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Lecture #12

Outline

® Principal Component Analysis
* Naive Bayes algorithm

® Bayesian networks
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Principal Component Analysis

PCA is

® 3 tool to analyze the data

® 3 tool to do dimensionality reduction
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Basic concepts needed

® data analysis
measures of center and spread, covariance and correlation

® |inear algebra
eigenvectors, eigenvalues, matrices, dot product, basis
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Data analysis

How two variables are related

Both covariance and correlation indicate how closely two variables relationship
follows a straight line.

Covariance cov(X, Y) is a measure of the joint variability of two random
variables X and Y

cov(X, Y) = E[(X — EX)(Y — EY)]

The magnitude of the covariance is not easy to interpret because it is not
normalized and hence depends on the magnitudes of the variables.

® > ( both variables increase or decrease together
® < 0 while one variable increases the other decreases
® = ( variables are linearly independent of each other
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Auto data set
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Data analysis

Covariance matrix of features Aq,..., A,
var(Aj) cov(A1,Az) ... cov(Ag,Ap)
C(Ar,..., An) = cov(Ay, Aq) var(A») ... cov(Ap, Ap)
cov(Am, A1) cov(An,Az) ... var(Ap)

® diagonal - variance of the features var(A;)
® symmetrical about the diagonal cov(A;, A;) = cov(A;, A))
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Data analysis

Auto data set

> cov(Auto[c("mpg", "cylinders", "ho
# mpg  cylinders
# mpg 60.91814 -10.352928
# cylinders -10.35293 2.909696
# horsepower -233.85793  55.348244
# weight -5517.44070 1300.424363
> cor(Auto[c("mpg", "cylinders", "ho
# mpg cylinders h
# mpg 1.0000000 -0.7776175 -
# cylinders -0.7776175 1.0000000
# horsepower -0.7784268 0.8429834
# weight -0.8322442 0.8975273

rsepower", "weight")])

horsepower weight
-233.85793 -5517.441
55.34824  1300.424
1481.56939 28265.620
28265.62023 721484.709

rsepower", "weight")])

orsepower weight
0.7784268 -0.8322442
0.8429834 0.8975273
1.0000000 0.8645377
0.8645377 1.0000000
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Linear algebra

® A is a linear transformation. Eigenvector of A is a vector u for which exists
eigenvalue )\ so that A-u = )\u

® eigenvector u does not change its direction under the transformation A
® )u scales a vector u by \; it changes its length, not its direction

@ The covariance matrix of X is an m x m symmetric matrix C(X) = -2 XXT

©® Any symmetric matrix m x m A has a set of orthonormal eigenvectors

Vi,Vo,...,V, associated with eigenvalues A1, Ao, ..., Am
® forany i, A-v; = \v;
* vil[=1

L V,"V_,'ZOifi#j
O A is a symmetric m x m matrix and E is an m X m matrix whose i-th column
is the j-th eigenvector of A. The eigenvectors are ordered in terms of
decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A=E-D-E"

@ If the rows of E are orthogonal, then E™! = ET
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Linear algebra

Dot product
® u={(up,...,Un), V={Vi,...,Vpn)
® algebraic definition u-v=u1vy + -+ + upvny
® geometric definition u-v = ||ul| - ||v|| - cos«

® u and v are orthogonal iffu-v=20

84

V
v[[=1-u-v=|u| cosa
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Linear algebra

® A set of vectors x; € R™ is linearly independent if no vector is a linear
combination of other vectors.

Basis of R™ is a set vectors uy,...,upy
® linearly independent
*u-u=0ij=1....mi#j
®*anyueR™ u=qu;+---+ Cphunm
o for example, the standard basis of the 3-dimensional Euclidean space R3

consists of x = (1,0,0),y = (0,1,0),z = (0,0,1). It is an example of
orthonormal basis, so called naive basis |
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Principal Component Analysis

Data = {x;,x; = (X1j, ..., Xmi)}, |Data] = n

AA
]
X11 Xin
X1 ... X
X — | *& 2n ._ o0 X,
'.Xn 4'*
Xm1l -+ Xmn . . ! >
[ ] ) ® x A
. . i i
(i.e. examples in columns) o
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PCA

Which features to keep?

® features that change a lot, i.e. high variance

® features that do not depend on others, i.e. low covariance
Which features to ignore?
® features with some noise, i.e. low variance

C(A1,As,...,Ap)

® on the diagonal, large values correspond to interesting structure

off the diagonal, large values correspond to high redundancy

high correlation ~ high redundancy

® the most important feature has the largest variance
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® Question

Is there any other representation of X to extract the most important features?

