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referencí, rozšíření lexikální databáze WordNet, zjišt’ování idiomů a zjišt’ování
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Introduction

The database of the English labels we work with is an output of the extremely
popular on-line game called the ESP game.1 Figure 1 and a list of words london,
man, driver, red, car, people, england, decker, double decker, transportation, ride,
double, tour, road demonstrate a sample pair of image and its labels that represent
the output of selected ESP game sessions.

Figure 2 and a list of words guy, hat, swing, uniform, man,
Figure 1: The
ESP image 1

Figure 2: The
ESP image 2

game, sport, red, hit, bat, ball, houston, black, face, mouth,
sports, white, helmet, team, astros, hitter, play, player is an-
other example of an image - label pair from the ESP game.

The aim of this bachelor thesis is to explore this image la-
bel database from the natural language processing (NLP) point
of view. What interests us is whether the data collected in the
process of labeling images will be of any use in NLP tasks.
Specifically, we are interested in the tasks of coreference reso-
lution, WordNet extension, idiom detection, and collocation de-
tection. In this bachelor thesis we deal with the possible use of
the image label database for coreference resolution and Word-
Net extension.

1http://gwap.com
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Chapter 1

The ESP Game

1.1 Why ESP Game?
The ESP game is basically an online game created for generating and harvesting

valuable descriptions of general images. Getting good description, i.e. good labels
is a hard task for computers. On the other hand, if a human sees some picture, s/he
immediately knows a few expressions, that describe it well. Simply put, the game
uses human players’ intelectual capacity for labeling images. The usual problem is
that one usually has to pay people for performing such a laborous work. However,
thanks to the ESP game people do the work voluntarily and for free, because they
enjoy the game.

If we realize that the game actually performs a computation because through the
game the players assign labels to images, then we can see the individual players as
processors and the specifically designed game as an algorithm. The design of the
game guarantees that players ”compute” well. The ESP game is thus an example of a
human algorithm game, which is a term coined by Luis von Ahn in (von Ahn, 2005).

1.2 ESP Game Session
A game session is played by two randomly chosen players. There is a time

limit for the session. During the session both the players are presented with the
same series of pictures. Both players always see the same image and when seeing a
particular picture, their task is to try enter such string, that they think their partner
is entering. While playing none of the partners is able to see their partner’s guesses.
The partners do not know each other and they are unable to communicate. So the
task is they should try thinking as their partner would have and the ESP stands for
”extrasensory perception” here.
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Figure 1.1: The player’s online interface. Players have just agreed on a string
”japan”.
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Figure 1.2: ESP Game session: players agreeing on a string

1.3 Agreement on a Label by Two Individual Players
If the two players enter the same strings when presented with the picture at some

time during which the picture is shown, they are given points for this agreement.
Both the players have to agree on a particular string so that the string becomes a
label for the image since agreement by a pair of independent players implies that
the string (consequently label) is probably meaningful. It turns out that the task to
write the same string as the partner guarantees (under the game’s conditions) that
the strings upon which there were agreements are meaningful description to their
images. It means that such strings are true labels of their images. The Figure 1.2 is
ilustrating an agreement on a string. It comes from (von Ahn, Dabish, 2004).

Each image is associated with a list of taboo words that are not allowed to be
entered by the players: the string becomes a label when two players agree on it and
consequently the label becomes a taboo word associated with the image, which will
be used when the system reuploads the image into a new game session. We are not
familiar with any other restriction put on the strings which players write during the
game but their lengths - up to 13-character-long strings are allowed. A label can be
a single-word label (london) or a multi-word label (double decker).
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Chapter 2

Coreference Resolution

2.1 Introduction and Motivation
In this chapter, we are focusing on the task of automatic coreference resolution;

the issue we tackle is whether the image labels can be a help for this task. We
speculate that there can be labels among the image labels that co-refer, i.e. they
refer to the same entity. We have not found any paper that addresses the same issue
so far. So not only given that, it is almost impossible to predict the results before
performing experiments.

This chapter is organized as follows: we remind the notion of coreference in Sec-
tion 2.2. In Subsection 2.3.1 we present statistics on the ESP game image labels. The
application designed for user-friendly viewing the labels and their relations is intro-
duced in Subsection 2.4.1. The algorithm to construct pseudo-coreference chains in
the text is provided in great details in Subsection 2.4.2. The application for view-
ing and comparing the coreference versus pseudo-coreference chains is described
in Subsection 2.4.3. Evaluation of pseudo-coreference chains against manual anno-
tation is discussed in Section 2.5. We conclude with Section 2.6.

2.2 Coreference
Coreference occurs when several referring expressions in a text refer to the same

entity (e.g. person, thing, fact). A coreferential pair is a pair of the referring expres-
sions. A sequence of coreferential pairs referring to the same entity in a text forms
a coreference chain. In the passage from (Doyle, 1887), one can read the follow-
ing coreference chain I, I, me, I, me man; another coreference chain is someone,
Stamford, who, dresser can be seen there: On the very day that I had come to this
conclusion I was standing at the Criterion Bar, when someone tapped me on the
shoulder, and turning round. I recognized young Stamford who had been a dresser
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under me at Barts. The sight of a friendly face in the great wilderness of London is
a pleasant thing indeed to a lonely man.

2.3 Data

2.3.1 Analysis of the English Data
The ESPgame100k data (”data”)1 we inspect throughout our project come from

the ESP Game (von Ahn, Dabish, 2004)2 as described in Chapter 1
As a result of the ESP game sessions, there is a label-set for each of the images

that have already been assigned some labels in the game and these label-sets are
stored in the game’s database together with the corresponding image. The data,
which we use as the input for our project, is a sample part of the whole database
that consists of 100,000 image-labels pairs.3

Thus for each image in the data there is a non-empty label-set. A label-set is
a set of labels related to the same image, like car, decker, double, double decker,
driver, england, london, man, people, red, ride, road, tour, transportation.

Neighbors of a label lab is a set of labels which includes all labels from all
label-sets in which the label lab occurred. So the neighbors of double decker in-
clude all labels from the label-set from Figure 1 including lab itself, i.e. car, decker,
double, double decker, driver, england, london, man, people, red, ride, road, tour,
transportation, but the neigbors of lab also include labels from other label-sets, for
instance cloud, tire, wheels because each one of them co-occur together with lab in
at least one label-set. So we can say that for instance wheels is a neigbor of lab.

freq(w1, w2) stands for the number of label-sets where the labels w1, w2 co-
occur together. We call it neighborhood frequency. Table 1 provides statis-
tics acquired from the data, i.e. from the ESPgame100k sample.

According to the game designers, the game server is equipped with an En-
glish dictionary to alert players when they have misspelled a word. However,
we discover that not always is the label a good description of the particular
image. It can be misspelled, which is frequent, or it even does not have to
be English. Some examples of the various spelling errors are havent or fam-
ily fued. Examples of non-English labels are zeitungen, nuestra or zukunft. We
use the open source spell checker Aspell4 to discover such errors. However,
we do not have to handle them in a special manner since our procedure to con-
struct pseudo-coreference chains in texts does not take them into account anyway.

