
Introduction to Machine Learning (in NLP)

Home

Support Vector Machines

From algebra: dot products

The dot product of two vectors :

The dot product xx is the square of the length of the x (i.e.)

Geometric interpretation

If y is a unit vector (i.e. , then is a projection of x in direction of y.

Section 1. Separating the training data with a hyperplane

A linear classifier: a separable case

The equation of a general hyperplane is

wx

with being the point of , the weights and .

Distance from the hyperplane to origin = ;

Distance from an arbitrary point to the hyperplane = ;

Classifier margin

Find the closest points to the separating line. Draw two lines parallel to the separating line and
passing through these points. A margin of a linear classifier is the distance between these two

lines.

A maximum margin linear classifier is the linear classifier with the maximum margin.

Let's look at a simple 2-dimensional example. Assume a classification into two classes and the

features of the instances are of continuous values.

Figure 1

x; y 2 Rn
xy y =

Pn
i=1 xi i

xx jxjj = j 2

jjyjj) = 1 xy jxjj = j cosË

+ b = 0

x 2 X R n w 2 Rn b 2 R

 Àb
jjwjj

x 0
jjwjj
wx +b0

1 z 8

A linear separation of the data

Finding the hyperplane

Let the training set consists of pairs and .

Let the perpendicular distance from the hyperplane to the nearest +1 class point be denoted

d and similarly d for other class.

The margin M is defined M .

SVM solution looks for the weight vector w and paramater b that maximizes M , i.e.

The hyperplane should separate the data, so that wx for all x of one class, and

wx for all x of other class.

If the data are separable in this way, there is probably more than one way to do it.

Among the possible hyperplanes, SVMs select the one where the margin of the hyperplane

from the closest data points is large as possible.

Figure 2

hx ; i i yi y +1; 1g i 2 f À

2 1

= d2 + d1

k + b > 0 k

k + b < 0 j

2 z 8

A maximum margin classifier

Computing the margin

How do we compute the margin M in terms of w and b?

We want an expression for the distance between the hyperplane and the closest points: w

and b will be chosen to maximize this expression. Let's assume "supporting hyperplanes"

parallel to the separating hyperplane and passing through the closest points (the support

vectors). These are

for some points x ; (there may be more than one such point on each side). How it is

achieved?

We work with so-called canonical form of a hyperplane.

Definition The hyperplane is in canonical form w.r.t. the points if

Redefine the hyperplane , where u is a unit vector, and d is the distance of the

hyperplane to origin; Note that the same hyperplane is also defined by , where c

is an arbitrary positive real number.

The criterion of optimal separating hyperplane suggests that we are looking for u, and d such

that d , and is maximized, where ux , ux , and x and x are the

closest point to the hyperplane for each of the two classes.

Let ; then ,

. Let , then and f(x) 1:

Hence in canonical form f(x), to maximize is equivalent to minimize .

wx ; x 1 1 + b = 1 w 2 + b = À

1 x2

X x ; ; ::; = f 1 x2 : g

min jwx j : x 2Xi i + b = 1

ux À d = 0

cux d À c = 0

= 2
d +d1 2 d 2 À d1 1 = d1 2 = d2 1 2

f(x) ux d = c À c f(x) ux d d d 1 = c 1 À c = c 1 À c = c 2
d Àd1 2

f(x) ux d d d 2 = c 2 À c = c 2 À c = c 2
d Àd2 1 c 2

d Àd2 1 = 1 f(x) 1 1 = À 2 = +

d 2 À d1
c
2

3 z 8

If we define f(x) x , where w u, and note that .

Then in canonical form, to maximize is equivalent to minimize .

Separating Hyperplane Optimization task - the primal problem

s.t.

How?

Via quadratic programming. QP is a class of optimization algorithms to maximize a

quadratic function of some real-valued variables subject to linear constraints.

Introduce Lagrange multipliers and a Lagrangian

KKT theorem states a solution to the primal problem must satisfy the following

L(w; ;) ; L(w; ;)

i.e.

and

Solve the dual problem

Find Õ ; ; ::; such that

s.t.

and

.

Prons: We don't have to optimize a vector w. Instead, we optimize real numbers Õ s.t.

simple constraints.

= w + b = c b cd = À c jwjj = j 2

d 2 À d1 2
jjwjj2

!

