Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Lecture #10

Outline

- Model complexity, overfitting, bias and variance
- Regularization Ridge regression, Lasso
 - Linear regression
 - Logistic regression
- Instance-based learning

Model complexity

No universal definition

Heading for the regularization ... model complexity is the number of hypothesis parameters

$$\Theta = \langle \theta_0, \dots, \theta_m \rangle$$

Model complexity

Finding a model that minimizes generalization error ... is one of central goals of the machine learning process

Model complexity

Complexity of decision boundary for classification

- 1 Select a machine learning algorithm
- 2 Get k different training sets
- **3** Get *k* predictors
 - Bias measures error that originates from the learning algorithm
 - how far off in general the predictions by k predictors are from the true output value
- Variance measures error that originates from the training data
 - how much the predictions for a test instance vary between k predictors

low variance

high variance

high bias

low bias

Generalization error $\operatorname{error}_{\mathcal{D}}(\hat{f})$ measures how well a hypothesis \hat{f} (f is a true target function) generalizes beyond the used training data set, to unseen data with distribution \mathcal{D} . Usually it is defined as follows

- for **regression**: $\operatorname{error}_{\mathcal{D}}(\hat{f}) = \operatorname{E}[\hat{y}_i y_i]^2$
- for classification: $\operatorname{error}_{\mathcal{D}}(\hat{f}) = \Pr(\hat{y}_i \neq y_i)$

Decomposition of $error_{\mathcal{D}}(\hat{f}) = \operatorname{Bias}^2 + \operatorname{Variance} + \operatorname{IrreducibleError}$

For simplicity, ignore IrreducibleError.

Regression

$$error_{\mathcal{D}}(\hat{f}) = (E[\hat{f}(\mathbf{x})] - f(\mathbf{x}))^2 + E[(\hat{f}(\mathbf{x}) - E[\hat{f}(\mathbf{x})])^2]$$

Classification

Zero-one (0-1) loss function $L(\hat{y}, y) = I(\hat{y}y \le 0)$, *indicator variable* I is 1 if $y\hat{y} \le 0$, 0 otherwise

	regression	classification
Single loss	RSS	0-1
Expexted loss	$E[(y-\hat{y})^2]$	$E[L(y, \hat{y})]$
Main prediction $E[\hat{y}]$	mean	majority vote
Bias ²	$(y - E[\hat{y}])^2$	$L(y, E[\hat{y}])$
Variance	$E[(E[\hat{y}] - \hat{y})^2]$	$E[L(\hat{y}, E[\hat{y}])]$

For more details see

- Thomas G Dietterich and Eun Bae Kong. Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Tech. rep. Technical report, Department of Computer Science, Oregon State University, 1995. [url]
- Pedro Domingos. "A unified bias-variance decomposition". In: Proceedings of 17th International Conference on Machine Learning. 2000, pp. 231–238. [url]

NPFL054, 2023 Hladká & Holub Lecture 10, page 10/49

- underfitting = high bias
- overfitting = high variance

Prevent overfitting

We want a model in between which is

- powerful enough to model the underlying structure of data
- not so powerful to model the structure of the training data

Let's prevent overfitting by **complexity regularization**, a technique that regularizes the parameter estimates, or equivalently, shrinks the parameter estimates towards zero.

Regularization

A machine learning algorithm estimates hypothesis parameters $\Theta = \langle \theta_0, \theta_1, \dots, \theta_m \rangle$ using Θ^* that minimizes loss function L for training data $Data = \{\langle \mathbf{x}_i, y_i \rangle, \mathbf{x}_i = \langle x_{1i}, \dots, x_{mi} \rangle, y_i \in Y\}$

$$\Theta^* = \operatorname{argmin}_{\Theta} L(\Theta)$$

Regularization

$$\Theta_{R}^{\star} = \mathrm{argmin}_{\Theta} \mathrm{L}(\Theta) + \lambda \cdot \textbf{penalty}(\Theta), \text{ where } \lambda \geq 0 \text{ is a tuning parameter}$$

Infact, the penalty is applied to $\theta_1, \ldots, \theta_m$, but not to θ_0 since the goal is to regularize the estimated association between each feature and the target value.

