
Introduction to Machine Learning (in NLP)

Home

Probably Approximately Correct learning model

Section 1. Background

PAC learning framework is a part of computational learning theory (CLT).

CLT is a mathematical field to analyze machine learning algorithms.

Training data is finite and the future is uncertain. Thus probabilistic bounds on the performance

of machine learning algorithms are quite common. Also time complexity and feasibility of
learning are important.

In CLT, a computation is considered feasible if it can be done in polynomial time.

Sample complexity How many training examples are needed for a learner to converge with high

probability to a successful hypothesis?

Computational complexity How much computational effort is needed for a learner to converge

with high probability to a successful hypothesis?

Section 2. The problem setting

Input data .

Output values .

Training data 

 set of target concepts 

Instances are generated at random from  according to some probability distribution . In

general,  may be any distribution and it will be unknown to the learner.  must be stationary,

i.e. it does not change over time.

A set  of possible hypotheses.

A learner  outputs some hypothesis  from  as a model of .

What are the capabilities of learning algorithms. We will not concentrate on individual learning

algorithms, but rather on broad classes of them.

Section 3. Error of a hypothesis

How closely the learner's output hypothesis  approximates the target concept ?.

Definition True error  of the hypothesis  with respect to the target function  and

the probabilistic distribution  is the probability that the hypothesis  wrongly classifies a

randomly  selected  instance  according  to   (  (You  are

already familiar with this definition.)

Section 4. PAC learnability
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To characterize classes of target concepts that can be reliably learned from a reasonable

number of randomly drawn training examples and a reasonable amount of computation.

Definition Consider a concept class  defined over a set of instances  of length  (  is the

size of instances, i.e. the size of their representation) and a learner  using hypothesis space

.  is PAC-learnable by  using  if for all , distributions  over ,  such that

  such that  learner  will with probability at least  (confidence)

output a hypothesis  such that  in time that is polynomial in  ; , and

 (  is the encoding length of , assuming some representation for ).

I.e., two things are required from :

 must output, with arbitrarily high probability , a hypothesis having arbitrarily low error .1.

It must do so efficiently in time that grows at most polynomially with ; , with  and 

(that define inherent complexity of the underlying instance space  and concept class ).

2.

Section 5. Sample complexity for FINITE hypothesis spaces

Sample complexity

How many training examples are needed for a learner to converge (with high probability) to a

successful hypothesis? We will express it in terms of size of the hypothesis space  and

so-called Vapnik-Chervonenkis dimension.

Can we derive a bound on the number of training  examples  required  by any consistent

learner?

Recall the definition of version space:

Version Space (VS ) with respect to  and training data  is  the subset of 

consistent with the training examples in . 

To bound the number of examples needed by any consistent learner, we need only bound the

number of  examples  needed to  assure that the Version Space contains  no  unacceptable

hypotheses. The following definition states this condition precisely:

Definition Consider a hypothesis space , target concept , instance distribution , and set

of training examples  of . The version space VS  is said to be -exhausted with

respect to  and , if every hypothesis  in VS  has true error less than  with respect to

 and :  < 

We know that every consistent learner will output a hypothesis from the version space. So

what we have to do to bound the number of training examples that the learner needs, we just

bound the number of training examples needed to be sure that the version space contains no

hypotheses that does not match the training examples. The following theorem provides such

a bound:

Theorem - -exhausting version space

If the hypothesis space  is finite, and  is a sequence of  independent randomly

drawn examples of some target concept , than for any , the probability that the

version space VS  is not -exhausted (with respect to ) is less than or equal to 

Proof

Let  be all the hypotheses in  that have true error greater than  with respect to
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. We fail to -exhaust the Version Space if and only if at least one of these  hypotheses

happens to be consistent with all  independent random training examples. The probability

that any single hypothesis  having true error greater than  would be consistent with one

randomly drawn examples is at most . Therefore the probability that this hypothesis

will be consistent with  independently drawn examples is at most . Given that we

have  hypotheses with error greater than , the probability that at least one of these will be

consistent with all  training examples is at most . Since , this is at most

 Finally, we use a general inequality stating that if  then .

Thus,  which proves the theorem.

In other words, this bounds the probability that  training examples will fail to eliminate all

"bad" hypotheses for any consistent learner using hypothesis space .

We use this  result to  determine the number of training examples required to  reduce this

probability of failure below some desired level 

So, the number  of training examples is sufficient to assure that any consistent hypothesis

will be probably (with probability ) approximately (within error ) correct.  grows

linearly in  and logarithmically in .

Section 6. Agnostic learning and inconsistent hypotheses

If  does  not contain the target concept ,  then a zero-training-error hypothesis  cannot

always be found. We ask to  output hypothesis  with the minimum error over the training

examples.

Agnostic learner

makes  no  prior  commitment  about  whether  or  not  .  The  equation

 is  based on the assumption of zero-training-error hypothesis.  Let's

generalize  it  for  nonzero  training  error  hypotheses:  ,  let

.

How many training examples  suffices  to  ensure (with high probability)  that its  true error

 will  be  no  more  than  ?  (in  the  previous  case

).

Proof:

Proof is analogous to the setting we consider when estimating true error based on the sample

error: probability of the coin being head corresponds to the probability that the hypothesis

will misclassify a randomly drawn instances. The  independent coin flips correspond to 

drawn instances. The frequency of heads over the  examples corresponds to the frequency

of misclassification over the  instances.

