Outline

- Model complexity, overfitting, bias and variance
- Regularization – Ridge regression, Lasso
 - Linear regression
 - Logistic regression
- Instance-based learning
Model complexity

No universal definition

Heading for the regularization ...

model complexity is the number of hypothesis parameters

\[
\Theta = \langle \theta_0, \ldots, \theta_m \rangle
\]
Finding a model that minimizes generalization error... is one of central goals of the machine learning process.
Model complexity

Complexity of decision boundary for classification

![Graph showing decision boundaries and data points]
Bias and variance

1. Select a machine learning algorithm
2. Get \(k \) different training sets
3. Get \(k \) predictors

- **Bias** measures error that originates from the learning algorithm
 – how far off in general the predictions by \(k \) predictors are from the true output value

- **Variance** measures error that originates from the training data
 – how much the predictions for a test instance vary between \(k \) predictors
Bias and variance

low variance

high variance

low bias

high bias

NPFL054, 2021 Hladká & Holub Lecture 10, page 7/50
Bias and variance

Generalization error $\text{error}_D(\hat{f})$ measures how well a hypothesis \hat{f} (f is a true target function) generalizes beyond the used training data set, to unseen data with distribution D. Usually it is defined as follows

- for **regression**: $\text{error}_D(\hat{f}) = E[\hat{y}_i - y_i]^2$
- for **classification**: $\text{error}_D(\hat{f}) = \Pr(\hat{y}_i \neq y_i)$

Decomposition of $\text{error}_D(\hat{f}) = \text{Bias}^2 + \text{Variance} + \text{IrreducibleError}$

For simplicity, ignore IrreducibleError.
Bias and variance

Regression

\[\text{error}_D(\hat{f}) = (E[\hat{f}(x)] - f(x))^2 + E[(\hat{f}(x) - E[\hat{f}(x)])^2] \]
Bias and variance

Classification

Zero-one (0-1) loss function $L(\hat{y}, y) = I(\hat{y}y \leq 0)$, *indicator variable* I is 1 if $y\hat{y} \leq 0$, 0 otherwise

<table>
<thead>
<tr>
<th></th>
<th>regression</th>
<th>classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single loss</td>
<td>RSS</td>
<td>0-1</td>
</tr>
<tr>
<td>Expected loss</td>
<td>$E[(y - \hat{y})^2]$</td>
<td>$E[L(y, \hat{y})]$</td>
</tr>
<tr>
<td>Main prediction $E[\hat{y}]$</td>
<td>mean</td>
<td>majority vote</td>
</tr>
<tr>
<td>Bias2</td>
<td>$(y - E[\hat{y}])^2$</td>
<td>$L(y, E[\hat{y}]$</td>
</tr>
<tr>
<td>Variance</td>
<td>$E[(E[\hat{y}] - \hat{y})^2]$</td>
<td>$E[L(\hat{y}, E[\hat{y}])]$</td>
</tr>
</tbody>
</table>

For more details see

Bias and variance

- underfitting = high bias
- overfitting = high variance
Bias and variance

overfitting
high variance
underfitting
high bias
good
balance
low variance,
low bias
We want a model in between which is

- powerful enough to model the underlying structure of data
- not so powerful to model the structure of the training data

Let’s prevent overfitting by **complexity regularization**, a technique that regularizes the parameter estimates, or equivalently, shrinks the parameter estimates towards zero.
Regularization

A machine learning algorithm estimates hypothesis parameters $\Theta = \langle \theta_0, \theta_1, \ldots, \theta_m \rangle$ using Θ^* that minimizes loss function L for training data $Data = \{ \langle x_i, y_i \rangle, x_i = \langle x_{1i}, \ldots, x_{mi} \rangle, y_i \in Y \}$

$$\Theta^* = \arg\min_{\Theta} L(\Theta)$$

Regularization

$$\Theta^*_R = \arg\min_{\Theta} L(\Theta) + \lambda \cdot \text{penalty}(\Theta), \text{ where } \lambda \geq 0 \text{ is a tuning parameter}$$

