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Lecture #12

Outline

• Principal Component Analysis

• Naïve Bayes algorithm

• Bayesian networks
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Principal Component Analysis

PCA is

• a tool to analyze the data

• a tool to do dimensionality reduction
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Basic concepts needed

• data analysis
measures of center and spread, covariance and correlation

• linear algebra
eigenvectors, eigenvalues, matrices, dot product, basis
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Data analysis

How two variables are related

Both covariance and correlation indicate how closely two variables relationship
follows a straight line.

Covariance cov(X ,Y ) is a measure of the joint variability of two random
variables X and Y

cov(X ,Y ) = E [(X − EX )(Y − EY )]

The magnitude of the covariance is not easy to interpret because it is not
normalized and hence depends on the magnitudes of the variables.
• > 0 both variables increase or decrease together
• < 0 while one variable increases the other decreases
• = 0 variables are linearly independent of each other
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Data analysis

Covariance matrix of features A1, . . . ,Am

C(A1, . . . ,Am) =


var(A1) cov(A1,A2) . . . cov(A1,Am)

cov(A2,A1) var(A2) . . . cov(A2,Am)
. . . . . . . . . . . .

cov(Am,A1) cov(Am,A2) . . . var(Am)


• diagonal - variance of the features var(Ai )
• symmetrical about the diagonal cov(Ai ,Aj) = cov(Aj ,Ai )
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Data analysis
Auto data set

> cov(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 60.91814 -10.352928 -233.85793 -5517.441
# cylinders -10.35293 2.909696 55.34824 1300.424
# horsepower -233.85793 55.348244 1481.56939 28265.620
# weight -5517.44070 1300.424363 28265.62023 721484.709

> cor(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 1.0000000 -0.7776175 -0.7784268 -0.8322442
# cylinders -0.7776175 1.0000000 0.8429834 0.8975273
# horsepower -0.7784268 0.8429834 1.0000000 0.8645377
# weight -0.8322442 0.8975273 0.8645377 1.0000000
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Linear algebra

1 A is a linear transformation. Eigenvector of A is a vector u for which exists
eigenvalue λ so that A · u = λu
• eigenvector u does not change its direction under the transformation A
• λu scales a vector u by λ; it changes its length, not its direction

2 The covariance matrix of X is an m ×m symmetric matrix C(X) = 1
n−1XX

>

3 Any symmetric matrix m ×m A has a set of orthonormal eigenvectors
v1, v2, . . . , vm associated with eigenvalues λ1, λ2, . . . , λm
• for any i , A · vi = λivi
• ||vi || = 1
• vi · vj = 0 if i 6= j

4 A is a symmetric m×m matrix and E is an m×m matrix whose i-th column
is the i-th eigenvector of A. The eigenvectors are ordered in terms of
decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A = E ·D · E>

5 If the rows of E are orthogonal, then E−1 = E>
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Linear algebra

Dot product
• u = 〈u1, . . . , um〉, v = 〈v1, . . . , vm〉
• algebraic definition u · v = u1v1 + · · ·+ umvm

• geometric definition u · v = ||u|| · ||v|| · cosα
• u and v are orthogonal iff u · v = 0
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Linear algebra

• A set of vectors xi ∈ Rm is linearly independent if no vector is a linear
combination of other vectors.

Basis of Rm is a set vectors u1, . . . ,um

• linearly independent

• ui · uj = 0, i , j = 1, . . . ,m, i 6= j

• any u ∈ Rm: u = c1u1 + · · ·+ cmum

• for example, the standard basis of the 3 -dimensional Euclidean space R3

consists of x = 〈1, 0, 0〉, y = 〈0, 1, 0〉, z = 〈0, 0, 1〉. It is an example of
orthonormal basis, so called naive basis I
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Principal Component Analysis

Data = {xi , xi = 〈x1i , . . . , xmi〉}, |Data| = n

X =


x11 . . . x1n
x21 . . . x2n
. . . . . . . . .
xm1 . . . xmn


(i.e. examples in columns)
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PCA

Which features to keep?
• features that change a lot, i.e. high variance
• features that do not depend on others, i.e. low covariance

Which features to ignore?
• features with some noise, i.e. low variance

C(A1,A2, . . . ,Am)
• on the diagonal, large values correspond to interesting structure
• off the diagonal, large values correspond to high redundancy

• high correlation ∼ high redundancy
• the most important feature has the largest variance
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PCA

• Question

Is there any other representation of X to extract the most important features?

