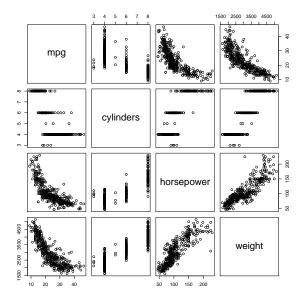
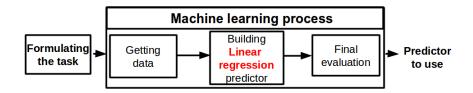
Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics


Outline


- Linear regression
 - Auto data set

392 instances on the following 9 features

mpg	Miles per gallon	
cylinders	Number of cylinders between 4 and 8	
displacement	Engine displacement (cu. inches)	
horsepower	Engine horsepower	
weight	Vehicle weight (lbs.)	
acceleration	Time to accelerate from 0 to 60 mph (sec.)	
year	Model year (modulo 100)	
origin	Origin of car (1. American, 2. European, 3. Japanese)	
name	Vehicle name	

Dataset Auto from the ISLR package

Linear regression is a class of regression algorithms assuming that there is at least a linear dependence between a target attribute and features.

A target hypothesis *f* has a form of **linear function**

$$f(\mathbf{x};\Theta) = \theta_0 + \theta_1 x_1 + \dots + \theta_m x_m \tag{1}$$

 $-\theta_0,\ldots,\theta_m$ are regression parameters

- we think of them as weights that determine how each feature affects the prediction

- simple linear regression if m = 1

Linear regression

Notation

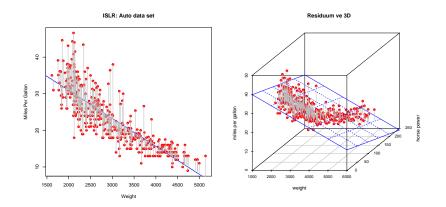
$$\mathbf{y} = \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}$$
$$\mathbf{x}_i = \langle \mathbf{1}, x_{i1}, \dots, x_{im} \rangle$$
$$\Theta^\top = \begin{pmatrix} \theta_0 \\ \cdots \\ \theta_m \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} \mathbf{1} & x_{11} & \cdots & x_{1m} \\ \mathbf{1} & x_{21} & \cdots & x_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{1} & x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

Now we can write
$$\mathbf{y} = \mathbf{X} \Theta^{\top}$$
, $f(\mathbf{x}) = \Theta^{\top} \mathbf{x}$

Numerical feature

 θ_i is the average change in y for a unit change in A_i holding all other features fixed

Categorical feature with k values


Replace the feature with k - 1 dummy numerical features DA^1, \ldots, DA^{k-1}

Example: run simple linear regression mpg \sim origin

	DA^1	DA^2
American	0	0
European	1	0
Japanase	0	1

- $y = \theta_0 + \theta_1 DA^1 + \theta_2 DA^1$
- $y = \theta_0 + \theta_1$ if the car is European
- $y = \theta_0 + \theta_2$ if the car is Japanese
- $y = \theta_0$ if the car is American
- θ_0 as the average mpg for American cars
- θ_1 as the average difference in mpg between European and American cars
- θ_2 as the average difference in mpg between Japanese and American cars

- residual $y_i \hat{y}_i$, where $\hat{y}_i = \hat{f}(\mathbf{x}_i) = \hat{\Theta}^\top \mathbf{x}_i$
- Loss function Residual Sum of Squares $RSS(\hat{\Theta}) = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Optimization problem

$$\Theta^{\star} = \operatorname{argmin}_{\Theta} \operatorname{RSS}(\Theta)$$

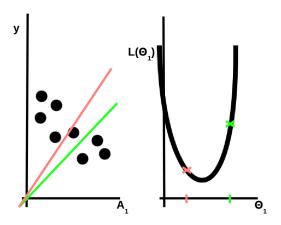
The argmin operator will give Θ for which $RSS(\Theta)$ is minimal.

Solving the optimization problem analytically

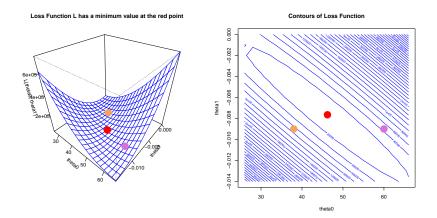
Normal Equations Calculus

Theorem

 Θ^* is a least square solution to $\mathbf{y} = \mathbf{X}\Theta^\top \Leftrightarrow \Theta^*$ is a solution to the Normal equation $\mathbf{X}^\top \mathbf{X}\Theta = \mathbf{X}^\top \mathbf{y}$.

