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The migrant stories analysis

What we can learm about migration from migrant stories?
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o — Recent approaches to quantitative
textual analysis in sociology

How to overcome the problem of coding/dictionaries?

- exploratory research questions rather than testing

hypotheses

+ inductively constructed classifications rather than
pre-established ones

+ observing relationship between textual and non-
textual data
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Sociology and Quantitative Textual
Analysis
Sociology works with quantitative data from its beginning.
Data are primarily non-textual, such as socio-demographic data,
opinions, attitudes, and behaviour.

If textual data enter into analysis, they are coded and codes further
analyzed. For example, answers to open-ended guestions in a survey
questionnaire (What do you feel is the most important issue facing the
world today?") are coded according to the problems mentioned
(climate change, terrorism, inequality etc.)

lidity and (inter-coder) reliability.

Coding textual data: problems of
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Sociology and Quantitative Textual
Analysis

Sociology works with quantitative data from its beginning.

Data are primarily non-textual, such as socio-demographic data,
opinions, attitudes, and behaviour.

If textual data enter into analysis, they are coded and codes further
analyzed. For example, answers to open-ended guestions in a survey
guestionnaire (What do you feel is the most important issue facing the
world today?”) are coded according to the problems mentioned
(climate change, terrorism, inequality etc.)

Coding textual data: problems of validity and (inter-coder) reliability.
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The General Inquirer (1966)

- the first form of computer-aided content
analysis

- a computer program capable to search for
recurrent patterns within textual data
- based on universal and custom dlctlonarles
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- human coders are employed to
solve the problem of validity

- it creates a new problem of time,
training and budget, but also of
inter-coder reliability or agreement

- various measures of inter-coder
agreement



Recent approaches to quantitative

textual analysis in sociology

How to overcome the problem of coding/dictionaries?

- exploratory research questions rather than testing

hypotheses

- inductively constructed classifications rather than

pre-established ones

- observing relationship between textual and non-

textual data




Paterson, L. L., & Gregory, |. N. (2019). Representations of Poverty and Place: Using Geographical Text Analysis to Understand

Discourse. Palgrave Macmillan.

Combined textual and geographic analysis to

understand the representation of poverty in UK.

Procedure:

1. Construction of the corpus: Guardian & Daily Mail articles containing the word

"poverty” and names of localities for a certain period of time.

Example: Mike Barry, once a debt adviser with Citizens Advice, and now operations director of the town’s credit union, is
dismayed—both by Blackpool's worsening poverty and by the rise of the corporate moneylenders (Guardian: news, July

2013)

2. Mapping localities linked to
poverty for both newspapers.

(a) (b)

Fig. 41 Density smoothed maps of <*poverty* PNCs: a Guardian b Duily Mall

3. Identification of "poverty"
collocations in different localities.

Table 4.3 PNC keywords in the Daily Mail comparing the co-text of <*pov-

erty*> in London with the rest of the UK

Place Sig. Keywords

London <.01 two, one, rate, reached, country, protest, he, Victorian,
years

London <.05 slum, caf, says, reason, cereals, imported, walked, Keely,
poorest, improved, great, compared, depression,
Facebook, home, become, during, high, rose, class,
byword, nostalgia, despite, situation, capital, broadly,
miles, men, walk, show

Restof UK <01 too, risks, lowest, people, left, care, we

Restof UK <.05

level, making, road, citing, wherever, small, fuel, herself,
find, families, local, her, poorer, five, here, taking, miss,
ignoring

Laura L Paterson
lan N Gregory

REPRESENTATIONS
OF POVERTY
AND PLACE
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What we can learn about migration from migrant stories?
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What we can learn about migration from migrant stories?

+ we can compare stories of different categories of migrants, observe
similarities and differences in what they told and make inferences about
migration (how is narrated and experienced) = quantitative textual
approach
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D t iama migrant | s - sores - i - video B

- 1018 short biographic narratives of
migrants published on iamamigrant.org
site e e
- the stories have been adapted for -
publication by people or organizations
submitting the story and eventually
selected by IOM, the UN organization
providing help for migrants
- it is not a representative nor unbiased
sample of migrant experiences over the
world
- it is a very heterogeneous sample of
migrants' stories

R LTS —————
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Analysis

Our analysis will be exploratory.