1http://www.cs.cmu.edu/~biglou/resources/
2http://gwap.com
3We do not know exactly what good label threshold X was used for the images presented in the

data. According to literature (for ex. (von Ahn, 2005)), we suppose X = 1.
4http://aspell.net/
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# of unique label-sets 100,000
average # of labels in label-sets 14
the biggest label-set size 42
the smallest label-set size 8
# of unique labels 29,845
# of unique single word labels 27,602
# of unique multi word labels 2,243
# of unique neighbors 1,676,856

Table 2.1: The ESPgame100k data: statistics

We also tagged the labels with Stanford Log-linear Part-Of-Speech
Tagger (Toutanova, Klein, Manning, Singer, 2003) to discover foreign words.

2.3.2 The Retrieval of Czech Data and Their Analysis
We translate the original data from English to Czech using The Czeng

Probability Dictionary5 (”dictionary”). For a given English word and its
part of speech tag (POS tag) the dictionary contains different Czech words with
POS tags and with probabilities P that the Czech word and its POS tag is a good
translation for the English word and its POS tag. We call these probabilities transla-
tion probabilities. As you can see in Table 2.2, the Czech translations are sorted by
the translation probabilities P .

The Algorithm for Translating Label-sets into Czech

English label-sets are translated into Czech label by label.
One English label can bear more morphological meanings mainly because of

the common conversion in English (”run” as a verb or noun). Because the labels
are not part of a broader context like sentence, we cannot say for sure which POS
the original label is. Since we want to preserve as many possible meanings of the
original label as possible in the translated label-set, but still we do not want the
translated label-sets to be too large either, we chose to translate the original label
together with the POS tag.

In the dictionary, we look up the English label lab that we want to translate into
Czech. The label might appear in the dictionary with more POS tags as a different
part of speech. In Table 2.3 we can see an example of looking up the label twelve.

5It is a dictionary that was extracted from the parallel corpus CzEng by Zdeněk Žabokrtský at
UFAL, Charles University in Prague in 2008.
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English Czech P

Aggie#N hnojárna#N 1.000000
Agnes#N Agnes#N 0.396889
Agnes#N Anežka#N 0.283199
Agnes#N škola#N 0.240103
Agnes#N fond#N 0.079809

Agreements#N dohoda#N 0.819628
Agreements#N přidružení#N 0.094835
Agreements#N praktika#N 0.025373
Agreements#N uzavřený#A 0.021605
Agreements#N restriktivní#A 0.017228
Agreements#N odvětví#N 0.012684
Agreements#N evropský#A 0.008648

AgroSciences#N společnost#N 0.502078
AgroSciences#N AgroSciences#N 0.497922

Table 2.2: Example of the dictionary format

When translating twelve in this example we get one translation for twelve as a
cardinal number and another translation for twelve as a noun.6

To translate the combination of label and a POS tag we always pick the most
probable Czech translation without further investigations. In our case the transla-
tions are dvanáct and dvanáctka and they are highlighted in Table 2.3.

When translating the label-set into Czech, we simply substitute the English la-
bel with a list of Czech translations as described in the previous step. The English
multi-word labels are currently not translated, unless they appear in the Czeng
dictionary as a whole expression.7

Example: Translating Label-sets

In this example we illustrate the translation in which the English label-set
{asian, background, bag, blue, desk, desktop, face, girl, keyboard, kid, moni-

6It would also be possible to translate only the one combination of label and its POS tag which
has the highest translation probability. This would obviously ensure that we always get only one
translation for a label. In the example it would be dvanáct, because P (dvanáct) > P (dvanáctka).
However, it would also mean that we would not take the other part of speech types into account at
all. As we want to keep as many morphological meanings as possible, we better decided to have an
English label translated by more Czech labels, than to lose meanings when choosing only the most
probable part of speech.

7Another method would be to tear apart the English multi-word labels, translate them word by
word and then put them together. But this has no sense considering that the algorithms we test on
the ESP data work in fact only with single-word labels.
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English Czech P

twelve#C dvanáct#C 0.845118
twelve#C jeden#C 0.032349
twelve#C dvanáctiměsíční#A 0.024747
twelve#C půlnoc#N 0.022146
twelve#C půl#N 0.016610
twelve#C rok#N 0.013889
twelve#C dvanáctý#C 0.012131
twelve#C dvanáctiletý#A 0.008286
twelve#C dvanáctery#C 0.008087
twelve#C ještě#D 0.005557
twelve#C pryč#D 0.005543
twelve#C poledne#N 0.005537
twelve#N dvanáctka#N 0.316118
twelve#N dvanáct#N 0.161365

Table 2.3: Looking up the label twelve in the dictionary

tor, mouse, pc, picture, red, screen, smile, wallpaper, white, windows, woman}
is translated into the Czech label-set {asijský, Asie, pozadí, společenský, py-
tel, sebrat, modrý, stůl, plocha, čelit, tvář, dívka, holkařit, klávesnice, legrace,
zhýčkaný, dítě, sledovat, monitor, pohyb, myš, PC, obrázek, představovat, věrná,
červený, methylčerveně, prověrka, obrazovka, usmát se, úsměv, tapetovat, tapeta,
bílý, bezvousý, okna, žena}.

Table 2.4 shows parts from the dictionary used for translating the individual
English labels from the label-set into Czech. This excerpt is shortened. For a com-
bination of a label and its POS tag only the most probable Czech translation (the
one actually used for the translation of a label and its POS tag) is shown here and
the other translations were ommited from this excerpt of the dictionary.

The first label in the original label-set is asian. So the algorithm looks it up
in the dictionary and finds there are multiple translations for asian as an adjective
and multiple translations for asian as a noun (only the most probable of them are
displayed in Table 2.4). The algorithm takes the most probable translation for asian
as a noun and as an adjective, i.e. the two words asijský and Asie. They both become
the translation for the original label asian.

In the same fashion, background as an adjective is translated into společenský
and background as a noun is translated into pozadí; white as an adjective and as a
noun are translated into bílý and white as a verb is translated into bezvousý.8

8Of course, this is a nonsense. It only prooves that the dictionary is not flawless, because it had
been extracted by a program from the CzEng parallel corpus.
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English Czech P
label label

asian#A asijský#A 0.750789
asian#N Asie#N 0.389752

background#A společenský#A 1.000000
background#N pozadí#N 0.803533

bag#N pytel#N 0.219575
bag#V sebrat#V 0.275134

... ... ...
white#A bílý#A 0.877069
white#N bílý#A 0.614535
white#V bezvousý#A 0.540322

windows#N okna#N 1.000000
woman#N žena#N 0.906362

Table 2.4: The excerpt from the dictionary used for translating the label-set. Short-
ened.

2.4 Tools

2.4.1 Label Viewer Application
The Label Viewer is an application designed for user-friendly viewing the

English or Czech labels and their relations. It has three main parts as depicted in
Figure 2.1:

• part 1 - list of labels. Labels from the ESP data are displayed here. Each
label has its id and frequency. Frequency means the number of label-sets
containing the label. The label cathedral is selected in part 1 of the example.

• part 2 - list of label-sets. Selecting a label from part 1 reveals the list of id’s
of label-sets in which the label (i.e. cathedral) occurred (part 2 - left column).
One can click on a label-set id to inspect the label-set’s labels (part 2 - right
column) and the original picture which belongs to the viewed label-set. In the
Figure 2.1 the label-set with id = 493 is shown.

