfitting.  

 

Random Forests. As mentioned in the beginning of this section, Random Forests works by 

constructing many classification trees. The class for an instance will be determined by 

selecting class with majority votes. Each classification tree is build using the data sampled 

from the training data with replacement. The size of sampled data can be less, as big as the 

training data, or bigger. Using the total of M features, each tree will be constructed using 

only m << M (far smaller) features, that are selected randomly. Tree will be grown without 

pruning. 

The basic idea in Random Forests that makes it a good classifier is that it is a collection of 

the so-called weak learners, learning algorithms with low bias and high variance. The trees in 

Random Forests are built to their maximum depth to produce low bias learners. The sampling 

of data is performed to ensure the trees built have low correlation with each other. Using high 

number of trees, the algorithm is claimed to not overfit. 

The other important notion in Random Forests is out-of-bag data. The out-of-bag data is a 

collection of instances that are not selected for building current classification tree. The 

Random Forests calculate the out-of-bag error estimate from this data, i.e. out-of-bag data 

acts as test data. The error estimate represents the overall averaged error estimate of the 

classification. This value can be used to tune some parameters, e.g. choosing the m for the 

features. It can also be used to rank variable importance by permuting the values of the 

features in a single tree and calculating the increase in the misclassification rate averaged 

over all the trees. 

3.4 k-NN 

The k-NN (k-nearest neighbor) algorithm is a member of instance-based learning algorithm. 

Instance-based learning algorithm is a type of learners that is also called lazy learner. Given 

training data, the instance-based learning algorithm will store the data and only use it when it 

is needed to do the classification or regression. In the case of classification, the task is 

performed by comparing the given test instance from test data with the instances from the 

stored training data. 

In k-NN method, the comparison is performed with the closest k neighbors in the training 

data. The measure of distance used for finding the closest k neighbors might be varied. 

Among them, the most commonly used is Euclidean distance. The Euclidean distance 

between two instances x and y, where each instance is represented as a features vector of m 

numerical features, is given by: 

         √∑        

 

   

 

For classification, the label of the test instance will be labeled according to the majority class 

of its k nearest neighbor.  

 



                  ∑       

 

   

 

, where C is the set of all possible labels,    is the label of the i-th neighbor of x, and         

is 1 when c = ci and 0 otherwise. Finding which k nearest neighbor to be included can be 

performed randomly. The other option is to include all the instances that have the same 

distance with the k-th nearest vector. 

4 Experiments and Results 

We implemented our features extraction in Perl v5.14.2. The selection of features and 

machine learning experiments was performed in R v2.15.1 and will be explained in Section 

4.1. We will describe our experiment for each method that we chose in the following sections, 

together with the tuning processes and the evaluation results. The overall process of our 

experiments is depicted in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Overview of the experiments 

We built features representation of all sentences using our 116 defined features. The 

features were then converted into binary features. We split the data into two parts, training 

and test data. The training data was used to perform two main steps, features selection and 

parameters tuning. The final prediction was performed on the test data using the selected 

features and parameters from the tuning process. 

4.1 Feature Selection 

The features were scored using FSelector package v0.18 in R that calculates the weight or 

importance of each feature using Random Forests variable importance score. We show the 

top 20 features for each word in Table 4. 

Table 4 Top 20 features based on Random Forests variable importance measure 

hard line serve 

Feature Imp Feature Imp Feature Imp 

TW_NEXT2_IN_at 34.13 TW_PHONE_BEFORE 54.33 TW_NSUBJ_DEP_P 42.24 

All Data Training Data Testing Data 

Features 

Extraction 

Features 

Selection 

Parameter 

Tuning 

(10 CV) 

Prediction 

(Final 

accuracy) 

 Weight  feature 
importance (Random 

Forests) 

 Decide the number of 

features to use (top N 
features) for each 

method using 10 CV 

 SVM: cost, degree, 

gamma 

 Random Forests: 

number of trees, 
number of variable 

sampling, node size 

 k-NN: number of 
neighbors 

 Prediction using the 

best parameters for 

each method 

 Extract 116 
features (binary 

and categorical) 