NPFL054, 2023 Hladká & Holub Lecture 10, page 14/49

$$f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_m x_m$$

$$L(\Theta) = RSS = \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

$$\Theta_{\textit{R}}^{\star} = \mathrm{argmin}_{\Theta}[\textit{RSS} + \lambda \cdot \mathsf{penalty}(\Theta)]$$

$$\Theta_R^{\star} = \operatorname{argmin}_{\Theta}[RSS + \lambda \cdot (\theta_1^2 + \dots + \theta_m^2)]$$

The larger λ , θ_{age} gets asymptotically closer to 0 and salary is less sensitive to age

NPFL054, 2023 Hladká & Holub Lecture 10, page 19/49

Ridge regression

- Let $\theta^\star_{\lambda_1},\dots,\theta^\star_{\lambda_m}$ be ridge regression parameter estimates for a particular value of λ
- Let $\theta_1^{\star}, \dots, \theta_m^{\star}$ be unregularized parameter estimates
- $0 \le \frac{\theta_{\lambda_1}^{\star^2} + \dots + \theta_{\lambda_m}^{\star^2}}{\theta^{\star^2} + \dots + \theta^{\star^2}} \le 1$... the amount that the ridge regression parameter estimates have been shrunken towards; a small value indicates that they have been shrunken very close to zero
- When $\lambda = 0$, then $\theta_{\lambda_i}^{\star} = \theta_i^{\star}$ for i = 1, ..., m
- When λ is extremely large, then $\theta_{\lambda_i}^{\star}$ is very small for $i=1,\ldots,m$
- When λ between, we are fitting a model and skrinking the parameteres

NPFL054, 2023 Hladká & Holub Lecture 10, page 20/49

Ridge regression

penalty(
$$\Theta$$
) = $|\theta_1| + \cdots + |\theta_m|$

- Let $\theta^\star_{\lambda_1},\dots,\theta^\star_{\lambda_m}$ be lasso regression parameter estimates
- Let $\theta_1^{\star}, \dots, \theta_m^{\star}$ be unregularized parameter estimates
- When $\lambda = 0$, then $\theta_{\lambda_i}^{\star} = \theta_i^{\star}$ for $i = 1, \dots, m$
- When λ grows, then the impact of penalty grows
- When λ is extremely large, then $\theta^{\star}_{\lambda_i}=0$ for $i=1,\ldots,m$

Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso can shrink some parameters to zero.

Elastic net

$$\operatorname{penalty}(\Theta) = \lambda_1 \cdot (|\theta_1| + \dots + |\theta_m|) + \lambda_2 \cdot (\theta_1^2 + \dots + \theta_m^2)]$$

 $0 \le \lambda_1, \lambda_2$ are tuning parameters

Ridge regression Alternative formulation

$$\Theta_R^{\star} = \operatorname*{argmin}_{\Theta} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i)^2$$

subject to $\theta_1^2 + \dots + \theta_m^2 \le s$

- the gray circle represents the feasible region for Ridge regression
- the contours represent different RSS values for the unregularized model

$$\Theta_R^\star = \mathrm{argmin}_\Theta \mathrm{L}(\Theta) + \lambda (heta_1^2 + heta_2^2)$$

Ridge regression Alternative formulation

• If s is large enough, i.e. $\lambda=0$, so that the minimum RSS value falls into the region of **ridge regression** parameter estimates then the alternative formulation yields the least square estimates.

Alternative formulation

$$\Theta_R^{\star} = \operatorname*{argmin}_{\Theta} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i)^2$$

subject to
$$|\theta_1| + \cdots + |\theta_m| \le s$$

- the grey square represents the feasible region of the Lasso
- the contours represent different RSS values for the unregularized model

$$\Theta_R^\star = \mathrm{argmin}_\Theta \mathrm{L}(\Theta) + \lambda(| heta_1| + | heta_2|)$$

Lasso Alternative formulation

• If s is large enough, i.e. $\lambda=0$, so that the minimum RSS value falls into the region of **loss** parameter estimates then the alternative formulation yields the primary solution

