

Introduction to Machine Learning Class #12, May 2 2023 Barbora Hladká hladka@ufal.mff.cuni.cz

Task of Word Sense Disambiguation

Assign the correct sense of line in the following sentences.

Consider these senses: phone, formation, text, cord, product, division

- 1. I've got Inspector Jackson on the <u>line</u> for you.
- 2. Outside, a <u>line</u> of customers waited to get in.
- 3. He quoted a few <u>lines</u> from Shakespeare.
- He didn't catch many fish, but it hardly mattered.
 With his <u>line</u> out, he sat for hours staring at the Atlantic.
- 5. The company has just launched a new <u>line</u> of small, low-priced computers.
- 6. Draw a <u>line</u> that passes through the points P and Q.
- 7. This has been a very popular new line.

Task of Word Sense Disambiguation

Assign the correct sense of line in the following sentences.

Consider these senses: phone, formation, text, cord, product, division

1.	I've got Inspector Jackson on the <u>line</u> for you.	phone
2.	Outside, a line of customers waited to get in.	formation
3.	He quoted a few <u>lines</u> from Shakespeare.	text
4.	He didn't catch many fish, but it hardly mattered.	
	With his line out, he sat for hours staring at the Atlantic.	cord
5.	The company has just launched a new line of small, low-priced computers.	. product
6.	Draw a line that passes through the points P and Q.	division
7.	This has been a very popular new line. product	? formation?

Task of Word Sense Disambiguation

- What knowledge did you use to assign the senses?
- What were the keys for the correct decision?
- Which sentences were easy to recognize the correct sense and which were the most difficult for you?

Machine Learning

deals with teaching computers to learn from data presented as examples.

- We human beings do word sense disambiguation easily using the context in the sentence and our knowledge of the world.
- We want computers to master it as well.
- Could you implement the disambiguation procedure?
- How well would your code perform the task? Does it make errors?

Let's prepare examples and guide computers to learn from them. That is Machine learning!

A non-technical view on ML

Teach kids to do word sense disambiguation of line.

- 1. You are a teacher.
- 2. Lend English dictionary in a library.

line

Collins COBUILD

Word Frequency

(l<u>aı</u>n 📣 🕕)

Word forms: plural, 3rd person singular present tense lines 40, present participle lining 40, past tense, past participle lined 40

1. COUNTABLE NOUN

A line is a long thin mark which is drawn or painted on a surface.

...a dotted line. 🏹

The ball had clearly crossed the line. 🙀

Synonyms: stroke, mark, rule, score More Synonyms of line

2. COUNTABLE NOUN [usually plural]

The lines on someone's skin, especially on their face, are long thin marks that appear there as they grow older.

He has a large, generous face with deep lines. 🙀 ...fine lines and wrinkles. 🛐

Synonyms: wrinkle, mark, crease, furrow More Synonyms of line

3. COUNTABLE NOUN (B1)

A line of people or things is a number of them arranged one behind the other or side by side.

- Discuss with kids the meanings of <u>line</u> listed in the dictionary. Focus on the context of <u>line</u> in example sentences.
- 4. Prepare a quiz to test the kids.

Select new sentences that kids have NOT seen in the dictionary.

5. Evaluate kids' answers.

A non-technical view on ML

Will all the kids get "A" grade?

 May be, and may be not. Why? They have not seen all possible sentences with <u>line</u> during their learning.

A non-technical view on ML

How to get better grades?

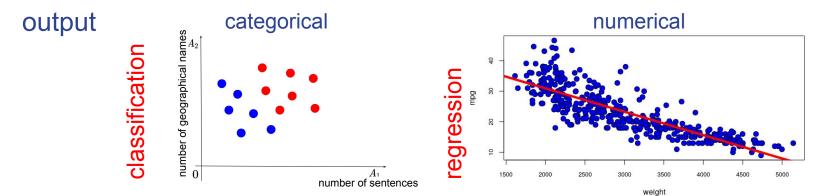
- Get more example sentences, e.g. lend more English dictionaries.
- Focus on other specific characteristics, e.g. part of speech classes that occur in the context of <u>line</u>.

Machine learning

Teach computers to learn from examples in five essential steps

- 1. Formulating the task ("Assign the correct sense of line in a sentence.")
- Getting examples (= gold data, e.g. manual labelling)
 Splitting them into training and test examples.
- 3. Learning from training data using ML methods (= algorithms)
- 4. Testing the learned knowledge (= model) on test data
- 5. Evaluation

Formal definition of Machine learning (Tom Mitchell, 1997)


A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

I.e., a machine learning problem is defined by a program learning from experience E with respect to a task T while its success is being measured by the performance (measure) P which should improve at performing task T with experience E.