 Convert all 

features to binary 

features 



TW_PREV1_NOM 32.36 TW_POSS_DEP_P 39.45 TW_PREP_AS_DEP_N 41.49 

TW_ADVMOD 26.28 TW_DET_the 38.81 TW_NSUBJ 40.89 

TW_PREV3_NOM 24.79 TW_COLON_AFTER 38.19 TW_TENSE_VBD 38.23 

TW_PREV1_L_BE 23.88 TW_PREV1_NOM 35.74 TW_NEXT1_IN_as 37.66 

TW_AMOD 23.57 TW_NN 33.82 TW_PREV1_WHP 37.04 

TW_NEXT1_NOM 22.37 TW_PREV2_IN_NONE 32.13 TW_TENSE_VB 37.04 

TW_PREV2_IN_on 19.92 TW_DET_NONE 31.63 TW_PREV1_NOM 36.65 

TW_PREV2_TENSE_NONE 19.62 TW_PREV1_IN_in 31.55 TW_NEXT1_ADV 34.01 

TW_NEXT2_VRB 19.35 TW_PREV2_ADV 30.51 TW_NSUBJ_DEP_N 33.49 

TW_PREV2_VRB 19.34 TW_DET_a 30.33 TW_TENSE_VBG 32.90 

TW_PREV1_ADV 18.79 TW_NEXT1_IN_between 29.83 TW_NEXT1_IN_by 32.73 

TW_NEXT1_IN_for 18.76 TW_PREV2_IN_on 29.74 TW_NEXT2_NOM 32.49 

TW_PREV1_IN_NONE 18.42 TW_NEXT1_IN_of 29.58 TW_NEXT1_IN_with 29.58 

TW_NEXT2_ADV 18.41 TW_PREV1_ADJ 29.00 TW_DOBJ 29.26 

TW_PREV3_VRB 18.25 TW_PREV2_IN_along 28.39 TW_PLURAL_OB 29.19 

TW_NEXT2_TENSE_NONE 18.01 TW_PREP_BETWEEN 27.40 TW_OBJECT 28.13 

TW_PREV2_L_BE 17.84 TW_PREV3_VRB 27.18 TW_PREV1_IN_NONE 26.93 

TW_NEXT2_IN_NONE 17.81 TW_DOBJ_OF 26.90 TW_NEXT1_IN_NONE 26.90 

TW_NEXT2_NOM 17.65 TW_PREV2_NOM 26.42 TW_PREV1_ADV 26.71 

 

We can observe from the word “hard” that the important features are most likely in the 

class of nominal (NOM), verb (VRB), adverb (ADV), and preposition or subordinating 

conjunction (IN). As the word “hard” itself is an adjective, we can see that the presence of 

feature related to the adjective class is not in the top 20 of the features. The presence of verb 

and nominal is probably because an adjective usually describe word in verb and nominal 

class, e.g. uses of “hard” as adverbial modifier or adjectival modifier. Some prepositions or 

subordinating conjunction around the word “hard” like “at”, “on”, “for” seem to be important 

in disambiguating the sense. The presence of lemma “be” (*_L_BE) is important probably 

because we usually use the word “is”, “are” before an adjective. The non-occurrence of some 

classes (*_NONE) is also important, especially for non-occurrence of preposition and word 

with certain tenses. 

For the word “line”, some of the features are quite specific. For example, the presence of 

word related to phone as the top feature. This is probably due to the use of the cue words 

listed in the feature TW_PHONE_BEFORE strongly disambiguate the sense of the word “line” as 

“communication line (phone line)”. The presence of some specific determiners, prepositions, 

and subordinating conjunction is also important in disambiguating the senses. The other 

interesting things to see are the use of possessive dependency (TW_POSS_DEP_P) and the use of 

colon “:”. Looking into the training data, these two features seem to relate to the use of word 

“line” which has the sense of “text” or “quote” from someone. 

In word “serve” the number of features related to the prepositions or subordinating 

conjunction seems to be smaller compared to the word “hard” and “line”. Some important 

words based on the feature’s score are “as”, “by”, “with”. These words when combined with 

the word “serve” will be something like “serve by”, “serve as”, “serve with”, which help in 

disambiguating the sense of the word “serve”. The prominent features are features that relate 

to the subject, object, or the tense of the word “serve”. This is probably due to the nature of 

the word “serve” as a verb. 

Comparing these three top 20 features, we can get some rough conclusions of the 

importance of features related to the class of word: “hard” as adjective, “line” as noun, and 



“serve” as verb. For adjective, the presence of nominal and prepositions seem to have 

important roles. For noun, some specific features are necessary to disambiguate its sense. As 

for the verb, features related to function of words as subject or object are more important. 