• part 3 - list of neighbors. In part 3, the neighbors for a selected label (i.e.
cathedral) are shown in the neighbors column. The frequency here
is the number of label-sets in which the selected label (cathedral) and the
selected neighbor (spire in the right column in part 3) co-occurred together,
i.e. freq(w1, w2) described in 2.3.1. In our example 56 means that labels
cathedral and spire co-occured together in 56 different label-sets.
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Both lists of labels and neighbors can be resorted alphabetically or by frequency.
By default, labels are sorted alphabetically and neighbors by frequency.

2.4.2 Algorithm for Finding the Pseudo-Coreference Chains
We take an input text and we find the pairs of ’semantically related’ ESP labels

in this text. We call the pairs of ESP labels in the texts pseudo-coreference pairs.
Then we construct pseudo-coreference chains from them.

We know how many times two labels co-occur together in the data, i.e.
how many times they label the same images. We measure the degree of be-
ing semantically related labels by setting a neighborhood threshold Z.
Both the pseudo-coreference pairs and chains are depending on the variable
neighborhood threshold Z.

For a given Z, we search for the pseudo-coreference chains in these five steps.
The algorithm is ilustrated with on an example.

1. We have Penn Treebank POS tags9 for each word in the text. Since
we suppose that the candidates for coreference are Wh-determiners, Wh-
pronouns, nouns, personal pronouns and cardinal numbers, the words with
the Penn Treebank POS tags WDT, WP, N, PRP, CD, respec-
tively, become the candidates to be members of coreferential chains; thus we
unlock them for the next steps while we lock the words with other POS tags.

In this example of input text, the unlocked words are highlighted.
...”There was a modern brown building with an old
antique arch above the door. The arch didn’t fit to
the design of the building so much that I thought
the architect who projected it must have been mad
to use it here.”...

2. On the ESP data layer, we iterate through label-sets and take each label-set’s
labels as nodes V of a graph G = (V,E) in which edges E are defined so:
e = (v1, v2) ∈ E if freq(v1, v2) ≥ Z. We call this graph neighborhood
graph.

In Table 2.5 there are label-set’s neighborhood frequencies, from which
we construct the neighborhood graph as described above (see the re-
sulting neighborhood graph in Table 2.6 and in Figure 2.2). Because neigh-
borhood of labels is a symetrical relation, the neighborhood graph is undi-
rected.

9http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_
treebank_pos.html
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Figure 2.1: The screenshot of the label viewer program
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Z = 500 arch brown building cathedral church door old wood
arch 718 213 418 108 235 232 156 66

brown 11081 1148 93 293 528 1056 1482
building 6915 203 753 771 836 364
cathedral 276 200 36 109 14
church 1187 172 297 69
door 2248 317 309
old 5866 318

wood 3056

Table 2.5: Neighbor frequencies in a label-set.

Z = 500 arch brown building cathedral church door old wood
arch 1 0 0 0 0 0 0 0

brown 1 1 0 0 1 1 1
building 1 0 1 1 1 0
cathedral 0 0 0 0 0
church 1 0 0 0
door 1 0 0
old 1 0

wood 1

Table 2.6: Neighborhood graph of a label-set given by matrix.

3. For each neighborhood graph we start the algorithm for finding connected
components (Hopcroft, Tarjan, 1973). This algorithm computes the neighbor-
hood graph’s components: G1 = (V1, E1), ...Gn = (Vn, En). These compo-
nents are the costituting units of pseudo-coreference chains.

The graph in Figure 2.2 has three components which
are defined by these sets of vertices V1 = {arch}, V2 =
{brown, building, church, door, old, wood} and V3 = {cathedral}.

4. We now have to go down from the layer of labels to the layer of the input
text. A label can appear in the text 0, ..., nlabel times. So for a neighborhood
graph we take each of its components Gi = (Vi, Ei) from the previous step
and propagate the labels from that component Gi to the textual layer. For each
vertex v (i.e. label) we save the relevant occurences of the label v as a word
in the input text. If label v is not present in the text, we save nothing, if it is
present 1, ..., nv times, we save only the relevant occurences (i.e. those that
have been unlocked in the first step of the algorithm). So as a result for each
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Figure 2.2: Neighborhood graph of a label-set

of the component Gi = (Vi, Ei) of the neighborhood graph we get a list of
occurences (unlocked words) of the vertexes Vi (i.e. labels) in the input text.

The resulting lists from the example are List1 = {arch, arch} and
List2 = {building, building, door}.

5. We filter out lists of occurences with size ≤ 1. The last step is to resort the
lists of occurences, so that the pseudo-coreference chains are well ordered.
A list of words is well ordered, if for the list l = w1, ..., wn it is true that
∀i = 1, ..., i : pos(wi) < pos(wi+1), where pos(wi) is the function that
returns the word’s position within the input text. The sorted lists with size
≥ 2 are the pseudo-coreference chains.

Both the lists from the previous step contain at least two words, and after
ordering we get these pseudo-coreference chains: Chain1 = {arch, arch}
and Chain2 = {building, door, building}.

Summing up the Algorithm

1. Choose a threshold Z and iterate through label-sets.

2. Take the labels from the current label-set (lset) as nodes of a graph, where
two labels (i.e. vertex) lab1, lab2 are adjacent if freq(lab1, lab2) ≥ Z (so
called neighborhood graph).

3. Find the connected components of the neighborhood graph. Iterate through
those components.

4. For labels of a component c find unlocked occurences of those labels in the
input text. These well ordered occurences (if there are at least 2 of them) form
a pseudo-coreference chain.
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Computing the pseudo-coreference chains - time complexity

There are n = 100, 000 label-sets in the data, let the biggest label-set’s size be
max. freq(lab1, lab2) can be determined in O(1) (the whole neighborhood relation
is initialized only once after the program starts). For each label-set we construct the
adjacency matrix in max2 ∗ O(1) = O(1). The algorithm for finding connected
components is linear in the number of vertex, which has upper bound max. So for
each label-set, we construct the matrix in O(1) and then in O(max) = O(1) we find
the connected components. So finally we get linear time O(n) in the #label-sets in
the data to count all the connected components.

Now getting to the textual layer, suppose that there are m ≤ max different labels
in a particular label-set that have to be expanded into pseudo-coreference chains on
the textual layer.

Let the text length be k. Then each label can theoretically appear on k positions.
So while propagating to the textual layer, we get to much worse complexity class.
k ∗ k... ∗ k = kmax, which yields exponential time O(kmax) for propagating a label,
resp. a connected component from a label-set (measured by the length of the input
text). The whole time complexity of counting the pseudo-coference chains for data
with n label-sets and maximum size of the label-set max is thus O(n ∗ kmax).

This does not matter in this project, because here we were testing the algorithm
on very small input texts where only excerpts of a length of 100 sentences were
used. The exponential complexity here is due to not having a limit or restriction on
how far from each other two pseudo-coreference words can be. Here the domaine
used is the whole text. If our method turned out to be of any use, it would be simple
to introduce such rule and limit the domaine to e.g. a paragraph, which size is pre-
sumably not dependent on the length of the input text and can be taken as a constant.
If we limit the size of paragraph in the input text to para, then the resulting time
complexity is linear O(n ∗ paramax) = O(n).

2.4.3 Chains Viewer application
The Chains Viewer program is an application designed for computing the

pseudo-coreference chains over a sample Czech or English text in the csts10 for-
mat based on the ESP data. It compares the pseudo-coreference chains against the
manually annotated coreference chains and lets user browse through the pseudo-
coreference and coreferential chains. The screenshot of the program is in Figure 2.3.

