Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká

Martin Holub

{Hladka | Holub}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

- library(e1071), but there are also other libraries (kernlab, shogun ...)
- training: function svm()
- prediction: function predict()
- svm() can work in both classification and regression mode
- if target attribute (response variable) is categorical (factor) the engine switches to classification

model = svm(formula, data=, kernel=, cost=, cross=, ...)

- ?svm
- kernel defines the kernel used in training and prediction. The options are: linear, polynomial, radial basis and sigmoid, default = radial
- cost cost of constraint violation (default: 1)
- cross optional, with the value k the k-fold cross-validation is performed

Kernel name	Formula	Learning parameters and their default values		
linear	$\mathbf{x}_i \cdot \mathbf{x}_j$			
polynomial	$(\gamma \mathbf{x}_i \cdot \mathbf{x}_j + c)^d$	γ , gamma=1/(data dimension) c, coef0=0 d, degree=3		
radial	$\exp(-\gamma(\mathbf{x}_i - \mathbf{x}_j ^2))$	γ , gamma=1		
sigmoid	$ anh(\gamma \mathbf{x}_i \cdot \mathbf{x}_j + c)$	γ , gamma=1/(data dimension) c, coef0=0		

- polynomial kernel
 - smaller degree can generalize better
 - higher degree can fit (only) training data better
- radial basis
 - very robust
 - you should try and use it when polynomial kernel is weak to fit your data

SVM Parameter tuning with tune.svm

- SVM is a more complicated method in comparison with the previous and usually requires parameter tuning!
- parameter tuning can take a very long time on big data, use a reasonably smaller part is often recommended

```
> model.tune= tune.svm(class ~ ., data=train.small,
                       kernel = "radial",
                       gamma = c(0.001, 0.005, 0.01, 0.015, 0.02),
                       cost = c(0.5, 1, 5, 10))
> model.tune
Parameter tuning of 'svm':
 sampling method: 10-fold cross validation
 best parameters:
gamma cost
 0.01 1
 best performance: 0.739
```

K-fold cross-validation

parameter cross

 class.weights parameter
 In case of asymmetric class sizes you may want to avoid possibly overproportional influence of bigger classes. Weights may be specified in a vector with named components, like
 m <- svm(x, y, class.weights = c(A = 0.3, B = 0.7))

- Note that SVMs may be very sensible to the proper choice of parameters, so always check a range of parameter combinations, at least on a reasonable subset of your data.
- Be careful with large datasets as training times may increase rather fast.
- C-classification with the RBF kernel (default) can often be a good choice because of its good general performance and the few number of parameters (only two: cost and gamma).
- When you use C-classification with the RBF kernel: try small and large values for cost first, then decide which are better for the data by cross-validation, and finally try several gamma values for the better cost.

target	True	False	False	class			F1
class	Positive	Positive	Negative	weight	Precision	Recall	score
C ₁	TP_1	FP_1	FN_1	W_1	P_1	R_1	F_1
C ₂	TP_2	FP_2	FN_2	W2	P_2	R_2	F_2
 C	 TP <i>k</i>	 FP,	 FN⊭		 P,	 P.	 E.
C_k	IFk	Γ Γ k	r ink	W_k	гk	R_k	F_k

- class weight w_i is the relative frequency of C_i class in the data
- macro-averaged F1 score = $\sum_{i=1}^{k} F_i/k$
- weighted-averaged F1 score = $\sum_{i=1}^{k} w_i F_i / k$

- In general, if you are working with an imbalanced dataset where all classes are equally important, using the macro average would be a good choice.
- If you have an imbalanced dataset but want to assign greater contribution to classes with more examples in the dataset, then the weighted average is preferred.