Introduction to Machine Learn

Probably Approximately Correct learning model

Section 1. Background

o PAC learning framework is a part of computational learning theory (CLT).
o CLT is a mathematical field to analyze machine learning algorithms.

o Training data is finite and the future is uncertain. Thus probabilistic bounds on the performance
of machine learning algorithms are quite common. Also time complexity and feasibility of
learning are important.

o In CLT, a computation is considered feasible if it can be done in polynomial time.

o Sample complexity How many training examples are needed for a learner to converge with high
probability to a successful hypothesis?

o Computational complexity How much computational effort is needed for a learner to converge
with high probability to a successful hypothesis?

Section 2. The problem setting

o Input data X.

o Output values Y = {—1, +1}

o Training data Data = {(x;, c(x;) = ¥;),x; € X, y; € Y}?il-
o C set of target conceptsc € C : ¢: X — {0,1}

o Instances are generated at random from X according to some probability distribution D. In
general, D may be any distribution and it will be unknown to the learner. D must be stationary,
i.e. it does not change over time.

o A set H of possible hypotheses.
o A learner L outputs some hypothesis h from H as a model of c.

o What are the capabilities of learning algorithms. We will not concentrate on individual learning
algorithms, but rather on broad classes of them.

Section 3. Error of a hypothesis
How closely the learner's output hypothesis h approximates the target concept c?.

Definition True error errorD(h) of the hypothesis h with respect to the target function ¢ and
the probabilistic distribution D is the probability that the hypothesis h wrongly classifies a
randomly selected instance according to D (errorp(h) = Pr.plc(z) # h(z)]) (You are
already familiar with this definition.)

Section 4. PAC learnability
Aim

127

To characterize classes of target concepts that can be reliably learned from a reasonable
number of randomly drawn training examples and a reasonable amount of computation.

Definition Consider a concept class C defined over a set of instances X of length n (n is the
size of instances, i.e. the size of their representation) and a learner L using hypothesis space
H. C is PAC-learnable by L using H if for all ¢ € C, distributions D over X, € such that
0<e< %, d suchthat 0 < § < %, learner L will with probability at least 1 — § (confidence)
output a hypothesis h € H such that errorp(h) < €, in time that is polynomial in —i, (15, n, and
size(c) (size(c)is the encoding length of ¢ € C, assuming some representation for C).

I.e., two things are required from L:

1. L must output, with arbitrarily high probability 1 — §, a hypothesis having arbitrarily low error €.

2. It must do so efficiently in time that grows at most polynomially with %, %s, with n and sz’ze(c)

(that define inherent complexity of the underlying instance space X and concept class C).

Section 5. Sample complexity for FINITE hypothesis spaces

Sample complexity

How many training examples are needed for a learner to converge (with high probability) to a
successful hypothesis? We will express it in terms of size of the hypothesis space H and
so-called Vapnik-Chervonenkis dimension.

Can we derive a bound on the number of training examples required by any consistent
learner?

Recall the definition of version space:

Version Space (VSH,Data) with respect to H and training data Data is the subset of H
consistent with the training examples in Data. VSy po, = {h € H|Consistent(h, Data)}

To bound the humber of examples needed by any consistent learner, we need only bound the
number of examples needed to assure that the Version Space contains no unacceptable
hypotheses. The following definition states this condition precisely:

Definition Consider a hypothesis space H, target concept ¢, instance distribution D, and set
of training examples Data of c. The version space VSg p,, is said to be e-exhausted with
respect to ¢ and D, if every hypothesis h in VSH’Dam has true error less than e with respect to
cand D: (Vh € VSg py,)errorp(h)< e.

We know that every consistent learner will output a hypothesis from the version space. So
what we have to do to bound the number of training examples that the learner needs, we just
bound the number of training examples needed to be sure that the version space contains no
hypotheses that does not match the training examples. The following theorem provides such
a bound:

Theorem - ¢-exhausting version space

If the hypothesis space H is finite, and Data is a sequence of m > 1 independent randomly
drawn examples of some target concept ¢, than for any 0 < e < 1, the probability that the
version space VSy p,, is not e-exhausted (with respect to ¢) is less than or equal to |H|e ™

Proof
Let hy, hy, ..., hy be all the hypotheses in H that have true error greater than e with respect to

2z7

c. We fail to e-exhaust the Version Space if and only if at least one of these k hypotheses
happens to be consistent with all m independent random training examples. The probability
that any single hypothesis having true error greater than € would be consistent with one
randomly drawn examples is at most (1 — €). Therefore the probability that this hypothesis
will be consistent with m independently drawn examples is at most (1 — €)™. Given that we
have k hypotheses with error greater than ¢, the probability that at least one of these will be
consistent with all m training examples is at most k(1 — €)™ Since k < |H|, this is at most
|H|(1 — €)™. Finally, we use a general inequality stating thatif 0 < e <1then (1 —¢€) <e ¢
Thus, k(1 — €)™ < |H|(1 — €)™ < |H|e ™which proves the theorem.