Infact, the penalty is applied to $\theta_1, \ldots, \theta_m$, but not to θ_0 since the goal is to regularize the estimated association between each feature and the target value.
Regularized linear regression

\[\theta_0 + \theta_{\text{age}} x \]

\(\bullet \) training examples
Regularized linear regression

\[\theta_0 + \theta_{\text{age}} x \]

- Black dots: training examples
- Blue dots: test examples
Regularized linear regression

\[\theta_0 + \theta_{age} x \]

- \(\theta_0 \): intercept
- \(\theta_{age} \): coefficient for age

- \(\theta_0 \) and \(\theta_{age} \) are regularized

- \(\blacklozenge \): training examples
- \(\blacktriangle \): test examples

- \(\text{unit change} \)

- \(\text{salary} \)

- \(\text{age} \)
Regularized linear regression

\[f(x) = \theta_0 + \theta_1 x_1 + \cdots + \theta_m x_m \]

\[L(\Theta) = RSS = \sum_{i=1}^{n} (f(x_i) - y_i)^2 \]

\[\Theta^*_R = \arg\min_\Theta [RSS + \lambda \cdot \text{penalty}(\Theta)] \]
Ridge regression

\[\Theta^*_R = \arg\min_{\Theta} [RSS + \lambda \cdot (\theta_1^2 + \cdots + \theta_m^2)] \]

The larger \(\lambda \), \(\theta_{\text{age}} \) gets asymptotically closer to 0 and \textit{salary} is less sensitive to \textit{age}.
Ridge regression

- Let $\theta^*_{\lambda_1}, \ldots, \theta^*_{\lambda_m}$ be ridge regression parameter estimates for a particular value of λ

- Let $\theta^*_1, \ldots, \theta^*_m$ be unregularized parameter estimates

- $0 \leq \frac{\theta^*_1^2 + \cdots + \theta^*_m^2}{\theta^*_1 + \cdots + \theta^*_m} \leq 1$... the amount that the ridge regression parameter estimates have been shrunken towards; a small value indicates that they have been shrunken very close to zero

- **When** $\lambda = 0$, then $\theta^*_{\lambda_i} = \theta^*_i$ for $i = 1, \ldots, m$

- **When** λ is extremely large, then $\theta^*_{\lambda_i}$ is very small for $i = 1, \ldots, m$

- **When** λ between, we are fitting a model and shrinking the parameters
Ridge regression

![Graph showing coefficients vs. log lambda](image-url)
Lasso

\[
\text{penalty}(\Theta) = |\theta_1| + \cdots + |\theta_m|
\]

- Let \(\theta^*_i, \ldots, \theta^*_m \) be lasso regression parameter estimates
- Let \(\theta^*_1, \ldots, \theta^*_m \) be unregularized parameter estimates
- **When** \(\lambda = 0 \), **then** \(\theta^*_i = \theta^*_i \) for \(i = 1, \ldots, m \)
- **When** \(\lambda \) grows, **then** the impact of penalty grows
- **When** \(\lambda \) is extremely large, **then** \(\theta^*_i = 0 \) for \(i = 1, \ldots, m \)
Ridge regression shrinks all the parameters but eliminates none, while the Lasso can shrink some parameters to zero.
Elastic net

\[
\text{penalty}(\Theta) = \lambda_1 \cdot (|\theta_1| + \cdots + |\theta_m|) + \lambda_2 \cdot (\theta_1^2 + \cdots + \theta_m^2)
\]

\[
0 \leq \lambda_1, \lambda_2 \text{ are tuning parameters}
\]
Ridge regression

Alternative formulation

\[\Theta_R^* = \arg\min_{\Theta} \sum_{i=1}^{n} (f(x_i) - y_i)^2 \]

subject to \(\theta_1^2 + \cdots + \theta_m^2 \leq s \)