• Answer

Use another basis

P> · X = Z

where P transforms X into Z; Z is a new representation of X
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PCA
Heading for P

P =


p11 . . . . . . p1m
p21 . . . . . . p2m
. . . . . . . . . . . .
pm1 . . . . . . pmm



• principal components of X are the vectors pi = 〈p1i , . . . , pmi〉

• principal component loadings of pi are the elements pi1, . . . , pim
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PCA
Heading for P

Z =


p1 · x1 . . . . . . p1 · xn
p2 · x1 . . . . . . p2 · xn
. . . . . . . . . . . .

pm · x1 . . . . . . pm · xn


i-principal component scores of n instances are pi · x1,pi · x2, . . . ,pi · xn
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PCA
Heading for P
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PCA
Heading for P

• What is a good choice of P?
• What features we would like Z to exhibit?

Goal: Find a set of directions on which to project the data such that
• the variance of each projection is maximized
• the projections are uncorrelated (random variables X , Y are said to be

uncorrelated if their cov(X ,Y ) = 0)
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PCA
Heading for P

Let’s compute the variance of a random variable obtained by projecting X onto a
direction represented by the vector p (µ = E [X]):

σ2 = E [(p>X− E [p>X])2] = p>E [(X− µ)(X− µ)>]p = p>C(X)p

We use the method of Lagrange multipliers:

Maximize

p>C(X)p

subject to

p>p = 1
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PCA
Heading for P

Lagrangian function

L(p, λ) = p>C(X)p− λp>p

∂L
∂p = 0⇒ C(X)p = λp

Our problem comes down to seeking eigenvalues and eigenvectors of C(X).
In the general case, C(X) has m distinct eigenvectors and eigenvalues.
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Which one is the solution we seek?

σ2 = p>C(X)p = p>λp = λp>p = λ

The variance is maximized if we choose the unit eigenvector that corresponds to
the largest eigenvalue of C(X). Denote these as p1, λ1.

Usually we cannot represent the data sufficiently good with just one projection.
Thus, we need to find the procedure for computing the next projection directions
p2, λ2, p3, λ3, . . .
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PCA
Heading for P

• principal components are new basis vectors to represent xj , j = 1, . . . , n

• pi · xj is a projection of xj on pi

• changing the basis does not change data, it changes their representation
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Derivation of PCA

1 preprocessing Data
mean normalization to get centered data → X

2 C(X) = A = 1
n−1XX

>

3 Compute eigenvectors v1, . . . , vm and eigenvalues λ1, . . . , λm of A

4 Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest
to lowest: p1, . . . ,pm, λ1 ≥ λ2 ≥ · · · ≥ λm

5 The eigenvectors p1, . . . ,pm become columns of P

pi =

p1i
. . .
pmi



NPFL054, 2021 Hladká & Holub Lecture 12, page 23/55



Properties of PCA

P> · X = Z

Z =


p1 · x1 . . . . . . p1 · xn
p2 · x1 . . . . . . p2 · xn
. . . . . . . . . . . .

pm · x1 . . . . . . pm · xn



• The i-th diagonal value of C(Z) is the variance of X along pi.
• We calculate a rotation of the original coordinate system such that all

non-diagonal elements of the new covariance matrix become zero.
• The principal components define the basis of the new coordinate axes and

the eigenvalues correspond to the diagonal elements of the new covariance
matrix.

• So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

C(P> · X) see p.29.4= 1
n − 1(P> · X) · (P> · X)> =

1
n − 1P

> · X · X> · P let A=X·X>

= 1
n − 1P

> · A · P =

see p.29.4= 1
n − 1P

>·(P·D·P>)·P see p.29.5= 1
n − 1P

>·(P>)−1D·P>·(P>)−1 = 1
n − 1D
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Properties of PCA

A geometric interpretation for the first principal component p1

It defines a direction in feature space along which the data vary the most. If we
project the n instances x1, . . . , xn onto this direction, the projected values are the
principal component scores z11, . . . , zn1 themselves.
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Proportion of Variance Explained (PVE)

How much of the information in a given data set is lost by projecting the instances
onto the first few principal components?