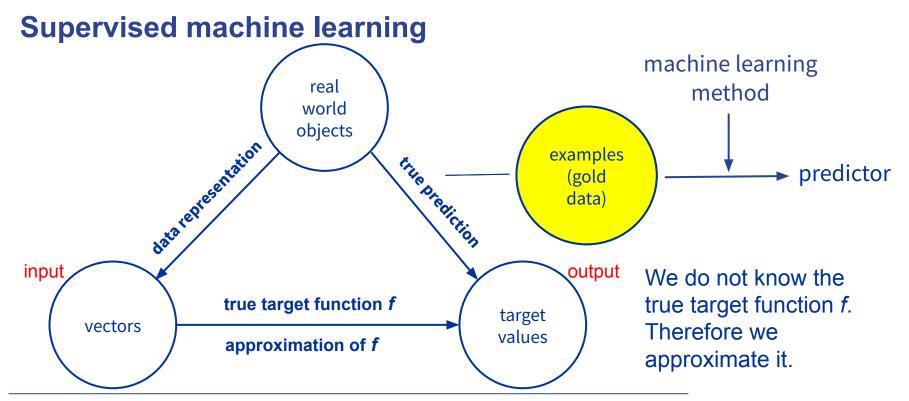
Supervised machine learning

- is building a model from examples for predicting an output for an input.
 We, teachers (supervisors), prepare examples.
- input = vector representing a real world object

Examples of Supervised machine learning

• Spam email detection,

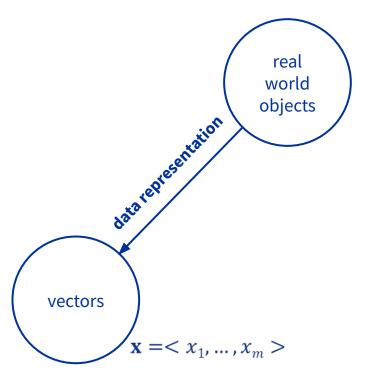
i.e. identify which new incoming emails are spam and which are not


- Regression analysis,
 - e.g. a vehicle fuel consumption prediction based on its weight, and other attributes
- Image classification,
 e.g. classify images of animals as either cats or dogs
- Sentiment analysis,

i.e. determine where a text is positive, negative or neutral

- Authorship detection,

i.e. identify the author of a given text. It is a form of text classification that is often used in forensic linguistics, literary studies, and plagiarism detection

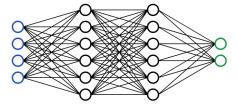


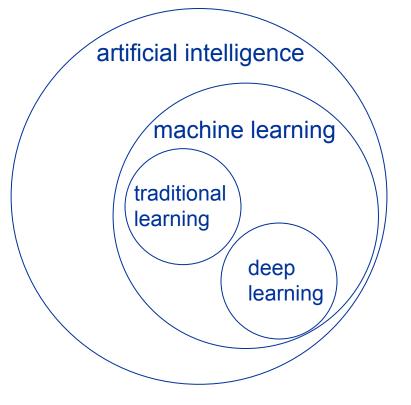
Data representation

- readability by the computer
 - 1 example = 1 vector

ML and Artificial Intelligence

artificial intelligence

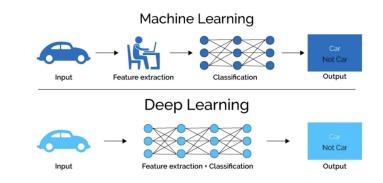

machine learning



ML and Deep learning

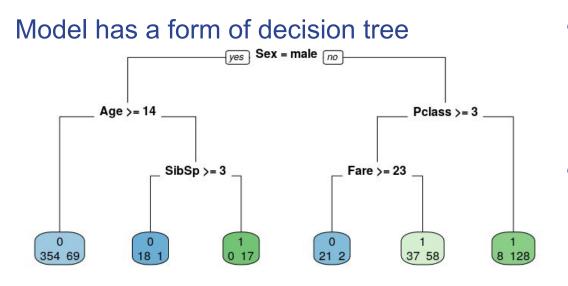
- A neural network consists of multiple layers of interconnected nodes, or neurons, that process input data and produce output data.
- Deep learning uses deep neural networks to model relationships in

data.