• the gray circle represents the feasible region for Ridge regression
• the contours represent different RSS values for the unregularized model

\[\Theta^* = \arg\min_{\Theta} L(\Theta) + \lambda (\theta_1^2 + \theta_2^2) \]
If s is large enough, i.e. $\lambda = 0$, so that the minimum RSS value falls into the region of ridge regression parameter estimates then the alternative formulation yields the least square estimates.
\[\Theta^*_R = \arg\min_{\Theta} \sum_{i=1}^{n} (f(x_i) - y_i)^2 \]

subject to \(|\theta_1| + \cdots + |\theta_m| \leq s\)

- the grey square represents the feasible region of the Lasso
- the contours represent different RSS values for the unregularized model

\[\Theta^*_R = \arg\min_{\Theta} L(\Theta) + \lambda(|\theta_1| + |\theta_2|) \]
If s is large enough, i.e. $\lambda = 0$, so that the minimum RSS value falls into the region of loss parameter estimates then the alternative formulation yields the primary solution.
Elastic net
Logistic regression

\[f(x) = \frac{1}{1 + e^{-\Theta^T x}} \]
Logistic regression

\[L(\Theta) = - \sum_{i=1}^{n} y_i \log P(y_i|\mathbf{x}_i; \Theta) + (1 - y_i) \log(1 - P(y_i|\mathbf{x}_i; \Theta)) \]
Regularized logistic regression
Ridge regression

$$\Theta^*_R = \arg\min_\Theta \left[-\sum_{i=1}^n y_i \log(f(x_i)) + (1 - y_i) \log(1 - f(x_i)) \right] + \lambda \sum_{j=1}^m \theta_j^2] =$$

$$= \arg\min_\Theta \left[\sum_{i=1}^n y_i (- \log(f(x_i))) + (1 - y_i)(- \log(1 - f(x_i))) + \lambda \sum_{j=1}^m \theta_j^2 \right] =$$

$$= \arg\min_\Theta \left[\sum_{i=1}^n y_i L_1(\Theta) + (1 - y_i)L_0(\Theta) + \lambda \sum_{j=1}^m \theta_j^2 \right]$$
Since

$$A + \lambda B \equiv CA + B, \quad C = \frac{1}{\lambda}$$

then

$$\Theta^*_R = \arg\min_{\Theta} \left[\sum_{j=1}^{m} \theta_j^2 + C \left[\sum_{i=1}^{n} y_i L_1(\Theta) + (1 - y_i) L_0(\Theta) \right] \right]$$

where

$$L_1(\Theta) = -\log(1/1 + e^{-\Theta^T x})$$

$$L_0(\Theta) = -\log(1 - 1/1 + e^{-\Theta^T x})$$
Regularized logistic regression
Ridge regression

$$\Theta^*_R = \arg\min_\Theta \left[\sum_{j=1}^{m} \theta_j^2 + C \sum_{i=1}^{n} \log(1 + e^{-\bar{y}_i \Theta^\top x_i}) \right]$$

where

$$\bar{y}_i = \begin{cases} -1 & \text{if } y_i = 0 \\ +1 & \text{if } y_i = 1 \end{cases}$$
\[\Theta^* = \arg\min_{\Theta} \sum_{j=1}^{m} \theta_j^2 + C \sum_{i=1}^{n} \xi_i \]

\(\xi_i \geq 0 \) is equivalent to \(\xi_i = \max(0, 1 - y_i \Theta^\top x_i) \), i.e.

\[\Theta^* = \arg\min_{\Theta} \left[\sum_{j=1}^{m} \theta_j^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i \Theta^\top x_i) \right] \]

s.t. \(\Theta^\top x_i \geq 1 - \xi_i \) if \(y_i = +1 \) and \(\Theta^\top x_i \leq -1 + \xi_i \) if \(y_i = -1 \)
Hinge loss = \(\max(0, 1 - y_i\Theta^T x_i) \)