In other words, how much of the variance in the data is not contained in the first
few principal components?
• total variance in X:

∑m
j=1 var(Aj) =

∑m
i=1

1
n

∑n
i=1 x2

ij
(assuming feature normalization)

• variance expressed by pk : 1
n

∑n
i=1 z2

ki

• PVE(pk) =
∑n

i=1
z2

ki∑m
i=1

∑n
i=1

x2
ij

• PVE(p1, . . . ,pM) =
∑M

i=1 PVE(pi ), M ≤ m
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PCA
Auto data set

> a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
> summary(pca.a)

# Importance of components:
# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA
Auto data set

Scree plot
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PCA
Auto data set

> pca.a$rotation
PC1 PC2 PC3 PC4

mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

• PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

• PC2 places most of its weight on mpg and less weight on the other three
features.
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Biplot for the Auto data set is showing
A biplot displays both the PC scores and the PC loadings.
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The biplot for the Auto data set is showing

• the scores of each example (i.e., cars) on the first two principal components
with axes on the top and right
– see the id cars in black

• the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
– see the red arrows
– their length corresponds to the variabliaty of the original features

> a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> apply(a, 2, var)

mpg cylinders horsepower weight
6.091814e+01 2.909696e+00 1.481569e+03 7.214847e+05
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PCA

In general, a m × n matrix X has min(n − 1,m) distinct principal components.

• Question
How many principal components are needed?

• Answer
There is no single answer to this question. Study scree plots.
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Probability vs. likelihood

Task: Predict the outcome of each of 10 coin tosses

probability
Pr(X = k|n = 10, p = 0.8)

Pr(data|θ)

likelihood
L(p|X = 8)
L(θ|data)
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Bayes theorem

Probabilistic approach to classification Y = {y1,2 , . . . , yK}

y? = argmaxyk∈Y Pr(yk |x1, . . . , xm) (1)

Bayes theorem

posterior probability = prior probability× likelihood
marginal likelihood (2)

Pr(Y |A1, . . . ,Am) = Pr(Y )× Pr(A1, . . . ,Am |Y )
Pr(A1, . . . ,Am)

Then

y? = argmaxyk∈Y
Pr(yk)× Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm) (3)
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Conditional independence

Let X ,Y and Z be three descrete random variables. We say that X is
conditionally independent of Y given Z if

∀xi , yj , zk , xi ∈ Values(X ), yj ∈ Values(Y ), zk ∈ Values(Z ) :

Pr(X = xi |Y = yj ,Z = zk) = Pr(X = xi |Z = zk) (4)

I.e., P(X |Y ,Z ) = P(X |Z ).

NPFL054, 2021 Hladká & Holub Lecture 12, page 36/55



Conditional independence

Do we enjoy our favorite water sport on this day? (Credit: T. Mitchel, 1997)

Sky AirTemp Humidity Wind EnjoySport
sunny warm normal strong No
sunny warm high strong Yes
rainy cold high strong No
sunny warm high strong Yes

Conditional independence of features given EnjoySport: presence of one particular
feature value does not affect the other features’ values given EnjoySport, e.g., if
the temperature is hot, it does not necessarily mean that the humidity is high and
the features have an equal effect on the outcome
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Conditional independence

If we work with two features A1,A2 and we assume that they are conditionally
independent given the target class Y , then

Pr(A1,A2|Y ) product rule= Pr(A1|A2,Y )∗Pr(A2|Y ) c. i. assumption= Pr(A1|Y )∗Pr(A2|Y )

Note: Product rule (a.k.a. Chain rule)

Pr(Am, . . . ,A1) = Pr(Am|Am−1, . . . ,A1) · Pr(Am−1, . . . ,A1)
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Naïve Bayes classifier

y? = argmaxyk∈Y Pr(yk |x1, . . . , xm) = argmaxyk∈Y
Pr(yk) Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm)

– Assume conditional independence of features A1, . . . ,Am given Y . Then

Pr(x1, x2, . . . , xm|yk) product rule=
∏m

j=1 Pr(xj |x1, x2, . . . , xj−1, yk) c. i. a.=

=
∏m

j=1 Pr(xj |yk)

– Pr(x1, . . . , xm) is constant. Then

y? = argmaxyk∈Y Pr(yk)
m∏

j=1
Pr(xj |yk) (5)
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Discriminative vs. generative classifiers

Computing Pr(y |x)

• discriminative classifier does not care about how the data was generated.
It directly discriminates the value of y for any x.

• generative classifier models how the data was generated in order to classify
an example.
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Discriminative vs. generative classifiers

• Logistic regression classifier is a discriminative classifier

f (x; Θ) = p(y = 1|x,Θ)

• Naïve Bayes classifier is a generative classifier

1 Learn Pr(x|y) and Pr(y)

2 Apply Bayes rule to get

Pr(y |x) = Pr(x|y) Pr(y)
Pr(x) ∼ Pr(x|y) Pr(y)

3 Classify x
y? = argmaxy Pr(y |x) = argmaxy Pr(x|y) Pr(y)
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Naïve Bayes classifier

Naive assumption of feature conditional independence given a target
class is rarely true in real world applications (high bias). Nevertheless,
Naïve Bayes classifier surprisingly often shows good performance in
classification (low variance).
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Naïve Bayes Classifier
is a linear classifier

NB classifier gives a method for predicting rather than for building an explicit
classifier.