The feature selection was performed for each learning method. We selected top N best 

features based on 10-fold cross validation and the average accuracy. We did not do cross 

validation for Random Forests method, since the overall error estimate from out-of-bag data 

should be representative enough in measuring the performance of the classifier. We used the 

out-of-bag error estimation and selected the N that produces the lowest error estimation. For 

each method, we set the N from 50 to 150 and increase it by 10 in each iteration. The N that 

produces the highest average accuracy (or lowest error estimate for Random Forests) was 

selected. The selected N for each learning method will be shown on the following sections as 

“# Features”. 

4.2 SVM 

SVM is available in R under the library e1071 with the function named svm. The function 

provides multliclass classification using one-against-one method. In SVM experiments, we 

used all the kernels provided to compare the performance of different kernels to solve the 

disambiguation problem. For each kernel, we tuned the related parameters using 10-fold cross 

validation, performed by setting the parameter cross=10. We only tuned the parameters Cost, 

Gamma, and Degree. All other parameters were not changed. We decided not to use 

exhaustive search in tuning the parameters due to the time needed to do the exhaustive search. 

We tuned the parameters by the order of: cost > gamma > degree. Cost will be the first to 

tune. Afterwards, we set the cost for the SVM using the best cost obtained to search for the 

best gamma. Degree will be searched the last using the best cost and the best gamma. The 

possible values for each parameter are: 

 Cost: 1, 10, 100 

 Gamma: 0.01, 0.1, 1, 10, 100 

 Degree: 1, 2, 3, 4, 5 

The best parameters obtained are shown in Table 5. From the table, we can see that almost all 

of the Costs are set at default value of 1, which might mean that the risk of overfitting is 

small. Gammas are found to be around 0.1 or 0.01, which roughly almost the same as the 

default value of 1/dimension of data. The Degrees found are around 1 or 2 which make it 

close to linear. The number of features are less than or equal to 100 for almost all the cases, 

except for Sigmoid kernel. This shows that the features weighting and selection is working. 

Table 5 Best parameters for SVM 

Best Parameters 

Linear hard line serve 

# Features 60 100 100 

Cost 1 1 1 

 

Polynomial hard line serve 

# Features 50  50 50 

Cost 10  1 1 

Gamma 0.01*  0.01 0.1 

Degree 1  2 1 

  * not tested for gamma = 100, the program never finish for this value 



Radial hard line serve 

# Features 60 70 90 

Cost 10 1 1 

Gamma 0.01 0.01 0.01 

 

Sigmoid hard line serve 

# Features 140 150 130 

Cost 1 1 1 

Gamma 0.01 0.01 0.01 

 

We applied the parameters found and tested them on both training data and test data. The 

comparison of accuracies obtained is shown in Table 6. The results show that Linear and 

Polynomial kernel produce best accuracies on the test data. An interesting observation is that 

the Polynomial kernel achieves good result for “hard” using the Degree of 1, which is linear. 

It seems that using the defined features the data is more or less linearly separable. The best 

kernel on training data is Radial kernel. However, comparing the gap of its training and test 

accuracies on “hard” and “serve”, it looks like the model somehow overfit the training data. 

Table 6 Accuracy of SVM Classification 

Accuracy (%) 

Linear hard line serve 

Training 87.05 74.54 84.05 

Test 85.27 71.29 77.66 

 

Polynomial hard line serve 

Training Data 87.08  71.38 79.82 

Test Data 85.66  71.29 77.4 

 

Radial hard line serve 

Training Data 95.56 72.94 86.39 

Test Data 85.53 71.29 75.32 

 

Sigmoid hard line serve 

Training Data 83.23 64.06 73.55 

Test Data 83.05 67.68 74.28 

 

4.3 Random Forests 

The Random Forests is available in R under the library and function named randomForest. 

We tuned the Random Forests for parameters ntree (number of trees), mtry (number of 

variable sampling – m), and nodesize (minimum number of instance in terminal nodes), 

with following possible values: 

 ntree: 500, 1000, 2000, 4000 (default 500) 

 mtry: √            , √         , √             (default √         ) 

 nodesize: 1, 5, 10 (default 1) 



All other parameters were not changed. The selection of best parameter was performed by 

selecting the parameter that produces lowest error estimate of out-of-bag data over all the 

trees, taken from the last index of err.rate value returned by the randomForest model. The 

tuning is performed in the similar way as SVM with the order of search: ntree > mtry > 

nodesize. The best parameters that we obtained are shown in Table 7. 

