Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Lecture \#4

Outline

- Linear regression
- Auto data set

Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg	Miles per gallon
cylinders	Number of cylinders between 4 and 8
displacement	Engine displacement (cu. inches)
horsepower	Engine horsepower
weight	Vehicle weight (lbs.)
acceleration	Time to accelerate from 0 to 60 mph (sec.)
year	Model year (modulo 100)
origin	Origin of car (1. American, 2. European, 3. Japanese)
name	Vehicle name

Dataset Auto from the ISLR package

Linear regression

Linear regression

Linear regression is a class of regression algorithms assuming that there is at least a linear dependence between a target attribute and features.

A target hypothesis f has a form of linear function

$$
\begin{equation*}
f(\mathbf{x} ; \Theta)=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{m} x_{m} \tag{1}
\end{equation*}
$$

- $\theta_{0}, \ldots, \theta_{m}$ are regression parameters
- simple linear regression if $m=1$

Linear regression

Notation

$$
\begin{gathered}
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{n}
\end{array}\right) \\
\mathbf{x}_{i}=\left\langle 1, x_{i 1}, \ldots, x_{i m}\right\rangle \\
\Theta^{\top}=\left(\begin{array}{c}
\theta_{0} \\
\ldots \\
\theta_{m}
\end{array}\right), \mathbf{x}=\left(\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 m} \\
1 & x_{21} & \ldots & x_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n 1} & \ldots & x_{n m}
\end{array}\right)
\end{gathered}
$$

Now we can write $\mathbf{y}=\mathbf{X} \Theta^{\top}, f(\mathbf{x})=\Theta^{\top} \mathbf{x}$

Parameter interpretation

Numerical feature

θ_{i} is the average change in y for a unit change in A_{i} holding all other features fixed

Parameter interpretation

Categorical feature with k values
Replace the feature with $k-1$ dummy numerical features $\mathrm{DA}^{1}, \ldots, \mathrm{DA}^{k-1}$
Example: run simple linear regression $\mathrm{mpg} \sim$ origin

	DA^{1}	DA^{2}
American	0	0
European	1	0
Japanase	0	1

- $y=\theta_{0}+\theta_{1} \mathrm{DA}^{1}+\theta_{2} \mathrm{DA}^{2}$
- $y=\theta_{0}+\theta_{1}$ if the car is European
- $y=\theta_{0}+\theta_{2}$ if the car is Japanese
- $y=\theta_{0}$ if the car is American
- θ_{0} as the average mpg for American cars
- θ_{1} as the average difference in mpg between European and American cars
- θ_{2} as the average difference in mpg between Japanese and American cars

Parameter estimates Least Square Method

- residual $y_{i}-\hat{y}_{i}$, where $\hat{y}_{i}=\hat{f}\left(\mathbf{x}_{i}\right)=\hat{\Theta}^{\top} \mathbf{x}_{i}$
- Loss function Residual Sum of Squares $\operatorname{RSS}(\hat{\Theta})=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$

Parameter estimates Least Square Method

Optimization problem

$$
\Theta^{\star}=\operatorname{argmin}_{\ominus} \operatorname{RSS}(\Theta)
$$

The argmin operator will give Θ for which $\operatorname{RSS}(\Theta)$ is minimal.

Parameter estimates Least Square Method

Solving the optimization problem analytically

Normal Equations Calculus

Theorem

Θ^{\star} is a least square solution to $\mathbf{y}=\mathbf{X} \Theta^{\top} \Leftrightarrow \Theta^{\star}$ is a solution to the Normal equation $\mathbf{X}^{\top} \mathbf{X} \Theta=\mathbf{X}^{\top} \mathbf{y}$.
$\Theta^{\star}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
Computational complexity of a $(m+1) \times(m+1)$ matrix inversion is $O(m+1)^{3}$:-(

Parameter estimates Least Square Method

Solving the optimization problem numerically

Gradient Descent Algorithm

Gradient Descent Algorithm

Assume: simple regression, $\theta_{0}=0, \theta_{1} \neq 0$

Gradient Descent Algorithm

Assume: simple regression, $\theta_{0} \neq 0, \theta_{1} \neq 0$

Loss Function L has a minimum value at the red point

Contours of Loss Function

Gradient Descent Algorithm

Gradient descent algorithm is an optimization algorithm to find a local minimum of a function f.

