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Lecture #10

Outline
® Model complexity, overfitting, bias and variance
® Regularization — Ridge regression, Lasso

® |inear regression
® | ogistic regression

® |nstance-based learning
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Model complexity

No universal definition

Heading for the regularization . ..
model complexity is the number of hypothesis parameters
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Model complexity

Finding a model that minimizes generalization error
. is one of central goals of the machine learning process

error

generalization error

WQ error

model complexity
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Model complexity

Complexity of decision boundary for classification
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A, |0
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Bias and variance

@ Select a machine learning algorithm
® Get k different training sets
© Get k predictors

® Bias measures error that originates from the learning algorithm
— how far off in general the predictions by k predictors are from the true

output value

® Variance measures error that originates from the training data
— how much the predictions for a test instance vary between k predictors
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Bias and variance
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Bias and variance

Generalization error errorp(f) measures how well a hypothesis £ (f is a true
target function) generalizes beyond the used training data set, to unseen data
with distribution D. Usually it is defined as follows

e for regression: errorp(f) = E [ — yi]?

e for classification: errorp(f) = Pr(y; # yi)

Decomposition of errorp(f) = Bias® + Variance + IrreducibleError

For simplicity, ignore IrreducibleError.
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Bias and variance

Regression

errorp(f) = (E[f(x)] — £(x))* + E[(F(x) — E[F(x)])*]
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Bias and variance

Classificaton

Zero-one (0-1) loss function L(y,y) = I(yy < 0), indicator variable 1is 1 if
yy <0, 0 otherwise

regression classification
Single loss RSS 0-1
Expexted loss El(y — 9)%] E[L(y, )]
Main prediction E[¥] mean majority vote
Bias? (v — EI])? L(y, E[y])
Variance EI(E[] - 921 EIL(, EDD]

For more details see

® Thomas G Dietterich and Eun Bae Kong. Machine learning bias, statistical bias,
and statistical variance of decision tree algorithms. Tech. rep. Technical report,
Department of Computer Science, Oregon State University, 1995. [url]

® Pedro Domingos. “A unified bias-variance decomposition”. In: Proceedings of 17th
International Conference on Machine Learning. 2000, pp. 231-238. [url]
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Bias and variance

® underfitting = high bias

® overfitting = high variance
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generalization error
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optimum model complexity
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Bias and variance

overfitting

high variance

underfitting
high bias

good low variance,
balance low bias
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Prevent overfitting

We want a model in between which is
® powerful enough to model the underlying structure of data
® not so powerful to model the structure of the training data

Let’s prevent overfitting by complexity regularization,
a technique that regularizes the parameter estimates, or equivalently, shrinks the
parameter estimates towards zero.
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Regularization

A machine learning algorithm

estimates hypothesis parameters © = (0g,01,...,0.,)

using ©* that minimizes loss function L

for training data Data = {{(x;,y;),Xi = (X1iy .-, Xmi), ¥i € Y}

©* = argmingL(©)

Regularization

®» = argmingL(©) + X - penalty(©), where A > 0 is a tuning parameter

Infact, the penalty is applied to 64, ..., 0, but not to 6y since the goal is to
regularize the estimated association between each feature and the target value.
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Regularized linear regression

@ training examples

salary

age
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Regularized linear regression
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Regularized linear regression

@ training examples
é o test examples

regularize gage

unit change age
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Regularized linear regression

f(x) =00+ 01x1 + -+ + Omxm

L(©) = RSS = Y (F(x;) ~ yi)’

% = argming[RSS + X - penalty(©)]
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Ridge regression

% = argming[RSS + X\ - (65 + -+ + 62))]

The larger A, 8,5 gets asymptotically closer to 0 and salary is less sensitive to age

A=1 @ training examples

6y + Hageili

gage < eage

salary

age
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Ridge regression

® Let 0 ,...,03 be ridge regression parameter estimates for a particular value
of A
® Let 67,...,0% be unregularized parameter estimates
2 2
0%, +--+0%,. . .
° 0< 4 < 1 ...the amount that the ridge regression parameter

B
estimates have been shrunken towards; a small value indicates that they have
been shrunken very close to zero

® When A =0, then 05 =0 fori=1,...,m

® When ) is extremely large, then 6% is very small for i=1,...,m

® When )\ between, we are fitting a model and skrinking the parameteres

NPFLO054, 2023 Hladka & Holub Lecture 10, page 20/49



Ridge regression
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Lasso

penalty(©) = 64| +--- + |9

® Let 05 ,...,05 be lasso regression parameter estimates

® Let 07,...,0%, be unregularized parameter estimates

® When A =0, then 05 =0 fori=1,....,m

When )\ grows, then the impact of penalty grows

When ) is extremely large, then 05 =0 for i=1,...,m
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Coefficients
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Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso
can shrink some parameters to zero.
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Elastic net

penalty(©) = Ay - (|01] + -4 [0m|) + X2 - (07 + --- 4+ 62)]

0 < A1, Az are tuning parameters
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Ridge regression

Alternative formulation

e*:a i fX,' — ,'2
% rgéng(() %)

i=1
subject to 03 4+ - + 62 <s

® the gray circle represents the
feasible region for Ridge regression

® the contours represent different RSS
values for the unregularized model
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Ridge regression
Alternative formulation

® |f s is large enough, i.e. A =0, so
that the minimum RSS value falls
into the region of ridge regression
parameter estimates then the
alternative formulation yields the
least square estimates.
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Lasso