® Answer

Use another basis

PT.X=12

where P transforms X into Z; Z is a new representation of X
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PCA

Heading for P

Pi1 ... ... Pim
P— P21 ... ... P2m
Pm1 -+ .. Pmm

® principal components of X are the vectors p; = (p1j,- . -, Pmi)

® principal component loadings of p; are the elements p;1, ..., pim
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PCA

Heading for P

P1 - X1 cee oo P1e
.xn

Z— P2 - X1 I ¢ )

Pm-X1 ... ... Pm

+ Xp

i-principal component scores of n instances are p;
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PCA

Heading for P

P, \direction A A
i p

irection

. )(i1 1
[
—_ — } .
. 21 . . i Ai
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PCA

Heading for P

® What is a good choice of P?
® What features we would like Z to exhibit?

Goal: Find a set of directions on which to project the data such that

® the variance of each projection is maximized

® the projections are uncorrelated (random variables X, Y are said to be
uncorrelated if their cov(X, Y) = 0)
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PCA

Heading for P

Let's compute the variance of a random variable obtained by projecting X onto a
direction represented by the vector p (1 = E[X]):

o? =E[(p'X - E[p"X])’] =p E[(X — p)(X = ) "Jp = p' C(X)p

We use the method of Lagrange multipliers:
Maximize
p' C(X)p
subject to
T

pp=1
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PCA

Heading for P

Lagrangian function
L(p,A)=p ' C(X)p—Ap'p

oL
_— = X =
op 0= C(X)p=Ap

Our problem comes down to seeking eigenvalues and eigenvectors of C(X).
In the general case, C(X) has m distinct eigenvectors and eigenvalues.
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Which one is the solution we seek?

o> =p'C(X)p=p Ap=2p'p=2

The variance is maximized if we choose the unit eigenvector that corresponds to
the largest eigenvalue of C(X). Denote these as p1, A;.

Usually we cannot represent the data sufficiently good with just one projection.
Thus, we need to find the procedure for computing the next projection directions
P2, A2, P3, A3, ...
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PCA

Heading for P

® principal components are new basis vectors to represent x;, j =1,...,n
® p; - X; is a projection of x; on p;

® changing the basis does not change data, it changes their representation
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Derivation of PCA

@ preprocessing Data
mean normalization to get centered data — X

_pa_ 1 T
® C(X)=A=_5XX
©® Compute eigenvectors v, ...,V and eigenvalues A1, ..., A, of A

O Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest

to lowest: p1,...,Pm, A1 > A2 >+ > Ay
O The eigenvectors p1, ..., Pm become columns of P

Pii

pi=1-..

Pmi
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Properties of PCA

PT.X=12
P1 - X1 v oee P1Xp
ya P2 - X1 P2 - X,
Pm-X1 ... ... Pm- Xp

® The i-th diagonal value of C(Z) is the variance of X along p;.

® We calculate a rotation of the original coordinate system such that all
non-diagonal elements of the new covariance matrix become zero.

® The principal components define the basis of the new coordinate axes and
the eigenvalues correspond to the diagonal elements of the new covariance
matrix.

® So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

see p_.29.4

C(P" -X) ﬁ(PT X)-(PT-X)T =

1
n—1

PT X - xT .P let A::X~X-r

1
PT.A.-P=
n—1

see p.29.4 1 T T see p.29.5 1 T Ty—1 T Ty—1 1
n—lP (P-D-P)-P n—1 (P°) (P5) n—1
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Properties of PCA

A geometric interpretation for the first principal component p;

It defines a direction in feature space along which the data vary the most. If we
project the n instances xi,...,X, onto this direction, the projected values are the
principal component scores z1, ..., 2z, themselves.
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Proportion of Variance Explained (PVE)

How much of the information in a given data set is lost by projecting the instances
onto the first few principal components?

In other words, how much of the variance in the data is not contained in the first
few principal components?