Let us focus on binary classification Y = {0, 1} with binary features A1, . . . ,Am.

We predict 1 iff

Pr(y = 1)
∏m

j=1 Pr(xj |y = 1)
Pr(y = 0)

∏m
j=1 Pr(xj |y = 0)

> 1
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Naïve Bayes Classifier
is a linear classifier

Denote pj = Pr(xj = 1|y = 1), qj = Pr(xj = 1|y = 0)

Then

Pr(y = 1)
∏m

j=1 pxj
j (1− pj)1−xj

Pr(y = 0)
∏m

j=1 qxj
j (1− qj)1−xj

> 1

Pr(y = 1)
∏m

j=1(1− pj)( pj
1−pj

)xj

Pr(y = 0)
∏m

j=1(1− qj)( qj
1−qj

)xj
> 1
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Naïve Bayes Classifier
is a linear classifier

Take logarithm

log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1− pj
1− qj

+
m∑

j=1
(log pj

1− pj
− log qj

1− qj
)xj > 0

NB classifier as a linear classifier where

θ0 = log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1− pj
1− qj

θj = log pj
1− pj

− log qj
1− qj

, j = 1, . . . ,m
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Bayesian belief networks (BBN)

• Naïve Bayes classifier assumes that ALL features are conditionally
independent given a target attribute.

• A Bayesian network is a probabilistic graphical model that encodes
probabilistic relationships among attributes of interest.

• BBNs allow stating conditional independence assumptions that apply to
subsets of the attributes.

• Dependencies are modeled as graph where nodes correspond to attributes
and edges to dependency between attributes.
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Bayesian belief networks
Settings

Consider an arbitrary set of random variables X1,X2, ...,Xm. Each variable Xi can
take on the set of possible values Values(Xi ).

We define the joint space of the variables X1,X2, ...,Xm to be the cross product
Values(X1)× Values(X2)× Values(X3)× ...× Values(Xm).

The probability distribution over the joint space is called the joint probability
distribution Pr(x1, x2, ..., xm) where
x1 ∈ Values(X1), x2 ∈ Values(X2), ..., xn ∈ Values(Xm).

BBN describes the joint probability distribution for a set of variables by specifying
a set of conditional independence assumptions together with sets of local
conditional probabilities.
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Bayesian belief networks

Representation
1 A directed acyclic graph G = (V ,E )

• nodes are random variables
• arcs between nodes represent probabilistic dependencies
• Y is a descendant of X if there is a directed path from X to Y

2 The network arcs represent the assertion that the variable X is conditionally
independent of its nondescendants given its immediate predecessors
Parents(X ); Pr(X |Parents(X ))

3 A set of tables for each node in the graph - a conditional probability table is
given for each variable; it describes the probability distribution for that
variable given the values of its immediate predecessors.
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Building a Bayes net

1. Choose the variables to be included in the net: A,B,C ,D,E
2. Add the links
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Building a Bayes net

3. Add a probability table for each root node Pr(X ) and nonroot node
Pr(X |Parents(X ))
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Once the net is built ...

The join probability of any assignment of values x1, x2, ..., xm to the tuple of
network variables X1,X2, ...,Xm can be computed by the formula

Pr(x1, x2, ..., xm) = Pr(X1 = x1∧X2 = x2∧· · ·∧Xm = xm) =
m∏

i=1
Pr(xi |Parents(Xi ))

(6)
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Bayesian belief networks

Two components
1 A function for evaluating a given network based on the data.
2 A method for searching through the space of possible networks.

Learning the network structure
• searching through the space of possible sets of edges
• estimating the conditional probability tables for each set
• computing the quality of the network
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Bayesian belief networks
Naïve Bayes Classifier
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K2 algorithm

This ’search and score’ algorithm heuristically searches for the most probable
belief-network structure given a training data.

It starts by assuming that a node has no parents, after which, in every step it adds
incrementally the parent whose addition mostly increase the probability of the
resulting structure. K2 stops adding parents to the nodes when the addition of a
single parent cannot increase the probability of the network given the data.
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Summary of Examination Requirements

• Discriminative and generative classifiers
• Naïve Bayes Classifier

conditional independence, linear decision boundary
• Bayesian networks

structure, conditional probabilities
• Principal Component Analysis

data analysis, derivation, scree plot, biplot
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