What we know about narrators: gender, the original and current country of residence;
and GDP per capita for countries. We then constructed following independent
variables:

female - male migrant

immigrant - homecomer

intracontinental - intercontinental migrant
higher - equal - lower GDP migrant

A dependent variable - the migrant's story.
We will try to search if there is any relationship between independent and dependent
variables. For example, what kind of impact, if any, gender of narrators has on their

stories.

The analysis was carried out in R, a free software environment for statistical

computing and graphics (https://www.r-project.org/).
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Text analytical techniques used in the study

- - calculation of most frequent semantic words; it
WO rd freq uencies. gives us basic information about words through
which the migrant experience is expressed
identification of frequent pairs (collocations) of semantic

BlgramS: words occurring in the narratives; it informs us about typical
entities, such as "primary school" or "speak English"

identifying clusters or recurring patterns of co-

TOp|C mOd e I | ng - occurring words (called “topics”); it provides
information about potential themes or topics in the
narratives

increase in analytical complexity

14.
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Findings I. - word frequencies
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Findings I. - word frequencies
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Results: There are no surprising differences between male and female migrants' stories
on the level of words. It seems that migration is linked to families; migrants of both
genders express it through similar words (-- share similar experiences?).
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Findings II.
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Results: through the analysis of bigrams, we have got more precise information about the contexts of
some frequent words in narratives; it seems that the narratives depict challenging situations and feelings
rather than easy ones. It also points to some typical actors, processes, and institutions migrants

encounter.
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Findings Ill. - topic modeling

- computing macro patterns of words ("topics") in the narratives
- a single narrative can contain one or more topics
- probabilistic estimation = it can generate valid results but also artifacts
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Findings Ill. - topic modeling

- computing macro patterns of words ("topics") in the narratives
- a single narrative can contain one or more topics
- probabilistic estimation = it can generate valid results but also artifacts

Topic 1

country, feel, culture, world, language, friends, migrants, uni,
experience, miss

Topic 2

family, children, left, school, IOM, money, started, decided, Syria,
Libya

—
™~

family =
people =
home -
life =
children =
time -
left-
day -
school -
iom -
country -
money -
started -
decided -
syria =
job~=
libya -

leave -
months -
didnt -
0.000 0.008 0.006 0.009 0.012

D.DIOS O,OIWU 0.0I15

[=3
o
o

beta

32.



people -
country =
home -
life =

time -

feel -
family -
culture -
world -
language -
live -
friends -
lot -

living -
migrants =
im =
university -
experience -
miss =

migrant =

o
=
=

Findings Ill. - topic modeling

- computing macro patterns of words ("topics") in the narratives
- a single narrative can contain one or more topics
- probabilistic estimation = it can generate valid results but also artifacts
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Topic 1

country, feel, culture, world, language, friends, migrants, uni,
experience, miss

Topic 2

family, children, left, school, IOM, money, started, decided, Syria,
Libya

Interpretation

Topic 1 - general narratives of migrants about their
experience of moving from one country to another,
encountering different cultures, languages and feelings
associated with this change

Topic 2 - a particular theme of war migrants (refugees) who
fled from their homes and sought asylum elsewhere. They
often come from Syria or transit through or end in Libya.
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Findings lll. - topic modeling (cont.)
- gendered decomposition

female migrants
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Findings lll. - topic modeling (cont.)
- gendered decomposition

female migrants
War migrant topic is dominant, general
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Findings lll. - topic modeling (cont.)
- gendered decomposition

female migrants
War migrant topic is dominant, general
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Homework

Carry out your own analysis on the same sample of narratives. Compare
groups in any subset of narratives:
- immigrants vs. homecomers
- transcontinental vs. intracontinental
- immigrants to countries with (much) higher, equal or (much) lower GDP
- men vs. women.

Download data from google drive https://tinyurl.com/26vpzri6

Use a web application Voyant (https://voyant-tools.org/) to explore
similarities and differences between groups of stories. Play with the app and

try different analytical tools.

Make a report with your findings and tentative interpretation. V@Y ANT

see through your text

Deadline: Sunday 17.4. 2020 midnight.
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Sociology and Quantitative Textual
Analysis
Sociology works with quantitative data from its beginning.

Data are primarily non-textual, such as socio-demographic data,
opinions, attitudes, and behaviour.

If textual data enter into analysis, they are coded and codes further
analyzed. For example, answers to open-ended guestions in a survey
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world today?") are coded according to the problems mentioned
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