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Lecture 10 :: Probably Approximately Correct
learning model



Computational learning theory (CLT)

I is a part of theoretical computer science that formally studies
how to design computer programs that are capable of
learning, and identifies the computational limits of learning
machines (Credits: Kononenko I., Kukar Matja: Machine
learning and Data mining, 2007)

I Using statistics, we compare learning algorithms empirically
(we measure performance on sample data).

I CLT provides a formal framework to precisely formulate and
address questions regarding the performance of different
learning algorithms. Are there any general laws that govern
machine learners?



Computational learning theory (2)

I Probably Approximately Correct (PAC) learning framework is
a part of CLT.

I Sample complexity (i.e. data requirements) How many
training examples are needed for a learner to converge with
high probability to a successful hypothesis?

I Computational complexity How much computational effort is
needed for a learner to converge with high probability to a
successful hypothesis?



The problem setting

I Input data X .

I Output values Y = {0, 1}.
I Training data Data = {〈xi , c(xi ) = yi 〉, xi ∈ X , yi ∈ Y }mi=1.

I C set of target concepts c ∈ C : c : X → {−1,+1}
I Instances are generated at random from X according to some

probability distribution D. In general, D may be any
distribution and it will be unknown to the learner. D must be
stationary, i.e. it does not change over time.

I A set H of possible hypotheses.

I A learner L outputs some hypothesis h from H as a model of
c .

I What are the capabilities of learning algorithms? We will not
concentrate on individual learning algorithms, but rather on
broad classes of them.



Error of a hypothesis

How closely the learner’s output hypothesis h approximates the
target concept c?

Definition

True error errorD(h) of the hypothesis h with respect to the target
function c and the probabilistic distribution D is the probability
that the hypothesis h wrongly classifies a randomly selected
instance according to D (errorD(h) ≡ Prx∈D[c(x) 6= h(x)])

(You are already familiar with this definition.)



PAC learnability

to characterize classes of target concepts that can be reliably
learned from a reasonable number of randomly drawn training
examples and a reasonable amount of computation.

Definition Consider a concept class C defined over a set of
instances X of length n (n is the size of instances, i.e. the size of
their representation) and a learner L using hypothesis space H. C
is PAC-learnable by L using H if for all c ∈ C , distributions D
over X , ε such that 0 < ε < 1

2 , δ such that 0 < δ < 1
2 , learner L

will with probability at least 1− δ (confidence) output a hypothesis
h ∈ H such that errorD(h) ≤ ε, in time that is polynomial in 1

ε , 1
δ ,

n, and size(c) (size(c) is the encoding length of c ∈ C , assuming
some representation for C ).



PAC learnability (2)

I.e., two things are required from L:

1. L must output, with arbitrarily high probability 1− δ, a
hypothesis having arbitrarily low error ε.

2. It must do efficiently in time that grows at most polynomially
with 1

ε ,
1
δ , with n and size(c) (that define inherent complexity

of the underlying instance space X and concept class C ).

I.e. to show that some class C of target concepts is PAC learnable,
we have to

1. show that each c ∈ C can be learned from a polynomial
numebr of trainng examples.

2. show that the processing time per example is polynomially
bounded.



Sample complexity

How many training examples are needed for a learner to converge
(with high probability) to a successful hypothesis? We will express
it in terms of size of the hypothesis space H and so-called
Vapnik-Chervonenkis dimension.



Sample complexity for FINITE hypothesis spaces

Can we derive a bound on the number of training examples
required by any consistent learner? Answer is yes. Why?

Recall the definition of Version Space: Version Space (VSH,Data)
with respect to H and training data Data is the subset of H
consistent with the training examples in Data, i.e.
VSH,Data ≡ {h ∈ H|Consistent(h,Data)}.



Sample complexity for FINITE hypothesis spaces (2)

To bound the number of examples needed by any consistent
learner, we need only bound the number of examples needed to
assure that the Version Space contains no unacceptable
hypotheses. The following definition states this condition precisely:

Definition Consider a hypothesis space H, target concept c ,
instance distribution D, and set of training examples Data of c .
The version space VSH,Data is said to be ε-exhausted with respect
to c and D, if every hypothesis h in VSH,Data has true error less
than ε with respect to c and D: (∀h ∈ VSH,Data)errorD(h) < ε.



Sample complexity for FINITE hypothesis spaces (3)

So we bound the number of training examples needed to be sure
that the version space contains no hypotheses that does not match
the training examples. The following theorem provides such a
bound:

Theorem ε-exhausting version space

If the hypothesis space H is finite, and Data is a sequence of
m ≥ 1 independent randomly drawn examples of some target
concept c , than for any 0 ≤ ε ≤ 1, the probability that the version
space VSH,Data is not ε-exhausted (with respect to c) is less than
or equal to |H|e−mε.