Elastic net

Logistic regression

Sigmoid function
$$f(\mathbf{x}) = \frac{1}{1+e^{-\Theta^{\top}\mathbf{x}}}$$

Loss function $L(\Theta) = -\sum_{i=1}^{n} y_i \log P(y_i|\mathbf{x_i};\Theta) + (1-y_i) \log(1-P(y_i|\mathbf{x_i};\Theta))$

Regularized logistic regression Ridge regression

$$\begin{split} \Theta_{R}^{\star} &= \operatorname{argmin}_{\Theta} - [\sum_{i=1}^{n} y_{i} \log(f(\mathbf{x}_{i})) + (1 - y_{i}) \log(1 - f(\mathbf{x}_{i}))] + \lambda \sum_{j=1}^{m} \theta_{j}^{2}] = \\ &= \operatorname{argmin}_{\Theta} [\sum_{i=1}^{n} y_{i} (-\log(f(\mathbf{x}_{i}))) + (1 - y_{i}) (-\log(1 - f(\mathbf{x}_{i}))) + \lambda \sum_{j=1}^{m} \theta_{j}^{2}] = \\ &= \operatorname{argmin}_{\Theta} [\sum_{i=1}^{n} y_{i} \mathcal{L}_{1}(\Theta) + (1 - y_{i}) \mathcal{L}_{0}(\Theta) + \lambda \sum_{j=1}^{m} \theta_{j}^{2}] \end{split}$$

NPFL054, 2023 Hladká & Holub Lecture 10, page 32/49

Regularized logistic regression Ridge regression

Since

$$\mathbf{A} + \lambda \mathbf{B} \equiv C\mathbf{A} + \mathbf{B}, C = \frac{1}{\lambda}$$

then

$$\Theta_R^{\star} = \operatorname{argmin}_{\Theta} \left[\sum_{j=1}^{m} \theta_j^2 + C \left[\sum_{i=1}^{n} y_i L_1(\Theta) + (1 - y_i) L_0(\Theta) \right] \right]$$

where

$$L_1(\Theta) = -\log \frac{1}{1 + e^{-\Theta^{\top} x}}$$

$$L_0(\Theta) = -\log(1 - \log \frac{1}{1 + e^{-\Theta^{\top} x}})$$

Regularized logistic regression Ridge regression

$$\Theta_{R}^{\star} = \operatorname{argmin}_{\Theta} [\sum_{j=1}^{m} \theta_{j}^{2} + C \sum_{i=1}^{n} \log (1 + e^{-\overline{y_{i}}\Theta^{\top} x_{i}})]$$

where

$$\overline{y}_i = \begin{cases} -1 & \text{if} \quad y_i = 0 \\ +1 & \text{if} \quad y_i = 1 \end{cases}$$

$$\Theta^* = \operatorname{argmin}_{\Theta} \sum_{j=1}^{m} \theta_j^2 + C \sum_{i=1}^{n} \xi_i$$

 $\xi_i \geq 0$ is equivalent to $\xi_i = \max(0, 1 - y_i \Theta^{\top} \mathbf{x}_i)$, i.e.

$$\Theta^* = \operatorname{argmin}_{\Theta} \left[\sum_{j=1}^m \theta_j^2 + C \sum_{i=1}^n \max(0, 1 - y_i \Theta^\top \mathbf{x}_i) \right]$$

s.t.
$$\Theta^{\top} \mathbf{x}_i \geq 1 - \xi_i$$
 if $y_i = +1$ and $\Theta^{\top} \mathbf{x}_i \leq -1 + \xi_i$ if $y_i = -1$

SVM

Soft margin classifier

Hinge loss = $\max(0, 1 - y_i \Theta^{\top} \mathbf{x}_i)$

- **1** $y_i \Theta^{\top} \mathbf{x}_i > 1$: no contribution to loss
- $\mathbf{y}_i \Theta^{\top} \mathbf{x}_i = 1$: no contribution to loss
- **3** $y_i \Theta^{\top} \mathbf{x}_i < 1$: contribution to loss

NPFL054, 2023 Hladká & Holub Lecture 10, page 36/49

SVM Soft margin classifier

Soft-margin is equivalent to the regularization problem.