The program consists of two parts. The controls, which allow the user to browse
through the coreferences and pseudo-coreferences and the display, which shows the
coreferences and pseudo-coreferences within the text. The controls are located on

10Czech Sentence Tree Structure is a format developed at ÚFAL, Charles University in Prague
for Czech National Corpus and Prague Dependancy Treebank. https://wiki.ufal.ms.mff.
cuni.cz/format-csts
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Figure 2.3: The screenshot of the Chains Viewer program

the left side of the program and the display is located in the central part of the
program.

The controls and display are further divided into two parts. The upper part deals
with coreference chains and the lower part with pseudo-coreference chains.

2.4.4 Coreferences and Pseudo-coreferences on the Chains
Viewer screenshot

In the upper display of the Chains Viewer program’s screenshot there is an ex-
ample of a coreference. The coreference shown is {assassin, his, man,
man, He, him, him, him, man}.

In the lower display where pseudo-coreferences are shown, one can read this
pseudo-coreference: {him,him,him}.
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2.5 Evaluation
We have selected A Study in Scarlet by Sir Arthur Conan Doyle (Doyle, 1887)

with manual annotation of coreference. For the purpose of our evaluation, we work
with a 100-sentence part of it. For different Zs, we calculate how much pseudo-
coreference chains overlap with coreference chains. As quantitative measures, we
use standard precision (P) and recall (R). The results for three chosen Zs are listed
in Table 2.7 and Table 2.8.

Z # of p.-c. R P
chains (%) (%)

5 7,129 10 0.06
100 5,146 10 0.08
500 2,347 10 0.17

Table 2.7: Pseudo-coreference chains in A Study in Scarlet - no stems used

Z # of p.-c. R P
chains (%) (%)

5 1,073 2.04 0.09
100 582 2.04 0.17
500 176 2.04 0.57

Table 2.8: Pseudo-coreference chains in Studie v Šarlatové - no stems used

2.5.1 Evaluation Data Description
A Study in Scarlet / Studie v Šarlatové are texts which were manually annotated.

The inner format of the texts which we work with is csts11. The Czech text is the
translation of the English text. Both the texts contain among others coreferences in
the text and the stem forms and POS tags for the individual words in the text.

We started to evaluate the pseudo-coreference chains algorithm on the English
text. We chose an excerpt from the text, which includes 100 sentences from the
text. First we started with the very first 100 sentences from A Study in Scarlet but
it turned out that in this excerpt, the proportion of the pronouns in the coreferences
was too high. So we divided the text into parts formed by 100 sentences each and
then counted the percentage of pronouns in the coreferences for each part. The

11http://tinyurl.com/6h9mv5w
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lowest percentage had the part formed by the part starting with 1200th sentence and
ending with 1299th sentence. So this is the final excerpt we use in this project for
the evaluation of the pseudo-coreference chains algorithm.

When shifting to the evaluation of the algorithm over the Czech text, we had to
find the matching counterpart of the chosen English excerpt. This was done manu-
ally, because due to the translation process the sentence id’s are not matching be-
tween the Czech and English text.

2.5.2 Comparison of Czech versus English data
We can see, that running the algorithm over the Czech text yields approximately

10 times less pseudo-coreference chains than over the English text. This is most
probably due to the inflective character of the Czech language and the synthetic
character of the English language and the fact, that we did not take into account the
word stem forms.

2.6 Conclusion
We can see that by far the results are not statistically significant. The propor-

tion of pronouns in the coreference chains is very high with respect to the fact that
the pronouns appear in the image-label database rarely. It motivates us to select
for future experiments a text of a different genre. Although the coreference and
pseudo-coreference chains often overlap, seldom does a pseudo-coreference chain
fully correspond to a coreference chain. So the ESP data is not suitable for finding
the coreference chains.
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Chapter 3

Lexical database WordNet and the
ESP Data

3.1 What is WordNet
”WordNet R© is a large lexical database of English, developed under the di-

rection of George A. Miller (Emeritus). Nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (synsets), each expressing a distinct con-
cept. Synsets are interlinked by means of conceptual-semantic and lexical relations.
The resulting network of meaningfully related words and concepts can be navi-
gated with the browser. WordNet is also freely and publicly available for download.
WordNet’s structure makes it a useful tool for computational linguistics and natural
language processing.” 1

3.2 The Possible Benefits of the ESP Data to the
WordNet

The question posed in this bachelor thesis is: how can be the output of the ESP
game used to become a benefit to the WordNet? The WordNet database has been
developed for a long time and we do not suppose we could add words or expressions
to it based only on simple facts like the neighborhood counts within a given sample
of the ESP database. So the only thing we can imagine, if it would be of any use, is
to simply add the neighborhood count to the entries within the WordNet database.
Because WordNet does not work with individual words, but with synsets, it would
be a little harder, but still possible. WordNet could use this extra information as a
kind of help when determining which synsets are more closely related than others.

1http://wordnet.princeton.edu/
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For this method to work, it would probably require much bigger portion of the ESP
data, then the sample data we have worked with.

3.3 Introduction to (Czech) WordNet

3.3.1 Definitions
Synset - a set of synonyms, e.g. {lak,emailový lak, email}. It bears a concept.
Literal - a particular expression from a synset, e.g. lak.

3.3.2 Definition of WordNet
The Wordnet consists of synsets which are connected by different relations. Be-

cause a synset represents a concept, the relations are relations between concepts.

Types of relations in the Czech WordNet

The relations used in the Czech WordNet are hypernym ( B is a hypernym of
A if every A is a (kind of) Y (canine is a hypernym of dog, because every dog is a
member of the larger category of canines)), holo-part(citronová kůra is a holo part
of citron), near antonym and similar to.

Types of relation in the English WordNet

"Is a" hierarchy

The model used here is known as the "IS A" model. Dog is a canine, citronová
kůra is a part of citron, good is a near antonym of evil, etc. As we can see, the
synsets are always connected together through the "is a" relation.

WordNet as a graph

The (Czech) WordNet database2 is in fact a huge (oriented) graph. In this graph
the individual vertices are formed by synsets and they are connected by edges of
different types which bear the relation between synsets.

SnappyWords.com tool for displaying WordNet online

SnappyWords.com is an internet website which queries the English WordNet
database and shows the result in a user-friendly graphical design. An example can
be seen in Figure 3.3.2.

2
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Figure 3.1: Example from SnappyWords.com: WordNet as a graph.