From the table, we can see that the best node size is 1, which mean the trees can be grown 

to the maximum depth. The numbers of features are varied with “serve” having the highest 

number of features. Small number of features is apparently enough for word “hard”. The 

number of trees, however, is the largest for word “hard”, set at the maximum of possible 

values. The forest for “hard” takes small number of variable sampling but uses many trees to 

achieve good performance. For “serve”, the number of variable sampling is higher but with 

smaller number of trees. The word “line” use small number of trees (default) with small 

number of variable sampling. 

Table 7 Best parameters for Random Forests 

Best Parameters 

Random Forests hard line serve 

# Features 50 100 140 

Number of trees 4000 500 1000 

Variable sampling 7 10 24 

Node size 1 1 1 
 

Accuracies for each word are shown in Table 8. The results show a big discrepancy 

between the accuracy on training data and on the testing data. The accuracy on the training 

data is on average around 90% or higher. However, the accuracy on the test data only lies 

around 70%-80%. Observing the discrepancy, we see that the gaps are large for word “line” 

and “serve”. This might be related to the smaller number of trees used compared to “hard”. 

Increasing the number of trees might be able to decrease the discrepancy, but probably will 

not produce better accuracy. 

Table 8 Accuracy of Random Forests Classification 

Accuracy (%) 

Random Forests  hard line serve 

Training Data 90.41 89.04 97.89 

Test Data 84.35 73.23 79.87 

 

4.4 k-NN 

Implementation of k-NN method is available in R under library e1071 with the function 

named knn. We only tuned for one parameter k (number of neighbor), as this is the only one 

that we think is important to tune. The tuning was based on the average accuracy of 10-fold 

cross validation on the training data. For k-NN, the values for # Features is set higher to be 

from 100 to 190. Smaller number of features might not generalize enough and using higher 

number might better distinguish one instance from the others. The results are shown in 

TABLE 9. 

We see from the results that using 100 features is enough for “hard”, but for “line” and 

“serve” higher number of features is preferred. Setting the k to be 1 and 2 seems to be enough 

for “hard” and “serve”. The instances in these two words might be distinguishable enough, so 



that one neighbor is sufficient to achieve best accuracy. For word “line”, higher number of 

neighbor is needed to disambiguate the sense. 

Table 9 Best parameters for k-NN 

Best Parameters 

k-NN hard line serve 

# Features 100 170 190 

k 2 11 1 
 

Table 10 shows the accuracy of the classification on the training and test data. The k-NN 

method achieves highest accuracy in word “hard”, but with very poor performance on the 

word “line”. The large gap between accuracy on training and test data might be an indicator 

that the model overfit the training data and not able to generalize the problem. 

Table 10 Accuracy of k-NN Classification 

Accuracy (%) 

k-NN hard line serve 

Training Data 98.17 98.2 99.09 

Test Data 82.27 65.6 75.19 

4.5 Comparison 

Comparing the accuracies between learning methods (Table 11) we can see that on the 

training data the k-NN produces the highest number, which compared to its accuracy on the 

test data, might be in the problem of overfitting. The best accuracies on the test data are 

dominated by Random Forests that performs best on the word “line” and “serve”. For the 

word “hard”, SVM Polynomial has a better accuracy. 

Table 11 Comparison of Accuracy of SVM, Random Forests, and 

k-NN on Training and Testing Data 

Training Data 

 hard line serve 

SVM Linear 87.05 74.54 84.05 

SVM Polynomial 87.08 71.38 79.82 

SVM Radial 95.56 72.94 86.39 

SVM Sigmoid 83.23 64.06 73.55 

Random Forests 90.41 89.04 97.89 

k-NN 98.17 98.2 99.09 

 

Test Data 

 hard line serve 

SVM Linear 85.27 71.29 77.66 

SVM Polynomial 85.66 71.29 77.4 

SVM Radial 85.53 71.29 75.32 

SVM Sigmoid 83.05 67.68 74.28 

Random Forests 84.35 73.23 79.87 

k-NN 82.27 65.6 75.19 

 

If we use a simple baseline, to classify all instances on test data based on the sense with 

the highest number in the training data, we will get the accuracy as shown in Table 12. We 



can see that for the word “hard”, the baseline accuracy is already high. However, all of the 

learning methods that we used have higher accuracies compared to the baseline. 