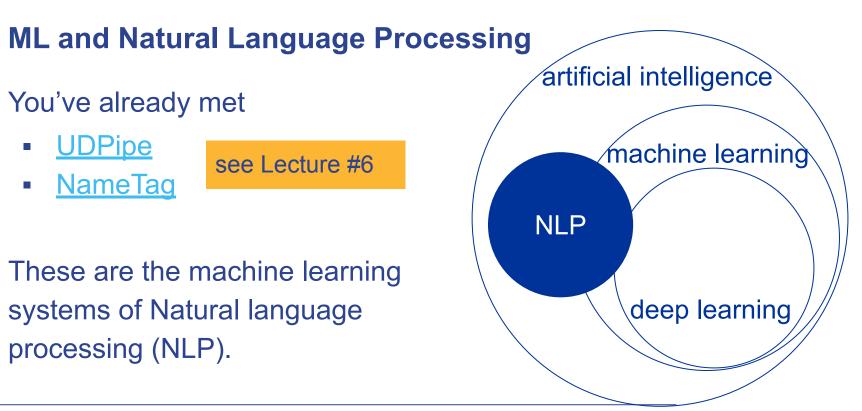
Traditional ML and Deep learning

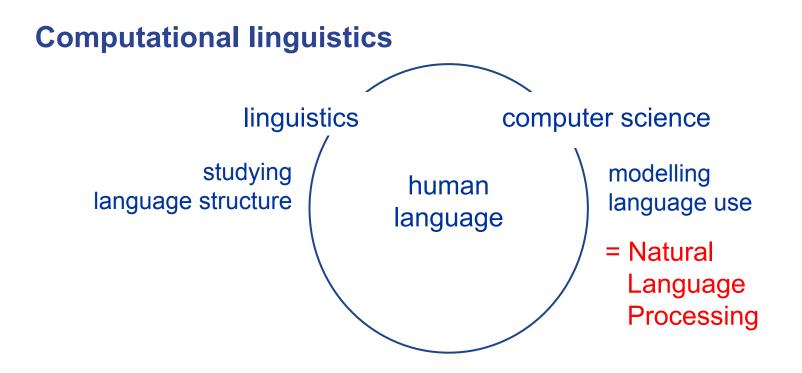
Data representation real world objects > vectors



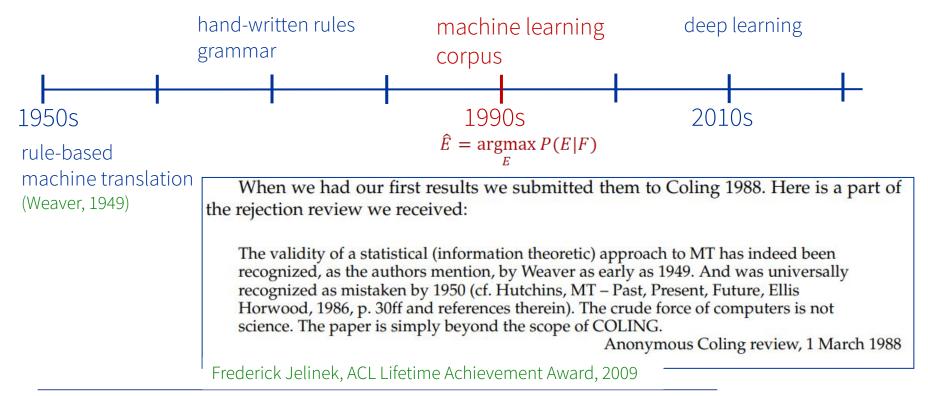
Recall Titanic dataset

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22.00	1	0	A/5 21171	7.25		s
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.00	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.00	0	0	STON/O2. 3101282	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.00	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35.00	0	0	373450	8.05		S
6	0	3	Moran, Mr. James	male		0	0	330877	8.4583		Q


Decision tree learning algorithm


Tree structure description

- Nodes
 - Root node
 - Internal nodes
 - Leaf nodes with target class values
- Decisions
 - Binary questions on a single feature, i.e.
 each internal node
 has two child nodes



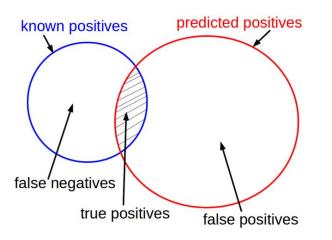
Natural Language Processing

- deals with computer and human interaction in both written and spoken natural language
- uses corpora of texts or speeches, sometimes enriched with linguistic information (annotated corpora)
 see Lecture #6

Evaluation of binary classifiers using a Confusion matrix

e.g. classification of Titanic survivors

		Predicted class								
		Positive	Negative							
True class	Positive	True Positive (TP)	False Negative (FN)							
The class	Negative	False Positive (FP)	True Negative (TN)							


Explanation

- 'Trues' are examples correctly classified
- 'Falses' are examples incorrectly classified
- 'Positives' were predicted as positives (correctly or incorrectly)
- 'Negatives' were predicted as negatives (correctly or incorrectly)

Confusion matrix :: Sensitivity TP/(TP+FN)

= ability of a classifier to correctly identify positive examples (e.g., survivors, patients with a disease)