Instance-based learning Key idea

- IBL methods = supervised ML methods
- IBL methods initially store training data, we call them lazy methods
- For a new instance, prediction is based on local similarity,
 i.e. a set of similar instances are retrieved and used for prediction
- IBL methods can construct a different approximation of a target function for each distinct test instance
- Both classification and regression

Instance-based learning Key points

- A distance metric
- 2 How many nearby neighbours look at?
- 3 A weighting function
- 4 How to fit with local points?

Instance-based learning Distance metric

Recall distance used as dissimilarity metrics for clustering. The most common ones

Euclidean distance

$$d(\mathbf{x_i}, \mathbf{x_j}) = \sqrt{\sum_{r=1}^{m} (x_{i_r} - x_{j_r})^2}$$

Manhattan distance

$$d(\mathbf{x_i}, \mathbf{x_j}) = \sum_{r=1}^m |x_{i_r} - x_{j_r}|$$

Instance-based learning k-Nearest Neighbour algorithm

- **1** A distance metric: Euclidian (most widely used)
- 2 How many nearby neighbours look at? k training instances closest to x
- 3 A weighting function: unused
- 4 How to fit with local points?
- k-NN classification

$$f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{v} \in Y} \sum_{i=1}^{k} \delta(\mathbf{v}, y_i), \tag{1}$$

where $\delta(a, b) = 1$ if a = b, otherwise 0

k-NN regression

$$f(\mathbf{x}) = \sum_{i=1}^{k} y_i / k \tag{2}$$

Instance-based learning Distance-weighted *k*-NN algorithm

- **1 A distance metric**: Euclidian (most widely used)
- **2** How many nearby neighbours look at? k training instances closest to x
- 3 A weighting function: greater weight of closer neighbours, e.g.,

$$w_i(\mathbf{x}) \equiv \frac{1}{d(\mathbf{x}, \mathbf{x_i})^2}$$

- 4 How to fit with local points?
- Classification

$$f(\mathbf{x}) = \operatorname{argmax}_{v \in Y} \sum_{i=1}^{k} w_i(\mathbf{x}) \delta(v, y_i)$$
(3)

Regression

$$f(\mathbf{x}) = \sum_{i=1}^{k} w_i(\mathbf{x}) y_i / \sum_{i=1}^{k} w_i(\mathbf{x})$$
(4)

Instance-based learning Distance-weighted k-NN algorithm

Shepard's method

Classification

$$f(\mathbf{x}) = \operatorname{argmax}_{v \in Y} \sum_{i=1}^{n} w_i(\mathbf{x}) \delta(v, y_i)$$
 (5)

Regression

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i(\mathbf{x}) y_i / \sum_{i=1}^{n} w_i(\mathbf{x})$$
 (6)

NPFL054, 2023 Hladká & Holub Lecture 10, page 43/49

Instance-based learning Locally weighted linear regression

- 1 A distance metric: Euclidian (most widely used)
- 2 How many nearby neighbours look at? k training instances closest to x
- **3** A weighting function: $w_i(x)$
- 4 How to fit with local points?

$$\mathbf{\Theta}^{\star} = \operatorname{argmin}_{\mathbf{\Theta}} \sum_{i=1}^{k} w_i(\mathbf{x}) (\mathbf{\Theta}^T \mathbf{x}_i - y_i)^2$$
 (7)

Instance-based learning Locally weighted linear regression

Instance-based learning LW linear regression vs. simple regression

Bias and variance k-Nearest Neighbor

- $\uparrow k \rightarrow$ smoother decision boundary $\rightarrow \downarrow$ variance and \uparrow bias
- $\downarrow k \rightarrow \uparrow$ variance and \downarrow bias

1-nearest neighbour

5-nearest neighbour

Bias and variance k-Nearest Neighbor

5-nearest neighbour

15-nearest neighbour

Summary of Examination Requirements

- Model complexity, generalization error, Bias and variance
- Lasso and Ridge regularization for linear and logistic regression
- Soft margin classifier and regularization
- k-NN algorithm