3.3.3 The general types of relations between WordNet synsets
according to Wikipedia

3

Nouns

hypernyms Y is a hypernym of X if every X is a (kind of) Y (canine is a hyper-
nym of dog, because every dog is a member of the larger category of canines)

hyponyms Y is a hyponym of X if every Y is a (kind of) X (dog is a hyponym of

3http://en.wikipedia.org/wiki/WordNet
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canine) coordinate terms: Y is a coordinate term of X if X and Y share a hypernym
(wolf is a coordinate term of dog, and dog is a coordinate term of wolf)

holonym Y is a holonym of X if X is a part of Y (building is a holonym of
window)

meronym Y is a meronym of X if Y is a part of X (window is a meronym of
building)

Verbs

hypernym the verb Y is a hypernym of the verb X if the activity X is a (kind of)
Y (to perceive is an hypernym of to listen)

troponym the verb Y is a troponym of the verb X if the activity Y is doing X in
some manner (to lisp is a troponym of to talk)

entailment the verb Y is entailed by X if by doing X you must be doing Y (to
sleep is entailed by to snore)

coordinate terms those verbs sharing a common hypernym (to lisp and to yell)

Adjectives

related nouns
similar to
participle of verb

Adverbs

root adjectives

3.4 The Czech WordNet database format

3.4.1 Description of the database file
The actual database is saved in an xml file. Each line of the file describes a

synset. Each line ends with a newline. Description of the synset includes a unique id,
part of speech, literals of the synset, the polysemy count (i.e. in how many synsets
the literal lies = #senses), the synset’s neighbor (if any), the type of the relation to
the neighboring synset, and the domain of the concept. Facultatively it contains the
definition of the concept, its usage, a note about the synset, time stamp of the person
who added the item to the databse, and valency frames of the literals.
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3.4.2 An Excerpt from the Database File
<SYNSET> <ID> ENG20-01481708-v </ID> <POS> v

</POS> <SYNONYM> <LITERAL> navíjet <SENSE> 1 </SENSE>
</LITERAL> <LITERAL> natáčet <SENSE> 1 </SENSE>
</LITERAL> </SYNONYM> <ILR> ENG20-01480045-v <TYPE>
hypernym </TYPE> </ILR> <ILR> ENG20-01481921-v
<TYPE> near_antonym </TYPE> </ILR> <STAMP> Karel
2003/12/29 </STAMP> <VALENCY> <FRAME> navíjet, natáčet
kdo1*AG(person:1)=co4*OBJ(line:18) na co4*OBJ(winder:3)
%navíjet drát na cívku </FRAME> </VALENCY> <DOMAIN>
factotum </DOMAIN> </SYNSET>

<SYNSET> <ID> ENG20-01472715-v </ID> <POS>
v </POS> <SYNONYM> <LITERAL> odpálit <SENSE> 1
</SENSE> </LITERAL> </SYNONYM> <ILR> ENG20-01472314-v
<TYPE> hypernym </TYPE> </ILR> <STAMP> Karel
2003/12/29 </STAMP> <VALENCY> <FRAME> {odpálit}
kdo1*AG(person:1|institution:1)=co4*OBJ(device:1) %NASA
odpálila raketu na Měsíc </FRAME> </VALENCY> <DOMAIN>
factotum </DOMAIN> </SYNSET>

<SYNSET> <ID> ENG20-01918210-v </ID> <POS> v </POS>
<SYNONYM> <LITERAL> pozvednout <SENSE> 2 </SENSE>
</LITERAL> <LITERAL> dát nahoru <SENSE> 1 </SENSE>
</LITERAL> </SYNONYM> <ILR> ENG20-01916187-v <TYPE>
hypernym </TYPE> </ILR> <STAMP> Karel 2003/12/29
</STAMP> <VALENCY> <FRAME> pozvednout, dát nahoru
kdo1*AG(person:1)=co4*OBJ(object:1) %otec dal tu knihu
nahoru </FRAME> </VALENCY> <DOMAIN> factotum </DOMAIN>
</SYNSET>

The spaces between the individual xml tags and their values are not present in
the original file. They have been added so that the formatting is nicer here.

3.5 WordNet versus ESP data

3.5.1 Introduction
Although the WordNet contains many semantic relations, the basic unit here is

a synset. A synset is a group of expressions which are synonymous. So the smallest
units in WordNet are in fact word meanings.

The task of this analyses is to compare label-sets from the ESP data against
the WordNet synsets. The obvious question is how to compare apples and pears?
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A synset contains synonyms and a label-set contains labels of which some might
and some might not be semantically related. There are many types of semantical
relations.

We have to bear in mind how every label-set originated. It is made up of labels
describing a picture downloaded from the internet. A picture can contain anything
and there are almost no limits, except for the length of the string, so there can be
labels semantically related and labels without semantic relations. The labels with a
semantic relation originate for instance when there are two objects in the picture,
which have the semantical relation between them (i.e. ’door’ and ’house’). If there
are two object which are not related to each other then the labels can be semantically
unrelated (’car’ and ’dog’). But it gets tricky. There can be two unrelated objects
(house and a car window lying on the street) in the picure and we still can get
description window for the first object and house for the second, and the two labels
are semantically related!

Between the labels of a house picture can be synonyms for house, i.e. building,
household, estate.

In this analysis we decided to analyse synonymy because the WordNet is espe-
cially strong at synonyms. We are investigating synonymy also because if an object
on a picture could be labeled with more generally used synonyms, it is almost sure,
that it had been labeled with all of them.4

So we want to find out whether there are synonymous labels within ESP data
label-sets and of course we want to know how many synonymous labels there were.

WordNet and its synsets are taken as a source of synonymous expressions in the
analysis and we want to find out to what extend the ESP label sets are synonymous.
Synonymity of a set of labels S is understood as number of different pairs of
labels (lab1, lab2), such that lab1 and lab2 are synyonyms.

3.5.2 Computing the Synonymity of a Set of Labels
A set of labels does not necessarily have to be a label-set, it can be a

neighbor-set (a set which contains neighbors from the ESP data), or any subset
of the set of all ESP data labels.

For a set of labels we find how many of the possible pairs of labels are synony-
mous. We have the meter of being synonymous in the WordNet’s synsets. So for
each pair of labels we need to know if the two labels are synonymous or not.

It is easily done. If there is a synset which contains both the labels, we found a
synonymous pair. We can count how many pairs of labels were synonymous for a
given set of labels .

4Because the picture is no more being uploaded into new ESP game sessions only after a certain
number of rounds passes during which no new labels are added. If the synonym is easy to think of,
it is quite probable that some pair of players would bring it up.
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3.5.3 Definition of method
Analysis 1

Analysis 1 is the simplest one. We compute how many labels in each label-set
are synonymous. Then it can easily be computed how many per cents of a label-set
are synonymous (i.e. they appear in a synset). When we compute this for all the
label-sets, we compute and draw a histogram.

Analysis 2

The same as Analysis 1 with only one difference. Instead of taking the label-
sets as in the first analysis, in the second one we use so called filtered
neighbor-sets. A neighbor-set is a set that contains neighbors of some
label.

The filtering depends on the threshold Z (see Chapter 1). A filtered
neighbor-set originates from a neighbor-set NS when we keep only labels
lab1 for which: ∃lab2 ∈ NS, lab2! = lab1 : freq(lab1, lab2) ≥ Z.

A label lab1 is not filtered out of a neighbor-set only if the neighbor-set contains
at least one more different label lab2, which has been together with lab1 at least
Z-times.

So in the analysis 2 for each filtered neighbor-set we compute the percentage of
synonymity in regard to the WordNet database. Because we have different filtered
neighbor-sets for different thresholds, the analysis yields n different histograms for
n different thresholds Z.

Analysis 3

The same as analysis 2, instead of taking filtered neighbor-sets, we take only
filtered label-sets, which are much smaller units. Again here we have multiple his-
tograms for the different thresholds.

Analysis 4

For each pair of neighbors with neighbor count≥ Z we determine whether they
are synonyms or not and then compute the precision and recall.