In other words, this bounds the probability that m training examples will fail to eliminate all
"bad" hypotheses for any consistent learner using hypothesis space H.

We use this result to determine the number of training examples required to reduce this
probability of failure below some desired level § :

\Hle ™™ < § —m > %(]n H| + ln((—ls)).

So, the number m of training examples is sufficient to assure that any consistent hypothesis
will be probably (with probability (1 — §)) approximately (within error €) correct. m grows
linearly in % and logarithmically in 715.

Section 6. Agnostic learning and inconsistent hypotheses

If H does not contain the target concept ¢, then a zero-training-error hypothesis cannot
always be found. We ask to output hypothesis with the minimum error over the training
examples.

Agnostic learner

makes no prior commitment about whether or not C C H. The equation
m > 1(In|H| —I—ln(%)) is based on the assumption of zero-training-error hypothesis. Let's
generalize it for nonzero training error hypotheses: errorp,,(h) let
Ripest = QTGMiTY, 11 €PTOT D41 (R)

How many training examples suffices to ensure (with high probability) that its true error
errorp(h) will be no more than €+ errorpy,(hy.F (in the previous case
errorData(hbest) = O)

Proof:

Proof is analogous to the setting we consider when estimating true error based on the sample
error: probability of the coin being head corresponds to the probability that the hypothesis
will misclassify a randomly drawn instances. The m independent coin flips correspond to m
drawn instances. The frequency of heads over the m examples corresponds to the frequency
of misclassification over the m instances.

The Hoeffding bounds state if errorpy,(h) is measured over the set Data containing m
randomly drawn examples, then
2

Prlerrorp(h) > errorp,, (k) + € < e ™.

It gives us a bound on the probability that an arbitrary chosen single hypothesis has a
misleading training error.

To assure that the best hypothesis found by L has an error bounded in this way, we must
consider that any h € H could have a large error

3z7

Pr[(3 € H)(errorp(h) > errorp,, (k) + €)] < |Hl|e 2™,
If we call § = Pr[(3 € H)(errorp(h) > errorp,,(h) + €)] then m > 2—iz(ln|1r{| + ln(Tls))

In this less restrictive case m grows as the square of i, rather than linearly with i

Conjunctions of Boolean literals, i.e. AND-formulas, are PAC
learnable

Consider the class C of target concepts described by conjunction of up to n literals (A literal
is either a Boolean variable or its negation.), for ex. ¢ = [; &l,&l,&...&l (13 is missing). Is C
PAC-learnable?

To answer yes,

o we have to show that any consistent learner will require only a polynomial number of training
examples to learn any cin C.

o Then suggest a specific algorithm that uses polynomial time per training example.

Consider any consistent learner L using a hypothesis space H identical to C. We need only
determine the size |H|.

Consider H defined by conjunctions of literals based on n boolean variables. Then |H| = 3"
(include the variable as a literal in the hypothesis, include its negation as a literal, or ignore
it).

Example
n=2
h, =a,;
hy, = -2,
h; = x,
hy = —x,

h5::151/\a:2

hﬁ = & /_‘$2

h7 = &y /\132

hs = &y A\ &y

hg:afl/_‘w:l /\:152/\—|:I:2

So
1 1
> —(nl In-).
m_e(nn3+ 6)

For example, if a consistent learner attempts to learn a target concept described by
conjunctions of up to 10 literals, and we desire 95% probability that it will learn a hypothesis
with error less than 0.1, then it suffices to present m randomly drawn training examples,
where m = 55 (101n3 + In(%) = 140.

4z7

Recall FIND-S algorithm.

What is the FIND-S algorithm doing? For each new positive example, the algorithm computes
the intersection of the literals shared by the current hypothesis and the new training example,
i.e For a positive example a = (a;, a,, ..., a,), removes literals from h to make it consistent
with a. That is, if a; = 0, then remove z; from h, otherwise remove —z; from h.

The most specific hypothesis: &; A 72y Azy A 2y Ao Ay A\ D2y

Theorem

PAC-learnability of boolean conjunctions. The class C of conjunctions of boolean literals is
PAC-learnable by the FIND-S algorithm using H = C.

Proof
Do it yourself.