HW #6: Subject labeling of an EU regulation

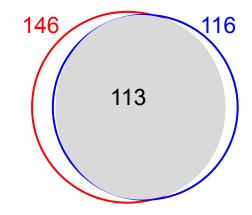
• It is a classification task:

identify which word in a text is or is not subject

- Regulation (EU, Euratom) 2020/2092 of the European Parliament and of the Council of 16 December 2020 on a general regime of conditionality for the protection of the Union budget, its preamble has 29 items
- https://ufal.mff.cuni.cz/courses/npfl134/preample

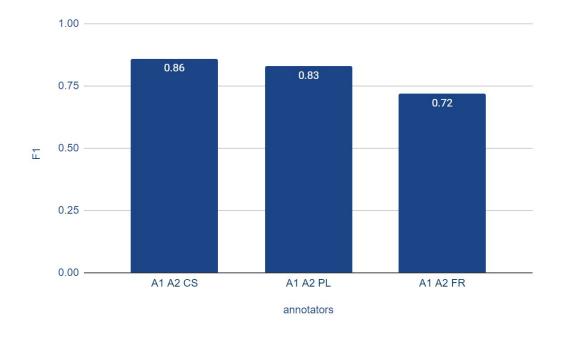
We already did this task with the CS, PL, FR versions, each version by 2 students, see <u>Preamble 1.0</u>

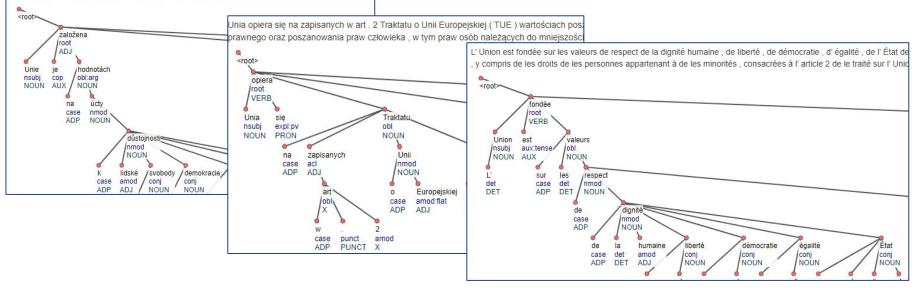
 Languages, formats and link to OJ 																												
	BG	ES	CS	DA	DE	ET	EL			GA	HR	п		LT	HU	мт	NL	PL	PT	RO	SK	SL	FI	SV	6			
HTML	ATHL	ATHL	ATHL	ATHL.	£	ATHL.	ATHL	ATHL.	ATHL.	ATHL	ATHL.	ATHL	ATHL	ATHL.	ATHL	ATHL	ATHL	HTHL	HTHL	ATHL	ATHL	ATHL	ATHL	ATHL.			 	
PDF						A						SUB		(SUB)										SU	B			SUB
Official Journal											SU	3	SUB					SU	B		-							p <mark>rokuratura</mark> i i ludzkimi
											ezstro									-	iy uyop	Jonova	ac wyc	100 020	uj cę c y i	111 20300	nsowym	
	C	S		PL			FR			35	Prawom	iocne	SUB wyroki	powinr	ny być	skutec	znie w	ykonyv	vane.									
# of tokens	2,2	285		2,25	59	3	,160	0																				

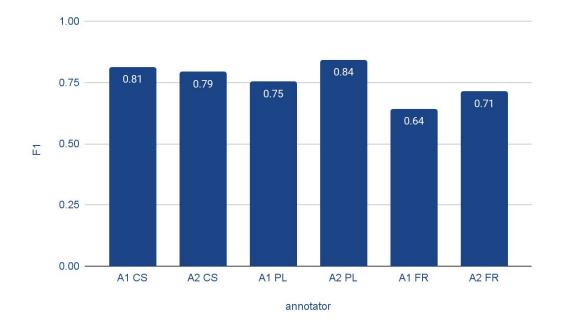


Inter-Annotator Agreement :: CS

Confusion matrix for 2 students A1 and A2


		1	0	Σ								
CS	1	113	33	146								
A1 CS	0	3	2,136	2,139								
	Σ	116	2,169	2,285								
	F1 = 2*0.97*0.77/(0.97+0.77) = 0.85											
	Precis	ion = 113	/(113+3) =	0.97								
	Recall = $113/(111+33) = 0.77$											


Inter-Annotator Agreement


What we also have - a complex syntactic analysis of each version using UDPipe

Unie je založena na hodnotách úcty k lidské důstojnosti , svobody , demokracie , rovnosti , právního si je zakotveno v článku 2 Smlouvy o Evropské unii (dále jen " Smlouva o EU") .

Evaluation of UDPipe vs. students