Table 12 Baseline accuracy using majority class in training data 

to classify test data 

Accuracy (%) 

Baseline hard line serve 

SVM Linear 78.10 56.45 40.26 
 

We performed paired student’s t-test to see whether one method is hypothetically better 

than the other. We compared four methods: SVM Polynomial, Random Forests, k-NN, and 

the baseline. SVM with polynomial kernel is chosen as representative of the SVM method 

since it produces better accuracies compared to the other methods, although, linear kernel is 

also possible. The paired t-test was performed on each word separately. The accuracy for 

each method and word was calculated on 10-fold data taken from test data. The results are 

shown in Table 13.  

Table 13 Accuracy of each method on 10-fold data 

 Accuracy (%) 

 hard  line  serve 

No SVM RFS KNN BAS  SVM RFS KNN BAS  SVM RFS KNN BAS 

1 85.71 83.12 77.92 76.62  62.50 65.28 55.56 54.17  75.32 75.32 70.13 37.66 

2 83.12 77.92 75.32 83.12  65.28 68.06 61.11 47.22  81.82 84.42 68.83 49.35 

3 87.01 90.91 83.12 84.42  75.00 70.83 65.28 65.28  72.73 79.22 70.13 32.47 

4 87.01 85.71 80.52 77.92  70.83 65.28 61.11 62.50  63.64 64.94 55.84 38.96 

5 80.52 81.82 79.22 79.22  61.11 72.22 68.06 61.11  74.03 75.32 67.53 36.36 

6 76.62 81.82 71.43 68.83  62.50 66.67 56.94 48.61  76.62 81.82 71.43 51.95 

7 76.62 75.32 74.03 68.83  62.50 69.44 61.11 56.94  66.23 68.83 59.74 36.36 

8 81.82 80.52 72.73 74.03  69.44 66.67 62.50 58.33  74.03 70.13 63.64 33.77 

9 85.71 87.01 80.52 80.52  58.33 56.94 51.39 48.61  80.52 76.62 76.62 42.86 

10 82.43 87.84 77.03 87.84  82.19 83.56 71.23 61.64  77.92 75.32 71.43 42.86 

* RFS: Random Forests, BAS: baseline 
 

We use function t.test in R with the parameter paired set to True. The significance 

level  is set to 0.05. The H0 for the test is: the true difference in means between the two 

methods is 0. If the p-value from the test is greater than , we will reject the null hypothesis. 

The results are shown in Table 14. 

Table 14 The p-values for paired student’s t-test 

Comparison 
p-value 

hard line serve 

SVM-BAS 0.01544 0.00032 0.00000 

RFS-BAS 0.00986 0.00021 0.00000 

KNN-BAS 0.55268 (r) 0.00861 0.00000 

SVM-RFS 0.63753 (r) 0.37538 (r) 0.44172 (r) 

SVM-KNN 0.00006 0.00844 0.00006 

RFS-KNN 0.00025 0.00003 0.00026 
                    *(r): reject H0 

 

We can see that for the word ”hard”, we cannot reject H0 that the mean accuracies of k-NN 

is equal to the mean accuracy of the baseline. Hence, for this word, k-NN does not perform 



better than baseline. Another interesting thing is that we accept the H0 that the mean 

difference in accuracy for SVM Polynomial and Random Forests is equal to 0, i.e. SVM 

Polynomial and Random Forests has same performance over all the words. For other cases, 

we can see that SVM, Random Forests, and k-NN are better than baseline, with k-NN 

concluded to be the lowest. 

5 Conclusions 

We compared three machine learning methods, SVM, Random Forests, and k-NN, to perform 

word sense disambiguation task on word “hard”, “line”, and “serve”. We performed the 

feature scoring and selection to rank the features by their importance. The top 20 features 

show interesting outlook that each word has different kind of features that best suit them.  

Comparing all the methods, we concluded that Random Forests and SVM has the best 

accuracy with more or less the same performance. The k-NN method performs lower than the 

other two methods and only better than baseline on the word “line” and “serve”. 
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