Gradient Descent Algorithm

1. Start with some \mathbf{x}_{0}.

Gradient Descent Algorithm

2. Keep changing \mathbf{x}_{i} to reduce $f\left(\mathbf{x}_{i}\right)$ Which direction to go? How big step to do?

Gradient Descent Algorithm

Credits: Andrew Ng

Gradient Descent Algorithm

- We are seeking the solution to the minimum of a function $f(\mathbf{x})$. Given some initial value \mathbf{x}_{0}, we can change its value in many directions.
- What is the best direction to minimize f ? We take the gradient ∇f of f

$$
\nabla f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left\langle\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial x_{1}}, \ldots, \frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial x_{m}}\right\rangle
$$

- Intuitively, the gradient of f at any point tells which direction is the steepest from that point and how steep it is. So we change \mathbf{x} in the opposite direction to lower the function value.

Gradient Descent Algorithm

Choice of the step: assume constant value

If the step is too small, GDA can be slow.

Gradient Descent Algorithm

Choice of the step

If the step is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

Gradient Descent Algorithm

repeat until convergence \{

$$
\Theta^{K+1}:=\Theta^{K}-\alpha \nabla f\left(\Theta^{K}\right)
$$

\}
$-\alpha$ is a positive step-size hyperparameter
(another option is to choose a different step size α_{k} at each iteration)
I.e. simultaneously update $\theta_{j}, j=1, \ldots, m$

Linear regression Gradient Descent Algorithm

For linear regression $f=R S S$

$$
\theta_{j}^{K+1}:=\theta_{j}^{K}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(\left(\Theta^{K}\right)^{\top} \mathbf{x}-y_{i}\right) x_{i j}
$$

RSS is a convex function, so there is no local optimum, just global minimum.

Polynomial regression

Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a d-th order polynomial.

Simple regression
 $y=\theta_{0}+\theta_{1} x_{1}$

Polynomial regression
$y=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\ldots \theta_{d} x_{1}^{d}$
It is still a linear model with features $A_{1}, A_{1}^{2}, \ldots, A_{1}^{d}$.

The linear in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ can be easily estimated using least squares linear regression.

Polynomial regression Auto data set

ISLR: Auto data set

Assessing the accuracy of the model

- Coefficient of determination R^{2} measures the proportion of variation in a target value that is reduced by taking into account \mathbf{x}

$$
\mathrm{R}^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

where Total Sum of Squares TSS $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} ; R^{2} \in\langle 0,1\rangle$

- Mean Squared Error MSE

$$
\mathrm{MSE}=\frac{1}{n} \cdot \mathrm{RSS}
$$

Population regression line vs. Least squares line

- Population regression line: $\theta_{0}, \ldots, \theta_{m}$
- Least squares line: $\hat{\theta_{0}}, \ldots, \hat{\theta_{m}}$
- Assume random variable Y, sample $D=\left\{y_{1}, \ldots, y_{n}\right\}$
- Estimate population mean μ : $\hat{\mu}$, e.g., $\hat{\mu}=\bar{y}=\sum_{i=1}^{n} y_{i}$
- Standard Error of $\hat{\mu}: S E(\hat{\mu})^{2}=\frac{\sigma^{2}}{n}$

Population regression line vs. Least squares line

How accurate is $\hat{\theta}_{i}$ as an estimate of θ_{i} ?

```
Coefficients:
Mrre Sstimate St. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.447 on 390 degrees of freedom
Multiple R-squared: 0.3195, Adjusted R-squared: 0.3177
F-statistic: 183.1 on 1 and 390 DF, p-value: < 2.2e-16
```

- Statistical hypothesis testing (details will be provided later on): H_{0} (null hypothesis): $\theta_{i}=0 ; H_{1}$ (alternate hypothesis): $\theta_{i}<>0$, i.e. there exists a relationship between the target attribute and the feature A_{i}; t-test, p value, significance level α (the more stars, the more significant feature), we reject H_{0} if $p<=\alpha$
- Adjusted R-squared $=R^{2}$ adjusted for the number of features used in the model

Summary of Examination Requirements

- Linear regression, simple linear regression, polynomial regression
- Parameter interpretation
- Least Square Method
- Gradient Descent Algorithm
- Coefficient of Determination, Mean Squared Error