Alternative formulation

B4 -0 = argming L(©)

©% = argmin —Yi
= v Y ()

i=1

subject to |01+ -+ |0m| <s

® the grey square represents the
feasible region of the Lasso

® the contours represent different
RSS values for the unregularized
model

% = argming L(©) + A(|6;| + [62])

NPFLO054, 2023 Hladka & Holub Lecture 10, page 28/49



Lasso
Alternative formulation

® |f s is large enough, i.e. A =0, so
that the minimum RSS value falls
into the region of loss parameter
estimates then the alternative
formulation yields the primary
solution.
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Elastic net

92 lasso
ridge

elastic net

— —
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Logistic regression

Sigmoid function f(x) = Heflen

Loss function L(©) = — >, yilog P(yi|xi; ©) + (1 — y;) log(1 — P(yi|xi; ©))

log loss

loss
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Regularized logistic regression

Ridge regression

©F = argming — [Zy,- log(f(x;)) + (1 — yi) log(1 — f(x;))] + )\292] =

—argmme[zy, log(f(x1))) + (1= yi)(~log(1 — F(x:))) + A Y 7] =

= argmine[z Yil1i(©) + (1 — yi)Lo(®) + A Z 6?]
i=1
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Regularized logistic regression

Ridge regression

Since 1
A+\B=CA+B,C=<
then
Ok = argming[Y 67 + C[>_ yil1(0) + (1 — yi)Lo(O)]]
j=1 i=1
where
[1(©) = —log

1+e~ eT

Lo(©) = —log(1 — log ﬁ)
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Regularized logistic regression

Ridge regression

m n
% = argming [Z 07 + CZ log(1 + e 7© %]
j=1 i=1

where

— —1if y,:O
YiZ U 41if yi=1
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SVM

Soft margin classifier

©* = argming Z 012 + CZ{;
j=1 i=1
& > 0is equivalent to & = max(0,1 — y,©0x;), i.e.
©* = argming [Z 91-2 + CZ max(0,1 — y;0 " x;)]

j=1 i=1

s.t. @Tx,- >1-¢& ifyy=+41 and @TX,' <-1+¢&ify,=-1
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SVM

Soft margin classifier

Hinge loss = max(0,1 — y;0© "x;)

® y,0"x; > 1: no contribution to loss
® y,©"x; = 1: no contribution to loss
©® y,0"x; < 1: contribution to loss

loss
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SVM

Soft margin classifier

Soft-margin is equivalent to the regularization problem.

NPFLO054, 2023 Hladka & Holub Lecture 10, page 37/49



Instance-based learning

Key idea

® |BL methods = supervised ML methods
® |BL methods initially store training data, we call them /azy methods

® For a new instance, prediction is based on local similarity,
i.e. a set of similar instances are retrieved and used for prediction

® |BL methods can construct a different approximation of a target function for
each distinct test instance

® Both classification and regression
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Instance-based learning

Key points

@ A distance metric

® How many nearby neighbours look at?
©® A weighting function

O How to fit with local points?
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Lecture 10, page 39/49



Instance-based learning

Distance metric

Recall distance used as dissimilarity metrics for clustering. The most common ones

® Euclidean distance

d(xi’ xj) =

¢ Manhattan distance

d(xi’xj) = Z |Xir - )(jr

r=1
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Instance-based learning

k-Nearest Neighbour algorithm

©® A distance metric: Euclidian (most widely used)

® How many nearby neighbours look at? k training instances closest to x
© A weighting function: unused

O How to fit with local points?

® k-NN classification
k
f(x) = argmax,cy Y (v, i), 1)
i=1
where §(a, b) = 1 if a = b, otherwise 0

® k-NN regression

k
f(x) = Z vi/k 2)
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Instance-based learning

Distance-weighted k-NN algorithm

O A distance metric: Euclidian (most widely used)
® How many nearby neighbours look at? k training instances closest to x

©® A weighting function: greater weight of closer neighbours, e.g.,

1
W,'(X) = d(X, xi)2
O How to fit with local points?
® Classification
k
f(x) = argmax, ¢y Z w;(x)d(v, y;) 3)
i=1
® Regression
k k
f(x) = Z wi(x)yi/ Z wi(x) (4)
i=1 i=1
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Instance-based learning

Distance-weighted k-NN algorithm

Shepard’s method

® (Classification

f(x) = argmax,cy Z w;(x)d(v, yi)
i=1

® Regression

NPFL054, 2023 Hladkéa & Holub
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Instance-based learning

Locally weighted linear regression

® A distance metric: Euclidian (most widely used)

® How many nearby neighbours look at? k training instances closest to x
® A weighting function: w;(x)

O How to fit with local points?

k
©* = argming »_ wi(x)(07x; — ;)2 (7)

i=1
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Instance-based learning
Locally weighted linear regression
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Instance-based learning

LW linear regression vs. simple regression

LWR T,

simple regression f
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Bias and variance

k-Nearest Neighbor

® 1 k — smoother decision boundary — | variance and 1 bias
® | k —7 variance and | bias

1-nearest neighbour 5-nearest neighbour
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Bias and variance

k-Nearest Neighbor

5-nearest neighbour 15-nearest neighbour
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Summary of Examination Requirements

Model complexity, generalization error, Bias and variance

Lasso and Ridge regularization for linear and logistic regression
® Soft margin classifier and regularization
k-NN algorithm
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