. . X m m 1 n 2

L] . = pr
total variance in XS j=1 var_(AJ) =it m i1 X
(assuming feature normalization)

- L1y 2
® variance expressed by px: > i, Zj;

n 22.
* PVE(px) = i ;

E X
i=1 i=1 U

* PVE(py,...,pm) = X1, PVE(p;)), M < m
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PCA

Auto data set

v

a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
summary (pca.a)

v

# Importance of components:

# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA

Auto data set

Scree plot

Scree plot: Auto data set Scree plot: Auto data set
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PCA

Auto data set

> pca.a$rotation

PC1 PC2 PC3 PC4
mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

® PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

® PC2 places most of its weight on mpg and less weight on the other three
features.
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Biplot for the Auto data set is showing

A biplot displays both the PC scores and the PC loadings.
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The biplot for the Auto data set is showing

® the scores of each example (i.e., cars) on the first two principal components
with axes on the top and right
— see the id cars in black

® the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
— see the red arrows
— their length corresponds to the variabliaty of the original features

> a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> apply(a, 2, var)
mpg cylinders  horsepower weight
6.091814e+01 2.909696e+00 1.481569e+03 7.214847e+05
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In general, a m x n matrix X has min(n — 1, m) distinct principal components.

® Question
How many principal components are needed?

® Answer
There is no single answer to this question. Study scree plots.
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Probability vs. likelihood

Task: Predict the outcome of each of 10 coin tosses

probability likelihood

Pr(X = k|n=10,p = 0.8) L(p|X =8)

Pr(datal|) L(0]data)
§A_|:|D ] DI:I_ ER : . : . :
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Bayes theorem

Probabilistic approach to classification Y = {y1,5,...,yx}

y* = argmax,, cy Pr(yk|xi, ..., Xm) (1)

Bayes theorem

prior probability x likelihood

posterior probability = = I Tikelihood @)
Pr(Y) X Pr(Al, oy Am | Y)
Pr(Y[Ay, ..., An) = Pr(A1, ..., Am)
Then
P P ooy Xm
y* = argmax,, .y rye) x Prixi, ..., Xm|yi) ()

Pr(xi, ..., Xm)
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Conditional independence

Let X, Y and Z be three descrete random variables. We say that X is
conditionally independent of Y given Z if

VXi, ¥j» 2k, X; € Values(X), y; € Values(Y'), z, € Values(Z) :
Pr(X=xi|Y =y;,Z = z) = Pr(X = x;|Z = z) (4)

le., P(X]Y, Z) = P(X|2).
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Conditional independence

Do we enjoy our favorite water sport on this day? (Credit: T. Mitchel, 1997)

Sky  AirTemp Humidity Wind EnjoySport
sunny warm normal  strong No
sunny warm high strong Yes
rainy cold high strong No
sunny warm high strong Yes

Conditional independence of features given EnjoySport: presence of one particular
feature value does not affect the other features’ values given EnjoySport, e.g., if

the temperature is hot, it does not necessarily mean that the humidity is high and
the features have an equal effect on the outcome

NPFL054, 2021
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Conditional independence

If we work with two features A;, A, and we assume that they are conditionally
independent given the target class Y, then

product rule

Pr(Ar, As| Y) PO M PrA | Ay, V) % Pr(A|Y) S T PPN Pr( AL Y) x Pr(AsY)

Note: Product rule (a.k.a. Chain rule)

PI’(Am, e 7Al) = PI’(Am|Am,1, ey Al) . PI’(A,,,,l, ey Al)
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Naive Bayes classifier

Pr(yk) PI’(X]_, oo ;Xm|)/k)

*
= P . =

y argmax,, ¢y r(yelxi, - -« Xm) argmax,, ¢y Prias. )
— Assume conditional independence of features A, ..., A given Y. Then
duct rul i a
Pr(xi, X2y -« -y Xm|Yk) procuct rule HJm:l Pr(xj|xi, x2, ..., Xj—1, Y«) Lz

= [T}Z1 Pr(xily«)

— Pr(x1,...,Xxm) is constant. Then
m
y* = argmax, cy Pr(yc) [ [ Pr(xlye) (5)

Jj=1
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Discriminative vs. generative classifiers

Computing Pr(y|x)

e discriminative classifier does not care about how the data was generated.
It directly discriminates the value of y for any x.

® generative classifier models how the data was generated in order to classify
an example.
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Discriminative vs. generative classifiers

® | ogistic regression classifier is a discriminative classifier
f(x;©) =p(y = 1[x,0)

® Naive Bayes classifier is a generative classifier

@ Learn Pr(x|y) and Pr(y)

@® Apply Bayes rule to get

Priybe) = “ PRI - prixly) Pr(y)

© Classify x
y* = argmax, Pr(y|x) = argmax, Pr(x|y) Pr(y)
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Naive assumption of feature conditional independence given a target
class is rarely true in real world applications (high bias). Nevertheless,
Naive Bayes classifier surprisingly often shows good performance in
classification (low variance).
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Naive Bayes Classifier

is a linear classifier

NB classifier gives a method for predicting rather than for building an explicit
classifier.