1. \(y_i\Theta^T x_i > 1 \): no contribution to loss
2. \(y_i\Theta^T x_i = 1 \): no contribution to loss
3. \(y_i\Theta^T x_i < 1 \): contribution to loss
Soft-margin is equivalent to the regularization problem.
Instance-based learning

Key idea

- IBL methods = supervised ML methods
- IBL methods initially store training data, we call them lazy methods
- For a new instance, prediction is based on local similarity, i.e. a set of similar instances are retrieved and used for prediction
- IBL methods can construct a different approximation of a target function for each distinct test instance
- Both classification and regression
Instance-based learning

Key points

1. A distance metric
2. How many nearby neighbours look at?
3. A weighting function
4. How to fit with local points?
Recall distance used as dissimilarity metrics for clustering. The most common ones

- **Euclidean distance**

 \[d(x_i, x_j) = \sqrt{\sum_{r=1}^{m} (x_{ir} - x_{jr})^2} \]

- **Manhattan distance**

 \[d(x_i, x_j) = \sum_{r=1}^{m} |x_{ir} - x_{jr}| \]
Instance-based learning

\textit{k}-Nearest Neighbour algorithm

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? \(k \) training instances closest to \(x \)
3 A weighting function: unused
4 How to fit with local points?

 - \textbf{k-NN classification}

\[
f(x) = \arg\max_{v \in \mathcal{Y}} \sum_{i=1}^{k} \delta(v, y_i), \tag{1}
\]

where \(\delta(a, b) = 1 \) if \(a = b \), otherwise 0

- \textbf{k-NN regression}

\[
f(x) = \sum_{i=1}^{k} y_i / k \tag{2}
\]
Instance-based learning
Distance-weighted k-NN algorithm

1. **A distance metric**: Euclidean (most widely used)

2. **How many nearby neighbours look at?** k training instances closest to x

3. **A weighting function**: greater weight of closer neighbours, e.g.,

 $$w_i(x) \equiv \frac{1}{d(x, x_i)^2}$$

4. **How to fit with local points?**

 - **Classification**
 $$f(x) = \arg\max_{v \in Y} \sum_{i=1}^{k} w_i(x) \delta(v, y_i) \tag{3}$$

 - **Regression**
 $$f(x) = \sum_{i=1}^{k} w_i(x) y_i / \sum_{i=1}^{k} w_i(x) \tag{4}$$
Shepard’s method

- Classification

\[
f(x) = \arg\max_{v \in Y} \sum_{i=1}^{n} w_i(x) \delta(v, y_i)
\]

- Regression

\[
f(x) = \frac{\sum_{i=1}^{n} w_i(x)y_i}{\sum_{i=1}^{n} w_i(x)}
\]
Instance-based learning
Locally weighted linear regression

1. A distance metric: Euclidian (most widely used)
2. How many nearby neighbours look at? \(k \) training instances closest to \(x \)
3. A weighting function: \(w_i(x) \)
4. How to fit with local points?

\[
\Theta^* = \arg\min_{\Theta} \sum_{i=1}^{k} w_i(x)(\Theta^T x_i - y_i)^2
\]

(7)
Instance-based learning
Locally weighted linear regression
Instance-based learning
LW linear regression vs. simple regression

[Diagram showing a comparison between LW linear regression (LWR) and simple regression, with data points and lines.]
Bias and variance

k-Nearest Neighbor

- $k \uparrow \rightarrow$ smoother decision boundary $\rightarrow \downarrow$ variance and \uparrow bias
- $k \downarrow \rightarrow \uparrow$ variance and \downarrow bias

1-nearest neighbour

5-nearest neighbour
Summary of Examination Requirements

- Binary classifier using ROC curve (True Positive Rate vs. False Positive Rate)
- Model complexity, generalization error, Bias and variance
- Lasso and Ridge regularization for linear and logistic regression
- Soft margin classifier and regularization
- k-NN algorithm