3.5.4 Results of the Czech WordNet versus Czech ESP Data
Histogram 1

The first analysis’ histogram is saying that the majority (88.44%) of label-sets
contain 0% to 5% of synonyms. Furthermore 99.99% of label-sets is 0% to 30%
synonymous.
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Figure 3.2: Histogram 1

Histogram 2

In the second and third analysis’ histograms we had to use logaritmic scale
because the range of values is very large. We used the filtered neighbor-sets here
to determine whether the neighbor count metric would be useful when retrieving
synonyms from the ESP data. If two labels occur together in n different label-sets,
the probability that those two labels are synonymous could be higher.

However, the second analysis showed that neighbor-sets retrieved with bigger
neighbor counts are not more synonymous. The trend is clearly readable from the
histograms. The histograms are even sharper than the one in the analysis 1.

One minor bump against the trend lies within the 20%-25% interval of syn-
onymity. There were 3 filtered neighbor-sets with Z = 50, but already 4 with Z =
100. It means this is the only place where the bigger neighbor count helped to dis-
cover more synonymous neighbor-sets, but it is such a small amount, that it is not
significant at all.

Histogram 3

The idea with filtered neighbor-sets is wrong. The problem might be the fact
that the neighbor-sets are too large. So in analysis 3 we focused back on label-sets
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Figure 3.3: Histogram 2

32



Figure 3.4: Histogram 3

and used the neighbor count based filtering on them. The surprise is it works a bit
better. The general trend remains still the same with the majority of filtered label-
sets (from 88.3% for Z = 5 to 93.9% for Z = 1000) being only 0 to 5% synonymous.
However, there is significantly more discovered filtered label-sets from 15% to 70%
of synonymity when using higher neighbor counts and here the trend is ”the more
Z the more of synonymous label-sets.”

Results of the Analysis 4

Table 3.1 shows Precision and Recall computed in the Analysis 4 run on the
Czech WordNet and ESP data.
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Z P (%) R (%)
5 0.04 3,169.96

10 0.05 1,735.28
50 0.12 387.44
100 0.17 192.03
500 0.44 27.15

1,000 0.67 9.67

Table 3.1: Results of Analysis 4 (Czech)

Z P (%) R (%)
5 0.07 680.39

10 0.1 349.89
50 0.22 67.15
100 0.3 30.7
500 0.67 3.66

1,000 1.04 1.28

Table 3.2: Results of Analysis 4 (English)

3.5.5 Results of the English WordNet versus (English) ESP Data
Results of Analyses 1, 2, 3

The results of English Analysis 1, 2 and 3 can be seen in Figure 3.5, Figure 3.6
and Figure 3.7. The general trends resemble those from the Czech analysis, although
at the same levels of synonymity, the English data show more sets of labels than the
Czech data. For instance at 40%-45% of synonymity in the Analysis 3, there is only
25 filtered label-sets in the Czech ESP data, whereas there is 343 filtered label-sets
in the original ESP data for the same Z = 1000.

Results of the Analysis 4

Table 3.2 shows Precision and Recall computed in the Analysis 4 run on the
English WordNet and ESP data.

3.5.6 Conclusion
We could see that the ESP data failed on one of the most simple task of syn-

onyms resolution. It is clear that the ESP data are rich and that they contain many
synonyms, and other types of semantically related labels (hand - arm; window -
house; animal - dog), which are contained in the WordNet database. The problem
of our approach is that when we pick two labels out of an ESP data label-set, we
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Figure 3.5: Histogram 1

have no idea whether they are semantically related at all and we have no means of
algoritmically determining what type of semantical relation it is. The probabilistic
approach definitely failed on synonyms.
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Figure 3.6: Histogram 2
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Figure 3.7: Histogram 3
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Chapter 4

Conclusion

4.1 Benefits of the ESP Data to the WordNet
Database

Although the large portions of the ESP database are informationally very rich,
we did not find a method to employ the ESP data in finding coreferences or
in searching for synonyms. Nevertheless, it might be of a help for the WordNet
database. The neighborhood counts from a sample large enough could be taken as a
measure of relatedness of synsets. This would bring some extra information which
might be useful.

4.2 ESP Data Use for Automatic Coreference Reso-
lution

The real benefit to the NLP task of automatic coreference resolution is quite
small. The ESP game, for a given image, outputs its labels. The issue is that a label
can be any word or expression anyhow envoked when seeing the picture. The labels
usually describe the picture. However, given a pair of image and its labels produced
by the ESP game, computers with no additional information have no sense of how
the labels are related to each other. Human presented with the image and its labels
could quite succesfully determine the relationships between the individual labels,
but computers cannot and if they were able to see such relationships, the problem
of finding coreference would have been solved by now.

We can see that generalizing here is too harsh for the language, too harsh for
the problem of finding coreference. The expectation put on the statistical approach
deployed in this bachelor thesis was simply too high. We cannot rely on computing
coreferences in texts based on how often two labels appear together in the ESP
data. Sometimes this approach finds a coreference, but because it does not take into
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account the semantics of the text, it is as the results have shown condemned to
failure.

4.3 Possible Future Improvement and Alternatives
However, the ESP game is not the only game designed by Louis von Ahn.

Another game from the same author, in fact inspired by the ESP game itself is
Peakaboom (von Ahn, 2005). This human algorithm game has on the input the
ESP game image label pairs. It outputs details about the position of the objects
within the image itself. The database of the image labels pairs enhanced by this
information would be more useful for the task of automatic coreference resolution
presented in this thesis. Here we could recognize quite a few possible coreferences
by finding for instance two labels refering to the same position within the image
and by comparing the two positions within the image we could know the relation
between the two labels (i.e. part of the whole, synonym, etc.).

So it could help finding specific kinds of coreferences. On the other hand it
would be much more computationally demanding and the biggest problem would
still not be solved: the actual semantics in the text. We might still for example cor-
rectly retrieve the information that window is part of a car, but not always when they
appear in the text, must necessarily these two words be co-refering. There can be
two cars mentioned in one paragraph of a text: a black car and a red car. The author
writes about the red’s car window being broken, so the pseudo-coreference window
and car for the red car would be a correct coreference, but pseudo-coreference win-
dow and black car actually would not. And this is what our approach still could not
solve.
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User Documentation

Label Viewer
The Label Viewer is an application designed for user-friendly viewing the

English or Czech labels and their relations. It has three main parts as depicted in
Figure 4.1:

• part 1 - list of labels. Labels from the ESP data are displayed here. Each
label has its id and frequency. Frequency means the number of label-sets
containing the label. The label cathedral is selected in part 1 of the example.

• part 2 - list of label-sets. Selecting a label from part 1 reveals the list of id’s
of label-sets in which the label (i.e. cathedral) occurred (part 2 - left column).
One can click on a label-set id to inspect the label-set’s labels (part 2 - right
column) and the original picture which belongs to the viewed label-set. In the
Figure 4.1 the label-set with id = 493 is shown.

• part 3 - list of neighbors. In part 3, the neighbors for a selected label (i.e.
cathedral) are shown in the neighbors column. The frequency here
is the number of label-sets in which the selected label (cathedral) and the
selected neighbor (spire in the right column in part 3) co-occurred together,
i.e. freq(w1, w2) described in 2.3.1. In our example 56 means that labels
cathedral and spire co-occured together in 56 different label-sets.