Theorem ε-exhausting version space :: Proof

Let h1, h2, ..., hk be all the hypotheses in H that have true error
greater than ε with respect to c . We fail to ε-exhaust the Version
Space if and only if at least one of these k hypotheses happens to
be consistent with all m independent random training examples.
The probability that any single hypothesis having true error greater
than ε would be consistent with one randomly drawn examples is
at most (1− ε). Therefore the probability that this hypothesis will
be consistent with m independently drawn examples is at most
(1− ε)m. Given that we have k hypotheses with error greater than
ε, the probability that at least one of these will be consistent with
all m training examples is at most k(1− ε)m. Since k ≤ |H|, this is
at most |H|(1− ε)m. Finally, we use a general inequality stating
that if 0 ≤ ε ≤ 1 then (1− ε) ≤ e−ε. Thus,
k(1− ε)m ≤ |H|(1− ε)m ≤ |H|e−mε which proves the theorem.



In other words, this bounds the probability that m training
examples will fail to eliminate all ”bad” hypotheses for any
consistent learner using hypothesis space H.

We use this result to determine the number of training examples
required to reduce this probability of failure below some desired
level δ:

|H|e−εm ≤ δ → m ≥ 1

ε
(ln |H|+ ln(

1

δ
)) (1)

The given inequality provides a general bound on the number m of
training examples sufficient to assure that any consistent
hypothesis will be probably (with probability (1− δ))
approximately (within error ε) correct. m grows linearly in 1

ε and
logarithmically in 1

δ .



Agnostic learning and inconsistent hypotheses

If H does not contain the target concept c , then a
zero-training-error hypothesis cannot always be found. We ask to
output hypothesis with the minimum error over the training
examples.



Agnostic learner

makes no prior commitment about whether or not C ⊂ H. The
equation m ≥ 1

ε (ln |H|+ ln(1δ )) is based on the assumption of
zero-training-error hypothesis. Let’s generalize it for nonzero
training error hypothesis: errorData(h), let
hbest = argminh∈HerrorData(h).



Agnostic learner (2)

How many training examples suffice to ensure (with high
probability) that its true error errorD(h) will be no more than
ε+ errorData(hbest)? (in the previous case errorData(hbest) = 0).



The Hoeffding bounds state if errorData(h) is measured over the
set Data containing m randomly drawn examples, then

Pr[errorD(h) > errorData(h) + ε] ≤ e−2mε
2
. (2)

It gives us a bound on the probability that an arbitrary chosen
single hypothesis has a misleading training error.

To assure that the best hypothesis found by L has an error
bounded in this way, we must consider that any h ∈ H could have
a large error

Pr[(∃h ∈ H)(errorD(h) > errorData(h) + ε)] ≤ |H|e−2mε2 . (3)



If we call δ = Pr[(∃ ∈ H)(errorD(h) > errorData(h) + ε)], then

m ≥ 1

2ε2
(ln|H|+ ln(

1

δ
)). (4)

In this less restrictive case m grows as the square of 1
ε , rather than

linearly with 1
ε .



Conjunctions of Boolean literals are PAC learnable
Consider the class C of target concepts described by conjunction
of up to n literals. A literal is either a Boolean variable or its
negation, i.e. either li = ai or li = ¬(ai ) and
Values(ai ) ∈ {+1,−1}. For example, c = l1&l2&l4&...&ln (l3 is
missing). Is C PAC-learnable?

To answer yes,

I we have to show that any consistent learner will require only a
polynomial number of training examples to learn any c in C .

I Then suggest a specific algorithm that uses polynomial time
per training example.

Consider any consistent learner L using a hypothesis space H
identical to C . We need only determine the size |H|.

Consider H defined by conjunctions of literals based on n boolean
variables. Then |H| = 3n (include the variable as a literal in the
hypothesis, include its negation as a literal, or ignore it).



Example
n = 2

h1 = a1
h2 = ¬a1
h3 = a2
h4 = ¬a2
h5 = a1 ∧ a2
h6 = a1 ∧ ¬a2
h7 = ¬a1 ∧ a2
h8 = ¬a1 ∧ ¬a2
h9 = a1 ∧ ¬a1 ∧ a2 ∧ ¬a2

So

m ≥ 1

ε
(n ln 3 + ln

1

δ
). (5)



For example, if a consistent learner attempts to learn a target
concept described by conjunctions of up to 10 literals, and we
desire 95% probability that it will learn a hypothesis with error less
than 0.1, then it suffices to present m randomly drawn training
examples, where m = 1

0.1(10 ln 3 + ln( 1
0.05) = 140.



Recall FIND-S algorithm.

What is the FIND-S algorithm doing? For each new positive
example, the algorithm computes the intersection of the literals
shared by the current hypothesis and the new training example, i.e

For a positive example x = 〈x1, x2, ..., xn〉, removes literals from h
to make it consistent with x.