Let us focus on binary classification Y = {0,1} with binary features Ay, ..., Apn.

We predict 1 iff

Pr(y
Pr(y

)L Prixly = 1)

1
> 1
0) [T Pr(xly = 0)
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Naive Bayes Classifier

is a linear classifier

Denote p; = Pr(x; = 1|y = 1), q; = Pr(x; = 1|y = 0)

Then
Priy = 1), p/(1 — p)' %
_ m Xj 1—x; >1
Pr(y =0) Hj:l q; (I—g)t>
Py = DI (- p)(e25)
Pr(y =0) Hjm:1(1 qJ)(lijq, )
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Naive Bayes Classifier

is a linear classifier

Take logarithm

m m
rly =1) 1-p; p; qj
I | log—— —lo >0
ogPy O+Zog +;(g1_pj 81— g%

NB classifier as a linear classifier where

O*Igp( +Z|og1_

Pj | q;

0 =1 - :
J og].*pj og].*qj'

j=1...,m
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Bayesian belief networks (BBN)

® Naive Bayes classifier assumes that ALL features are conditionally
independent given a target attribute.

® A Bayesian network is a probabilistic graphical model that encodes
probabilistic relationships among attributes of interest.

® BBNs allow stating conditional independence assumptions that apply to
subsets of the attributes.

® Dependencies are modeled as graph where nodes correspond to attributes
and edges to dependency between attributes.
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Bayesian belief networks

Settings

Consider an arbitrary set of random variables Xi, X3, ..., X,. Each variable X; can
take on the set of possible values Values(X;).

We define the joint space of the variables Xi, X3, ..., X}, to be the cross product
Values(X1) x Values(X3) x Values(X3) x ... x Values(Xy,).

The probability distribution over the joint space is called the joint probability
distribution Pr(x, x2, ..., X,,) where
x1 € Values(X1), xa € Values(Xz), ..., x, € Values(Xy,).

BBN describes the joint probability distribution for a set of variables by specifying
a set of conditional independence assumptions together with sets of local
conditional probabilities.
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Bayesian belief networks

Representation
© A directed acyclic graph G = (V, E)

® nodes are random variables
® arcs between nodes represent probabilistic dependencies
® Y is a descendant of X if there is a directed path from X to Y

® The network arcs represent the assertion that the variable X is conditionally
independent of its nondescendants given its immediate predecessors
Parents(X); Pr(X|Parents(X))

© A set of tables for each node in the graph - a conditional probability table is
given for each variable; it describes the probability distribution for that
variable given the values of its immediate predecessors.
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Building a Bayes net

1. Choose the variables to be included in the net: A, B, C,D, E
2. Add the links

)
e (e @\@
& ®
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Building a Bayes net

3. Add a probability table for each root node Pr(X) and nonroot node
Pr(X|Parents(X))

Pr(A) Pr(B)

ONC
Pr(C|A,B)\ 4 \€Pr(E|B)

5|PrIo)
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Once the net is built ...

The join probability of any assignment of values xi, xo, ..., X, to the tuple of
network variables X3, Xo, ..., X, can be computed by the formula

Pr(x1, X2, ooy Xm) = Pr(X1 = xa AXp = 3o A+ AXm = xm) = [ [ Pr(xi| Parents(X;))

i=1
(6)
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Bayesian belief networks

Two components

@ A function for evaluating a given network based on the data.

® A method for searching through the space of possible networks.

Learning the network structure

® searching through the space of possible sets of edges
® estimating the conditional probability tables for each set
® computing the quality of the network
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Bayesian belief networks

Naive Bayes Classifier
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K2 algorithm

This 'search and score’ algorithm heuristically searches for the most probable
belief-network structure given a training data.

It starts by assuming that a node has no parents, after which, in every step it adds
incrementally the parent whose addition mostly increase the probability of the
resulting structure. K2 stops adding parents to the nodes when the addition of a
single parent cannot increase the probability of the network given the data.
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Summary of Examination Requirements

® Discriminative and generative classifiers

® Naive Bayes Classifier
conditional independence, linear decision boundary

® Bayesian networks
structure, conditional probabilities

® Principal Component Analysis
data analysis, derivation, scree plot, biplot
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