Both lists of labels and neighbors can be resorted alphabetically or by frequency.
By default, labels are sorted alphabetically and neighbors by frequency.

Label Viewer installation
It is intended for use on unix machines, with minimum 1024MB RAM and

JVM 1.6 installed. When installing the program, first copy the whole directory
.../tools/LabelViewer/LABELVIEWER_v1.06 into the directory where
you want to have it on your machine. Then change the working dictionary to
.../tools/LabelViewer/LABELVIEWER_v1.06/ located on your com-
puter and run the instal script:
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./instal.sh.
This script downloads the sample of 100,000 ESP images (size of 743MB) from

the internet, which is the only thing that needs to be installed.

Running the Label Viewer
Change the current working dictionary to

.../tools/LabelViewer/LABELVIEWER_v1.05/. Then start the program by running
the script

./run.sh [ -cz | -en ].
It takes around a minute and a half to first boot the program, during which time

the relation of neighbors is determined and saved onto the disk for future use, so that
next time the boot-up time of the program is even less. You are informed about the
progress of loading the program and as soon as it is ready, the main view appears.

Chains Viewer
The Chains Viewer program is an application designed for computing the

pseudo-coreference chains over a sample Czech or English text in the csts1 for-
mat based on the ESP data. It compares the pseudo-coreference chains against the
manually annotated coreference chains and lets user browse through the pseudo-
coreference and coreferential chains. The screenshot of the program is in Figure 4.2.

The program consists of two parts. The controls, which allow the user to browse
through the coreferences and pseudo-coreferences and the display, which shows the
coreferences and pseudo-coreferences within the text. The controls are located on
the left side of the program and the display is located in the central part of the
program.

The controls and display are further divided into two parts. The upper part deals
with coreference chains and the lower part with pseudo-coreference chains.

Chains Viewer installation
It is intended for use on unix machines, with minimum 1024MB RAM and

JVM 1.6 installed. The program itself does not have to be installed, you can copy
the directory ChainsViewer anywhere on the disk.

1Czech Sentence Tree Structure is a format developed at ÚFAL, Charles University in Prague
for Czech National Corpus and Prague Dependancy Treebank. https://wiki.ufal.ms.mff.
cuni.cz/format-csts
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Figure 4.1: The Screenshot of the Label Viewer Program
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Running the Chains Viewer
Run the program by changing the current working dictionary to

.../tools/ChainsViewer/CHAINS_vX.X and then execute the shellscript which
is located within the ”CHAINS_vX.X” directory by typing

./run.sh [ -cz | -en ].
The program loads the ESP data, loads the input csts file which contains the

text to process (A.C.Doyle), performs the search for pseudo-coreference chains
and compares the annotated coreference chains with the pseudo-coreference chains
found by the algorithm.

It takes the program around two minutes to boot on a 2.26GHz dual core pro-
cessor with 4GB of RAM.

When the program is ready, the controls of the program are enabled and you are
able to browse through the text and the coreference and pseudo-coreference chains
as described below.

The displays
As soon as the program is loaded and ready, which is when the control buttons

are no more grayish, both the displays show the input text. The words with the
gray background are the words that are part of a coreference chain (in the upper
display) or a pseudo-coreference chain (in the lower display). No coreferences nor
pseudo-coreferences are shown yet.

The upper display displays the coreferences. From the definition, all the words
that are corefering to the same word are part of one big coreference. So if a word is
part of a coreference chain, it is the only chain it is part to.

The lower display displays the pseudo-coreferences. Here a word, if part of
a pseudo-coreference, it can be at the same time part of more different pseudo-
coreferences.

Browsing through the coreference and pseudo-coreference chains
in the input text
Coreference chains

To browse through the coreferences click the button "→" or "←". This moves
the current word, which is highlighted by blue color, back and forth between words
that are part of some coreference. The blue word determines which coreference is
shown. It is the one that contains the blue word. The other words that are part of the
currently selected coreference are displayed in red.

You can move the blue word not only to the nearest possible word, i.e. by 1, but
also by 10 and 100 via the appropriate buttons "→ 10" and "← 10", resp. "→ 100"
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Figure 4.2: The screenshot of the Chains Viewer program

and "← 100".

Pseudo-coreference chains

The principle is the same, with one exception: a word here can be member
of more than one pseudo-coreference. So when moving the current word, which
is selected by blue, there may be more pseudo-coreferences related to this word.
Thus only the first pseudo-coreference is displayed in red letters. For accessing
the other pseudo-coreferences related to the current word, the buttons "→ within"
and "← within" are reserved. By those buttons you can iterate within all pseudo-
coreferences that are related to the blue word.

When viewing pseudo-coreferences user can choose (in the lower left corner)
between different Neighborhood thresholds which have impact on finding
the pseudo-coreference chains.
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Program Documentation

Label Viewer
Description of the structure of the whole program, of classes, methods, etc. This

part of documentation is mainly contained also in the javadoc documentation gen-
rated directly from the source codes into html format. There is only a basic descrip-
tion here.

Structure of the program
The program is part of the package dictionary. The package dictionary is de-

signed for working with the ESP data in specified format and displaying it in a
user-friendly manner through graphical user interface.

Class GUI is the main class. It creates a new instance of Data and when the data
are loaded, the class GUI displays them in the graphical user interface. This class is
designed for creating and maintaining the GUI for viewing the ESP data.

Class Data reads ESP data from a file and then stores this data in the program
memory.

LabelSet LabelSet represents a label-set from the ESP data.

Description of important classes, interfaces, etc.
Class Data

This class reads ESP data from a file and then stores this data in the program
memory. It includes methods for accessing the data.

Field Detail

• ready
public static volatile boolean ready

As soon as the initialization phase of the program has ended, ready is set
to true.
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Constructor Detail

• public Data(String lang) throws IOException, FileNotFoundEx-
ception

Constructor of the class Data initializes class members, reads the ESP
data from 2 files and stores it into program data structures for future usage.

Method Detail

• public Integer getIndex(String label)

If the label is present, returns its id, else returns null.

• public String getLabel(int id)

Returns the label with the specified id.

Parameters: id - the label id.

• public HashMap getNeighbours(int label_id)

Returns the neighbors of the label as a HashMap

• public String returnFileName(int j) throws
IOException

Returns the original file in which the label-set j was saved.

• protected HashMap<Integer,Integer>
findNeighbours4(int i, boolean sortAbc)

Return the neighbors of the label.

Parameters: i - the index for retrieving the label id; sortAbc - true -> labels
sorted alphabetically, false-> by frequency

• protected HashMap<Integer,Integer>
findNeighbours3(int i, boolean sortAbc)

Counts the neighbors and neighborhood frequencies for the label i.

• public List<Integer> getLabelSetIds(int labelId)

Returns the list of id’s of label-sets in which the label with labelId oc-
curred.

Parameters: labelId - the id of the label.

• public LabelSet getLabelSet(int id)

Get the label-set with this id.

Parameters: id - the label-set id.
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Class GUI

This class is designed for creating and maintaining the GUI for viewing the ESP
data. It is the main class, it contains the method main, which launches the whole
program.

Constructor Detail

• public GUI()

Method Detail

• public static void createAndShowGUI(String
paramLang) throws IOException

This method creates the starting progressBar, runs the ESP data initial-
ization in background and after it is done, switches to the main GUI.