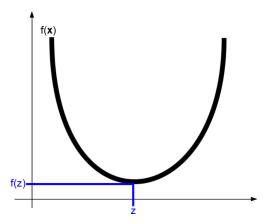

 $\Theta^{\star} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$

Computational complexity of a $(m+1) \times (m+1)$ matrix inversion is $O(m+1)^3$:-(

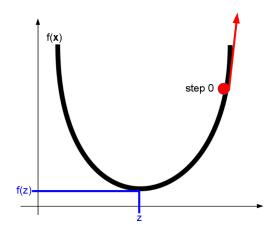

Solving the optimization problem numerically

Gradient Descent Algorithm

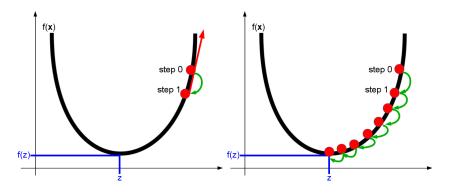
Assume: simple regression, $\theta_0 = 0$, $\theta_1 \neq 0$

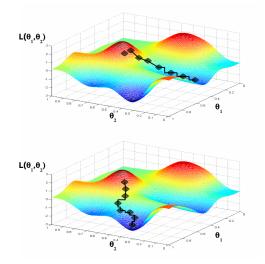


Assume: simple regression, $\theta_0 \neq 0$, $\theta_1 \neq 0$



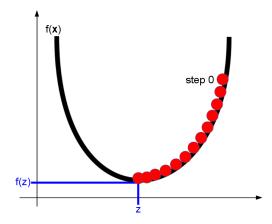
NPFL054, 2021


Gradient descent algorithm is an optimization algorithm to find a local minimum of a function f.



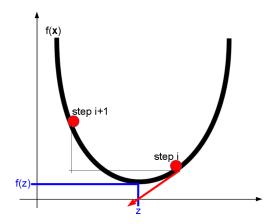
1. Start with some \mathbf{x}_0 .

Keep changing x_i to reduce f(x_i)
Which direction to go? How big step to do?


Credits: Andrew Ng NPFL054, 2021

- We are seeking the solution to the minimum of a function $f(\mathbf{x})$. Given some initial value \mathbf{x}_0 , we can change its value in many directions.
- What is the best direction to minimize f? We take the gradient ∇f of f

$$\nabla f(x_1, x_2, \dots, x_m) = \langle \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_1}, \dots, \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_m} \rangle$$


• Intuitively, the gradient of f at any point tells which direction is the steepest from that point and how steep it is. So we change **x** in the opposite direction to lower the function value.

Choice of the step: assume constant value

If the step is too small, GDA can be slow.

Choice of the step

If the step is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

NPFL054, 2021

Hladká & Holub

Lecture 4, page 22/31

repeat until convergence {

$$\Theta^{K+1} := \Theta^K - \alpha \nabla f(\Theta^K)$$

 $-\alpha$ is a positive step-size hyperparameter (another option is to choose a different step size α_k at each iteration)

I.e. simultaneously update θ_j , $j = 1, \ldots, m$

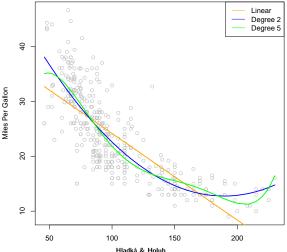
}

Linear regression Gradient Descent Algorithm

For linear regression f = RSS

$$\theta_j^{K+1} := \theta_j^K - \alpha \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i; \Theta^K) - y_i) x_{ij}$$

 RSS is a convex function, so there is no local optimum, just global minimum.


Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a *d*-th order polynomial.

Simple regression $y = \theta_0 + \theta_1 x_1$ **Polynomial regression** $y = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \dots \theta_d x_1^d$

It is still a linear model with features $A_1, A_1^2, \ldots, A_1^d$.

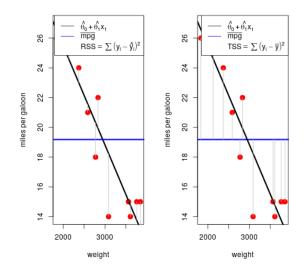
The *linear* in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\theta_0, \theta_1, \ldots, \theta_d$ can be easily estimated using least squares linear regression.

Polynomial regression Auto data set

ISLR: Auto data set

NPFL054, 2021

Lecture 4, page 26/31


• Coefficient of determination ${\rm R}^2$ measures the proportion of variation in a target value that is reduced by taking into account ${\bm x}$

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where Total Sum of Squares $TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$; $R^2 \in \langle 0, 1 \rangle$

• Mean Squared Error MSE

$$MSE = \frac{1}{n} \cdot RSS$$

- Population regression line: $\theta_0, \ldots, \theta_m$
- Least squares line: $\hat{ heta_0}$, ..., $\hat{ heta_m}$
- Assume random variable Y, sample $D = \{y_1, \dots, y_n\}$
- Estimate population mean μ : $\hat{\mu}$, e.g., $\hat{\mu} = \overline{y} = \sum_{i=1}^{n} y_i$
- Standard Error of $\hat{\mu}$: $SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$

How accurate is $\hat{\theta}_i$ as an estimate of θ_i ?

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 14.8120 0.7164 20.68 <2e-16 *** origin 5.4765 0.4048 13.53 <2e-16 *** ... Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 6.447 on 390 degrees of freedom Multiple R-squared: 0.3195, Adjusted R-squared: 0.3177 F-statistic: 183.1 on 1 and 390 DF, p-value: <2.2e-16

- Statistical hypothesis testing (details will be provided later on): H_0 (null hypothesis): $\theta_i = 0$; H_1 (alternate hypothesis): $\theta_i <> 0$, i.e. there exists a relationship between the target attribute and the feature A_i ; t-test, p value, significance level α (the more stars, the more significant feature), we reject H_0 if $p <= \alpha$
- Adjusted R-squared = R^2 adjusted for the number of features used in the model

- Linear regression, simple linear regression, polynomial regression
- Parameter interpretation
- Least Square Method
- Gradient Descent Algorithm
- Coefficient of Determination, Mean Squared Error