(w;) rgmin jjwjj b = a w;b 2

1 2

y (wx) 1; ; ::; : i i + b Õ + i = 1 : n

Õ i Õ 0

L(w; ;) jjwjj (y (wx)) b Õ =
2

1 2 À
Xn

i=1

Õi i i + b À 1

@

@b
b Õ = 0

@

@w
b Õ = 0

w y x ; y =
Xn

i=1

Õi i i

Xn

i=1

Õi i = 0

(y (wx)) :
Xn

i=1

Õi i i + b À 1 = 0

i i = 1 : n

Õ rgmax (Õ y y x x); = a Õ

Xn

i=1

Õi À 2

1Xn

i=1

Xn

j=1

Õi j i j i j

Õ ; ; :; i Õ 0 i = 1 : n

y :
Xn

i=1

Õi i = 0

i

4 z 8

Go back to the primal problem

,

Use the Karush-Kuhn-Tucker conditions for an optimum with inequality constraints and dual

optimization:

Taking the derivate with respect to w gives

or

The key feature is that Õ is zero for every x EXCEPT those which lie on the hyperplanes

wx 1, ; these points are called the SUPPORT VECTORS.

b: Let's define a set . This set consists of indeces of training points that lie in a

distance either +1 or from the separating hyperplane, i.e. these are indeces of the

support vectors. Then b is

Conclusion

With w; known the separating hyperplane is defined.

Section 2. Non-linear separation: soft margin classifier

In a real problem it is unlikely that a line will exactly separate the data -- even if a curved

decision boundary is possible. So exactly separating the data is probably not desirable -- if

the data has noise and outliers, a smooth decision boundary that ignores a few data points is

better than one that loops around the outliers.

Figure 3

Õ ; ! w b

min L w (y (wx)) w;b = w À
Xn

k=1

Õk k k + b À 1

2w y x À
Xn

k=1

Õk k k = 0

w y x : =
2

1Xn

k=1

Õk k k

i i

+ b = + wx 1 + b = À

I i; g = f Õi > 0

À1

b (y y (x ;)) =
1

jI j

X

i2I

i À
Xn

j=1

Õj j i xj

b

5 z 8

A curved decision boundary

Figure 4

Slacks

Thus

we introduce "slack variables" and allow .

s.t.

The idea is that we do allow the constraints to be violated, but only if pay a

"price".

This allows that a point to be a small distance on the wrong side of the hyperplane

(w; ;) rgmin (jjw jj) b Ø = a w;b;Ø 2

1 2 + C
Xn

i=1

Øi

Ø k Õ 0 y (wx) k + b Õ 1 À Øk

y (w;) 1 ; ; ::; : i xi + b Õ + À Øi i = 1 : n

y (wx) 1 i i + b Õ +

Ø k Õ 0

6 z 8

without violating the stated constraint.

To avoid the trivial solution whereby huge slacks allow any line to separate the data, we add

another constraints that penalize large slacks. We have a cost parameter, C, that controls

the trade off between allowing training errors and forcing rigid margins. It creates a soft

margin that permits some misclassifications. Increasing the value of C increases the cost of

misclassifying points and forces the creation of a more accurate model that may not

generalize well.

Thus

Reducing C allows more of the data to lie on the wrong side of the hyperplane and be treated

as outliers, which gives a smoother decision boundary.

Section 3. Kernel trick: non-linear boundaries

If the points are separated by a nonlinear region?

Rather than fitting nonlinear curves to the data, SVM handles this by using a kernel function

to map the data into a different space where a hyperplane can be used to do the separation.

The kernel function may transform the data into a higher dimensional space to make it

possible to perform the separation.

Kernel tricks

Dual problem The major point of the dual formulation is that the training data appear in the
form of their dot product x x (see above).

1.

Nonlinear map

The training data are passed through a nonlinear mapping

where the hyperplane can be used for separating the data.

Figure 5

Kernel tricks

2.

min L w (y (wx)) w;b = w À
Xn

k=1

Õk k k + b + Øk À 1 + C
Xn

k=1

Øk

k l

instance_space eature_space ! f

7 z 8

The x; can be mapped to three dimensions u; ; : . The

dimension w (squared distance from origin) allows the data to be linearly separated by

plane situated along w axis.

"Kernel" summarizes the inner product

A trick is to make use of the fact that only the dot product of the data vectors are used. Every

dot product is replaced by a non-linear kernel function K(x ;):

polynomial K(x ;) x ;)

radial-basis function

...

3.

Section 4. Multi-class classification

Binary classification is a very well developed technique.

A direct solution of multiclass problem - - using a single SVM is usually

avoided.

Mostly used approaches:

one-versus-all method using winner-takes-all strategy

Construct k classifiers. The i-th classifier trained taking the examples from class "i" as

positive and the examples from all other classes as negative. For a new example x, this

strategy assigns it to the class with the largest value of the margin.

one-versus-one method implemented by max-wins voting

Construct one binary classifier for every pair of distinct classes: all together . The binary

classifier C is trained taking the examples from the class i as positive and the examples

from the class j as negative. For a new example x, if classifier C say x is in class i, then

the vote for class i is added by one. Otherwise, the vote for class j is inreased by one. After

each of the classifiers makes its vote, this strategy assigns x to the class with the

largest number of votes.

...

y v w u ; ; ï x v ï y w ï x2 + y2

u À v

j xk

j xk = (j xk
d

K(x ;) j xk =
Û

exp(Àjjx Àx jj)j k
2

Y 1; ; ::; g = f 2 : k

 2
k(kÀ1)

i;j

i;j

 2
k(kÀ1)

8 z 8