The Hoeffding bounds  state if  is  measured over the set  containing 

randomly drawn examples, then

It gives  us  a bound on the probability that an arbitrary chosen single  hypothesis  has  a

misleading training error.

To assure that the best hypothesis found by  has an error bounded in this way, we must

consider that any  could have a large error
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If we call , then 

In this less restrictive case  grows as the square of , rather than linearly with .

Conjunctions of Boolean literals, i.e. AND-formulas, are PAC
learnable

Consider the class  of target concepts described by conjunction of up to  literals (A literal

is either a Boolean variable or its negation.), for ex.  (  is missing). Is 

PAC-learnable?

To answer yes,

we have to show that any consistent learner will require only a polynomial number of training

examples to learn any  in .

Then suggest a specific algorithm that uses polynomial time per training example.

Consider any consistent learner  using a hypothesis space  identical to . We need only

determine the size .

Consider  defined by conjunctions of literals based on  boolean variables. Then 

(include the variable as a literal in the hypothesis, include its negation as a literal, or ignore

it).

Example

So

For  example,  if  a  consistent  learner  attempts  to  learn  a  target  concept  described  by

conjunctions of up to 10 literals, and we desire 95% probability that it will learn a hypothesis

with error less than 0.1, then it suffices to present  randomly drawn training examples,

where 
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Recall FIND-S algorithm.

What is the FIND-S algorithm doing? For each new positive example, the algorithm computes

the intersection of the literals shared by the current hypothesis and the new training example,

i.e For a positive example , removes literals from  to make it consistent

with . That is, if , then remove  from , otherwise remove  from .

The most specific hypothesis: .

Theorem

PAC-learnability of boolean conjunctions. The class  of conjunctions of boolean literals is

PAC-learnable by the FIND-S algorithm using .

Proof

Do it yourself.

3-CNF formulas are PAC-learnable

A 3-CNF formula is a conjunction of clauses, each of which is disjunction of at most 3 literals.

That is, each  can be written  where 

For each of the  3-tuples of literals , one can create a variable  corresponding

to the clause 

k-term DNF is not PAC learnable

A 3-term DNF formulas is the disjunction of three terms, each of which is a conjunction of

literals. That is, each  can be written  where  is a conjunction. An

example of such a hypothesis is 

Assume .

 (  terms, each of which may take on  possible values).  However,   is  an

overestimate of , because it is double-counting the cases where  and where  is

more general than . We can write

It indicates that the sample complexity of -term DNF is polynomial in ; ; ; :BUT ... can

be shown that the computational complexity is not polynomial since this problem is equivalent

to other problems that are known to be unsolvable in polynomial time.

Section 7. Sample complexity for INFINITE hypothesis space

We can state bounds on sample complexity that use Vapnik-Chervonenkis dimension of 

rather than . Even more, this bounds allow us to charachterize the sample complexity of

many infinite hypothesis spaces.

Shattering a set of instances

Definition: A dichotomy of a set  is a partition of  into two disjoint subsets.

Let's assume a sample set . Each hypothesis  imposes some dichotomy on ,

i.e.  partitions  into two subsets  and .

Definition: A set of instances  is shattered by hypothesis space  if and only if for every
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dichotomy of  there exists some hypothesis in  with this dichotomy.

What if  cannot shatter , but can shatter some large subset  of ?

Intuitively, it is reasonable to say that the larger the subset of  that can be shattered, the

more expressive . The Vapnik-Chervonenkis Dimension of  is precisely the measure.

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, , of hypothesis space  defined

over instance space  is  the size of  the largest finite  subset of   shattered  by .  If

arbitrarily large finite sets of  can be shattered by , then .

Note

For any finite . To see this, suppose . Then For any finite 

will require For any finite  distinct hypotheses to shatter For any finite  instances. For any

finite .

Examples

Consider  and  the set of real intervals . What is ?

We must find the largest subset of  that can be shattered by .

Consider . Can  be shattered by ?

For example four hypotheses will do .

So we know that . ???

Consider , without loss of generality assume . Clearly, this set

cannot be shattered, because the dichotomy that includes  and  and not  cannot be

represented by a single closed interval. So .

1.

Each instance in  is described by the conjunction of exactly three boolean literals and each

hypothesis in  is described by the conjunction of up to three boolean literals. What is ?

Represent each instance by a 3-bit string of values of the literals .  Consider three

instances:  This set can be shattered by , because a hypothesis

can be constructed for any desired dichotomy as  follows:  if dichotomy is  to  exclude the

instance , add the literal  to the hypothesis. For example, include  and exclude 

use the hypothesis . This can be extended from three features to . Thus, the VC

dimension for conjunctions of  boolean variables is at least .

2.

What is the VC-dimension of axis parallel rectangles in the plane ? The target function is

specified by a rectangle, and labels any example positive iff it lies inside that rectangle.

3.

Sample complexity and the VC dimension

Recall  the  question  How  many  randomly  drawn  training  examples  suffice  to  probably

approximately correct learn any target concept in ?

Let's derive the analogous answer to the earlier bound of  (recall ):

This equation provides an upper bound.
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Theorem: Low bound on sample complexity

Consider any concept class  such that , any learner , and any , and

.  Then there  exists  a  distribution   and  target  concept  in   such  that  if  

observes fewer examples than

then with probability at least ,  outputs a hypothesis  having error .
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