Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká

Martin Holub

{Hladka | Holub}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

• (Hierarchichal) clustering

- Feature scaling
- NLI data set (75 documents, 5 languages)

• Gradient descent algorithm

• Find a minimum of a function using Gradient Descent Algorithm (simple illustration)

• Auto data set

- Compute Pearson's correlation coeffcients for mpg, displacement, weight, horsepower, acceleration in the Auto data set
- Draw boxplots to visualize comparison mpg by origin, mpg by model year, and weight by origin

Linear regression

• Auto data set, target attribute: mpg

Different ranges and units of features

Is the engine displacement more significant than mpg/cylinders/acceleration?

> str(Auto) 'data.frame': 392 obs. of 9 variables: \$ mpg : num 18 15 18 16 17 15 14 14 14 15 ... \$ cylinders : num 8 8 8 8 8 8 8 8 8 8 8 ... \$ displacement: num 307 350 318 304 302 429 454 440 455 390 ... \$ horsepower : num 130 165 150 150 140 198 220 215 225 190 ... \$ weight : num 3504 3693 3436 3433 3449 ... \$ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ... \$ year : num 70 70 70 70 70 70 70 70 70 ... \$ origin : Factor w/ 3 levels "USA","Europe",..: 1 1 1 1 1 1 1 1 1 ... \$ name : Factor w/ 304 levels "amc ambassador brougham"...: 49 36 231

Scaling

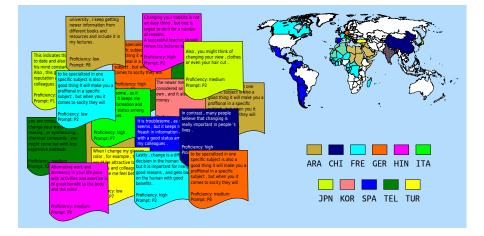
- normalization $z = \frac{x x_{min}}{x_{max} x_{min}}$ $z \in < 0, 1 >$
- standardization $z = \frac{x \overline{x}}{sd_x}$ $\overline{z} = 0, sd_z = 1$

Useful especially for

- Gradient Descent Based Algorithms
- Distance based algorithms

>	head(scale	(Auto[,c('mpg'	', 'displacement',	<pre>'weight')]))</pre>
	mpg	displacement	weight	
1	-0.6977467	1.075915	0.6197483	
2	-1.0821153	1.486832	0.8422577	
3	-0.6977467	1.181033	0.5396921	
4	-0.9539925	1.047246	0.5361602	
5	-0.8258696	1.028134	0.5549969	
6	-1.0821153	2.241772	1.6051468	

Native language identification task (NLI)



Identifying the native language (L1) of a writer based on a sample of their writing in a second language (L2)

Our data

- L1s: Arabic (ARA), Chinese (ZHO), French(FRA), German (DEU) Hindi (HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), Turkish (TUR)
- L2: English
- **Real-world objects**: For each L1, 1,000 texts in L2 from The ETS Corpus of Non-Native Written English (former TOEFL11), i.e. *Train* ∪ *DevTest*
- Target class: L1

More detailed info is available at the course website.

Topic

Most advertisements make products seem much better than they really are

Sample text

now a days the publisity is the best way to promoved a produt and if you wanth to sale a product you should bring some information that makes , that the people who is seeing the advertisements make sure that the product very good and in the future this person could buy it .

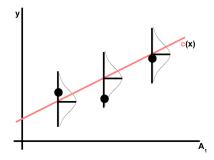
L1 = Spanish

Linear regression Random error term

- numerical target attribute Y
- $\mathbf{y} = \mathbf{X} \Theta^\top + \epsilon$
- random error term ϵ having mean zero, very often unobserved

Linear regression Random error term

- $\epsilon_i = y_i \Theta^{\top} \mathbf{x}_i$ (true target value y_i , expected value $\Theta^{\top} \mathbf{x}_i$)
- Assumption like: At each value of A₁, the output value y is subject to random error ε that is normally distributed N(0, σ²)



Linear regression Random error term

- $\epsilon_i = y_i \Theta^\top \mathbf{x}_i$ (true target value y_i , expected value $\Theta^\top \mathbf{x}_i$)
- residual $e_i = y_i \hat{\Theta}^\top \mathbf{x}_i$ is an estimate of ϵ_i