3-CNF formulas are PAC-learnable

A 3-CNF formula is a conjunction of clauses, each of which is disjunction of at most 3 literals.
That is, each h € H can be written h = C; A Cy A ... A Cppywhere C; =1, VI V I3,

For each of the (2n)3 3-tuples of literals (a, b, ¢), one can create a variable z,, corresponding
to the clausea VbV c.

k-term DNF is not PAC learnable

A 3-term DNF formulas is the disjunction of three terms, each of which is a conjunction of
literals. That is, each h € H can be written h =T, VT, V T3, where T} is a conjunction. An
example of such a hypothesis is h = (2, A &y A ~@7) V (23 A ~@p A 2g) V (m24 A D25 A 29)

Assume H = C.

|H| < 3™ (k terms, each of which may take on 3" possible values). However, 3™ is an
overestimate of H, because it is double-counting the cases where T; = T; and where T; is
more general than T] We can write

m > %(nk].n3 + ln(%))

It indicates that the sample complexity of k-term DNF is polynomial in %,%,n, k.BUT ... can

be shown that the computational complexity is not polynomial since this problem is equivalent
to other problems that are known to be unsolvable in polynomial time.

Section 7. Sample complexity for INFINITE hypothesis space

We can state bounds on sample complexity that use Vapnik-Chervonenkis dimension of H
rather than \H\ Even more, this bounds allow us to charachterize the sample complexity of
many infinite hypothesis spaces.

Shattering a set of instances

Definition: A dichotomy of a set S is a partition of .S into two disjoint subsets.

Let's assume a sample set § C X. Each hypothesis h € H imposes some dichotomy on §,
i.e. h partitions § into two subsets {# € S;h(z) = 1}and {z € S;h(z) = 0}.

Definition: A set of instances § is shattered by hypothesis space H if and only if for every
5z7

dichotomy of S there exists some hypothesis in H with this dichotomy.
What if H cannot shatter X, but can shatter some large subset S of X?

Intuitively, it is reasonable to say that the larger the subset of X that can be shattered, the
more expressive H. The Vapnik-Chervonenkis Dimension of H is precisely the measure.

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined
over instance space X is the size of the largest finite subset of X shattered by H. If
arbitrarily large finite sets of X can be shattered by H, then VC(H) = ca

Note

For any finite |H|, VC(H)leqlog, |H| To see this, suppose VC(H) = d Then For any finite H
will require For any finite 2¢ distinct hypotheses to shatter For any finite d instances. For any
finite |H| < 2%

Examples

1. Consider X = Rand H the set of real intervals a < ¢ < b What is VC(H)?
We must find the largest subset of X that can be shattered by H.
Consider S = {3.1,5.7}. Can S be shattered by H?
For example four hypotheses willdol <z < 2,1 <z < 4,4<z<7,1<2<7
So we know that VC(H) > 2. VC(H) > 32?7

Consider S = {z;, z,, 3}, without loss of generality assume #; < z, < @3 Clearly, this set
cannot be shattered, because the dichotomy that includes #; and z3; and not z, cannot be
represented by a single closed interval. So VC(H) = 2.

2. Each instance in X is described by the conjunction of exactly three boolean literals and each
hypothesis in H is described by the conjunction of up to three boolean literals. What is VC(H)?

Represent each instance by a 3-bit string of values of the literals I;,1,, 5. Consider three
instances: i; : 100, 2, : 010,15 : 001. This set can be shattered by H, because a hypothesis
can be constructed for any desired dichotomy as follows: if dichotomy is to exclude the
instance i;, add the literal ﬁlj to the hypothesis. For example, include i, and exclude i;,i3 —

use the hypothesis —I; A —l;. This can be extended from three features to n. Thus, the VC
dimension for conjunctions of n boolean variables is at least n.

3. What is the VC-dimension of axis parallel rectangles in the plane X = R% The target function is
specified by a rectangle, and labels any example positive iff it lies inside that rectangle.

Sample complexity and the VC dimension

Recall the question How many randomly drawn training examples suffice to probably
approximately correct learn any target concept in C?

Let's derive the analogous answer to the earlier bound of m (recall VC(H) < log, |H|):

m > %(410g2(§ + 8VC(H) logz(%).

This equation provides an upper bound.

6z7

Theorem: Low bound on sample complexity

Consider any concept class C such that VC(C) > 2 any learner L, and any 0 < € < %, and

0<d< WIO' Then there exists a distribution R and target concept in C such that if L
observes fewer examples than

(e(€) - 1)

1 1
maw[; 108(3), e]

then with probability at least §, L outputs a hypothesis h having error errory(h) > e

7z7