The most specific hypothesis: a1 ∧ ¬a1 ∧ a2 ∧ ¬a2 ∧ ... ∧ an ∧ ¬an.

Theorem on PAC-learnability of boolean conjunctions

The class C of conjunctions of boolean literals is PAC-learnable by
the FIND-S algorithm using H = C .



k-term DNF is not PAC learnable (2)

|H| ≤ 3nk (k terms, each of which may take on 3n possible values).
However, 3nk is an overestimate of H, because it is
double-counting the cases where Ti = Tj and where Ti is more
general than Tj . We can write

m ≥ 1

ε
(nk ln 3 + ln(

1

δ
)). (6)

It indicates that the sample complexity of k-term DNF is
polynomial in 1

ε ,
1
δ , n, k . BUT ... can be shown that the

computational complexity is not polynomial since this problem is
equivalent to other problems that are known to be unsolvable in
polynomial time.



Sample complexity for INFINITE hypothesis space

We can state bounds on sample complexity that use
Vapnik-Chervonenkis dimension of H rather than |H|. Even more,
this bounds allow us to charachterize the sample complexity of
many infinite hypothesis spaces.



Shattering a set of instances

Definition: A dichotomy of a set S is a partition of S into two
disjoint subsets.

Let’s assume a sample set S ⊂ X . Each hypothesis h ∈ H imposes
some dichotomy on S , i.e. h partitions S into two subsets
{x ∈ S ; h(x) = 1} and {x ∈ S ; h(x) = 0}.



Shattering a set of instances (2)

Definition: A set of instances S is shattered by hypothesis space
H if and only if for every dichotomy of S there exists some
hypothesis in H with this dichotomy.

What if H cannot shatter X , but can shatter some large subset S
of X ? Intuitively, it is reasonable to say that the larger the subset
of X that can be shattered, the more expressive H. The
Vapnik-Chervonenkis Dimension of H is precisely the measure of
expressivity:

Definition:The Vapnik-Chervonenkis dimension, VC (H), of
hypothesis space H defined over instance space X is the size of the
largest finite subset of X shattered by H. If arbitrarily large finite
sets of X can be shattered by H, then VC (H) ≡ ∞.



Shattering a set of instances (2) :: Note

For any finite |H|,VC (H) ≤ log2 |H|.

To see this, suppose VC (H) = d . Then for any finite H will
require For any finite 2d distinct hypotheses to shatter For any
finite d instances. For any finite |H| ≤ 2d .



Shattering a set of instances :: Examples

1. Consider X = R and H the set of real intervals a < x < b.
What is VC (H)?
We must find the largest subset of X that can be shattered by
H. Consider S = {3.1, 5.7}. Can S be shattered by H? For
example four hypotheses will do
1 < x < 2, 1 < x < 4, 4 < x < 7, 1 < x < 7. So we know that
VC (H) ≥ 2. VC (H) ≥ 3???
Consider S = {x1, x2, x3}, without loss of generality assume
x1 < x2 < x3. Clearly, this set cannot be shattered, because
the dichotomy that includes x1 and x3 and not x2 cannot be
represented by a single closed interval. So VC (H) = 2.



Figure 1: Shattering instances (2)



2. Each instance in X is described by the conjunction of exactly
three boolean literals and each hypothesis in H is described by
the conjunction of up to three boolean literals. What is
VC (H)?
Represent each instance by a 3-bit string of values of the
literals l1, l2, l3. Consider three instances:
i1 : 100, i2 : 010, i3 : 001. This set can be shattered by H,
because a hypothesis can be constructed for any desired
dichotomy as follows: if dichotomy is to exclude the instance
ij , add the literal ¬lj to the hypothesis. For example, include
i2 and exclude i1, i3 → use the hypothesis ¬l1 ∧ ¬l3. This can
be extended from three features to n. Thus, the VC
dimension for conjunctions of n boolean variables is at least n.

3. What is the VC-dimension of axis parallel rectangles in the
plane X = R2? The target function is specified by a rectangle,
and labels any example positive iff it lies inside that rectangle.



Figure 2: Shattering instances (1)



Sample complexity and the VC dimension

Recall the question How many randomly drawn training examples
suffice to probably approximately correct learn any target concept
in C ?

Let’s derive the analogous answer to the earlier bound of m (recall
VC (H) ≤ log2 |H|):

m ≥ 1

ε
(4 log2(

2

δ
+ 8VC (H) log2(

13

ε
). (7)



Theorem: Low bound on sample complexity

Consider any concept class C such that VC (C ) ≥ 2, any learner L,
and any 0 < ε < 1

8 , and 0 < δ < 1
100 . Then there exists a

distribution R and target concept in C such that if L observes
fewer examples than

max [
1

ε
log(

1

δ
),

(VC (C )− 1)

32ε
] (8)

then with probability at least δ, L outputs a hypothesis h having
error errorD(h) > ε.