• public static void main(String[] args)

It initializes the program and starts the GUI.

Parameters: args - no arguments expected

Class LabelSet

LabelSet represents a label-set from the "ESP data". It contains different labels
and provides methods for working with the label set. To represent label not the
string representation, but the label index is used instead.

Field Detail

• protected List<Integer> set

label indexes.

• protected List<Integer> counts

how many times a label occured in the ESP data.

Constructor Detail

• public LabelSet()

Create an empty LabelSet.
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Method Detail

• public void addLabel(Integer hash)

Adds a label index into the LabelSet.

• public void addLabel(Integer id, Integer count)

Adds a label index with specified count into the LabelSet.

Parameters: id - the label id; count - the count

• public void setFileName(String fileName)

Sets the file name of the LabelSet.

Parameters: fileName - the file name to be set; getFileName

• public String getFileName()

Gets the file name of the LabelSet. Returns the file name as a String.

• public void delete()

Deletes all the labels from the label set.

• public int size()

Returns the size of the LabelSet (how many labels are contained in the
LabelSet).

• public int get(int index)

Returns the label id saved at the index.

• public int getCount(int index)

Returns the label count saved at the index.

• public void print()

Prints the label indexes from the LabelSet

• public void printAll()

Prints the label indexes and the label counts from the LabelSet

Chains Viewer
Description of the structure of the whole program, of classes, methods, etc. This

part of documentation is mainly contained also in the javadoc documentation gen-
rated directly from the source codes into html format. There is only a basic descrip-
tion here.
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Structure of the program
The package chains_console is a program designed to read a "text" (in xml or

txt format) with manually annotated coreferences and to compute the coreference
chains and pseudocoreference chains based on the ESP data. It also performs anal-
ysis of coreference vs. pseudo-coreference chains.

Description of important classes, interfaces, etc.
Class Chain

This class represents a chain (a set of words).

Constructor Detail

• public Chain()

The constructor of the class.

Method Detail

• public Chain makeCopy()

Creates a deep copy of this chain.

Returns: the deep copy of this chain.

• public void addWord(Word w)

Adds a word to this chain.

Parameters: w - the word that is added to this chain.

• public java.lang.String toString()

Overrides: toString in class java.lang.Object

Returns: string in this format: #words[Coordinate1]’word_1’, [Coordi-
nate2]’word_2’, ..., [Coordinate_n]’word_n’.

• public boolean equals(java.lang.Object o)

Overrides: equals in class java.lang.Object

• public int hashCode()

Overrides: hashCode in class java.lang.Object
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Class Coordinate

This class represents the coordinate of a word in the text (paragraph_index +
word_index).

Constructor Detail

• public Coordinate(int para,int word)

The constructor of the class Coordinate.

Parameters: para - the paragraph index; word - the word index

Method Detail

• public java.lang.String toString()

Overrides: toString in class java.lang.Object

Returns: string in this format: "[paragraph_index,word_index]".

• public boolean equals(java.lang.Object o)

Two Coordinates are equal if their paragraph indexes are the same, and
their word indexes are the same.

Overrides: equals in class java.lang.Object

Returns: true, if this Coordinate is equal to o, otherwise false

• public int hashCode()

Overrides: hashCode in class java.lang.Object

Class CorefListener

It is listening on the coreference controls in the GUI and if an event arises, it
correctly serves it.

Constructor Detail

• public CorefListener(int delta)

Method Detail

• public void actionPerformed(java.awt.event.ActionEvent
ae)

Specified by: actionPerformed in interface java.awt.event.ActionListener
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Graph

The class Graph finds the coreference chains (method startAllDfs) and finds
the pseudcoreferential chains (method startAllDfs1).

Method Detail

• public java.lang.String toString()

Overrides: toString in class java.lang.Object

• protected void startDfs1(int i)

Start DFS to find pseudocoreferential chains from the i-th vertex.

Parameters: i - the i-th vertex

Main

The main class.

Constructor Detail

• public Main()

Method Detail

• public static void main(java.lang.String[] args)

The main method.

Parameters: args - a fileName to read the book from (in xml format), and
an optional -compare parameter (can be used if the xml file already contains
coref tags.)

PseudoCorefListener

It is listening on the pseudo-coreference controls in the GUI and if an event
arises, it correctly serves it.

Constructor Detail

• public PseudoCorefListener(int delta)
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Method Detail

• public void actionPerformed(java.awt.event.ActionEvent
ae)

Specified by: actionPerformed in interface java.awt.event.ActionListener

Word

The class Word represents the word in the text and items related to it.

Field Detail

• protected HashSet<Coordinate> backCoords

Constructor Detail

• public Word(java.lang.String word, boolean
nospace, Coordinate c)

The constructor of the class Word.

Parameters: word - the word itself; nospace - whether or not there is no
space after the word; c - the Coordinate of the word.

Method Detail

• public java.lang.String toString()

Overrides: toString in class java.lang.Object

Returns: the string representation

• public Coordinate getCoordinate()

Gets the coordinate of this word.

Returns: the word’s Coordinate

• public java.lang.String getWord()

Gets the word itself.

Returns: the word itself as a string

• public void addRef(int r)

Adds a reference r to the word.

Parameters: r - the reference = label_id; startIndex
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• public void startIndex(int start)

Assigns the start index to the word.

Parameters: start - the start index; paintWord

• public void paintWord(int colour,
javax.swing.text.StyledDocument doc)

Paint the word with the color. The word color is assigned, and the word
in the StyledDocument gets corresponding text color.

Parameters: colour - the color; doc - the StyledDocument containing the
text; paintWord

• public void paintWord(int colour,Coordinate c)

Paints the word with the colour.

Parameters: colour - the color to paint; c - the Coordinate of the word

• public void unpaint(javax.swing.text.StyledDocument
doc)

Un-paints the word. The style is changed to black ink.

Parameters: doc - the StyledDocument containing the text (either doc or
doc2); isPainted

• public boolean isPainted()

Returns: true if the word is painted, otherwise false.

• public int refSize()

Returns: the #label-references

• public void addPOS(java.lang.String tag, boolean
POS)

Adds a POS tag to the word.

Parameters: tag - the POS tag; POS - whether the POS tag is sure(true) or
only probable (false)

• public java.lang.String getPos()

Gets the POS tag.

Returns: the POS tag

• public boolean isNoSpace()

Returns: true if no space should be put after this word, otherwise false.
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• public void rewriteWord(java.lang.String newWord,
boolean noSpace)

Rewrites this word with a new one.

Parameters: newWord - the new word, which replaces the old one;
noSpace - even the nospace variable has to be rewritten; isBadlyTagged

• public boolean isBadlyTagged()

Some POS tag are only "probable", the word is not matching the original
one.

Returns: true if this is the case, otherwise false

• public void addColour(int colour)

Adds a colour to the list of colours.

Parameters: colour - the colour to add

• public void addBackCoord(Coordinate c)

Adds a Coordinate to the backCoords.

Parameters: c - the Coordinate to add

• public void deleteCoref()

• public void setGraphNode(List<Word> children)

• public boolean equals(java.lang.Object o)

Two words are equal if their Coordinates are equal.

Overrides: equals in class java.lang.Object

Returns: true if this word is equal to o, otherwise false.

• public int hashCode()

Overrides: hashCode in class java.lang.Object
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