Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Lecture #10

Outline

- · Model complexity, overfitting, bias and variance
- Regularization Ridge regression, Lasso
 - Linear regression
 - Logistic regression
 - SVM

Model complexity

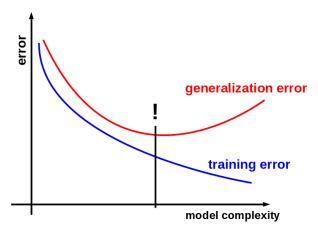
No universal definition

Here ... model complexity is the number of hypothesis parameters

$$\Theta = \langle \theta_0, \dots, \theta_m \rangle$$

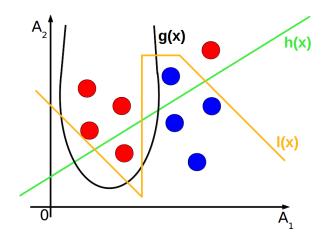
Model complexity

Finding a model that minimizes generalization error ... is one of central goals of the machine learning process



Model complexity

Complexity of decision boundary for classification



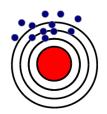
- 1 Select a machine learning algorithm
- 2 Get k different training sets
- **3** Get *k* predictors
- Bias measures error that originates from the learning algorithm
 - how far off in general the predictions by k predictors are from the true output value
- Variance measures error that originates from the training data
 - how much the predictions for a test instance vary between k predictors

low bias

low variance

high variance

high bias



Generalization error $\operatorname{error}_{\mathcal{D}}(f)$ measures how well a hypothesis f generalizes beyond the used training data set, to unseen data with distribution \mathcal{D} . Usually it is defined as follows

- for **regression**: $\operatorname{error}_{\mathcal{D}}(f) = \operatorname{E}(\hat{y}_i y_i)^2$
- for classification: $\operatorname{error}_{\mathcal{D}}(f) = \Pr(\hat{y}_i \neq y_i)$

Decomposition of $error_{\mathcal{D}}(f)$

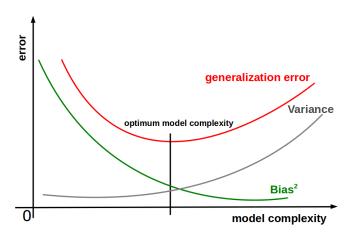
$$error_{\mathcal{D}}(f) = \operatorname{Bias}^2 + \operatorname{Variance}$$

i.e.,

$$(E[\hat{f}(\mathbf{x}] - f(\mathbf{x}))^2 + E[\hat{f}(\mathbf{x}) - E[\hat{f}(\mathbf{x})]]^2$$

where $\hat{f}(\mathbf{x})$ is predicted value, $E[\hat{f}(\mathbf{x})]$ is average predicted value

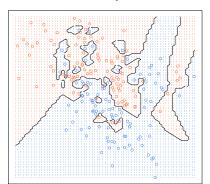
- underfitting = high bias
- overfitting = high variance



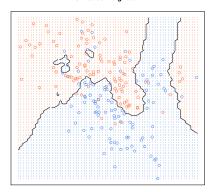
Bias and variance k-Nearest Neighbor

- $\uparrow k \rightarrow$ smoother decision boundary $\rightarrow \downarrow$ variance and \uparrow bias
- $\downarrow k \rightarrow \uparrow$ variance and \downarrow bias

1-nearest neighbour

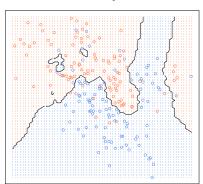


5-nearest neighbour

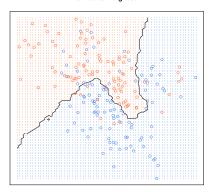


Bias and variance k-Nearest Neighbor

5-nearest neighbour



15-nearest neighbour



Prevent overfitting

We want a model in between which is

- powerful enough to model the underlying structure of data
- not so powerful to model the structure of the training data

Let's prevent overfitting by **complexity regularization**, a technique that regularizes the parameter estimates, or equivalently, shrinks the parameter estimates towards zero.

Regularization

A machine learning algorithm estimates hypothesis parameters $\Theta = \langle \theta_0, \theta_1, \dots, \theta_m \rangle$ using Θ^* that minimizes loss function L for training data $Data = \{\langle \mathbf{x}_i, y_i \rangle, \mathbf{x}_i = \langle x_{1i}, \dots, x_{mi} \rangle, y_i \in Y\}$

$$\Theta^{\star} = \operatorname{argmin}_{\Theta} L(\Theta)$$

Regularization

$$\Theta_{R}^{\star} = \mathrm{argmin}_{\Theta} \mathrm{L}(\Theta) + \lambda \cdot \textbf{penalty}(\Theta), \text{ where } \lambda \geq 0 \text{ is a tuning parameter}$$

Infact, the penalty is applied to $\theta_1, \ldots, \theta_m$, but not to θ_0 since the goal is to regularize the estimated association between each feature and the target value.

NPFL054, 2018 Hladká & Holub Lecture 10, page 13/32

Regularization Ridge regression

$$\mathsf{penalty}(\Theta) = \theta_1^2 + \dots + \theta_m^2 = \ell_2 \mathsf{norm}$$

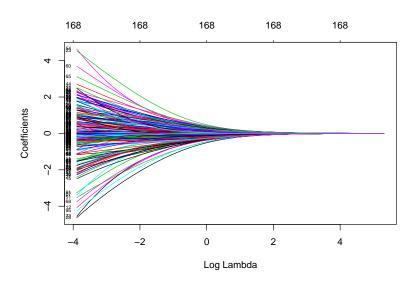
- Let $\theta^\star_{\lambda_1},\dots,\theta^\star_{\lambda_m}$ be ridge regression parameter estimates for a particular value of λ
- Let $\theta_1^{\star}, \dots, \theta_m^{\star}$ be unregularized parameter estimates

•
$$0 \le \frac{\theta_{\lambda_1}^{\star^2} + \dots + \theta_{\lambda_m}^{\star^2}}{\theta_1^{\star^2} + \dots + \theta_m^{\star^2}} \le 1$$

- When $\lambda = 0$, then $\theta_{\lambda_i}^{\star} = \theta_i^{\star}$ for $i = 1, \dots, m$
- When λ is extremely large, then $\theta^{\star}_{\lambda_i}$ is very small for $i=1,\ldots,m$
- ullet When λ between, we are fitting a model and skrinking the parameteres

NPFL054, 2018 Hladká & Holub Lecture 10, page 14/32

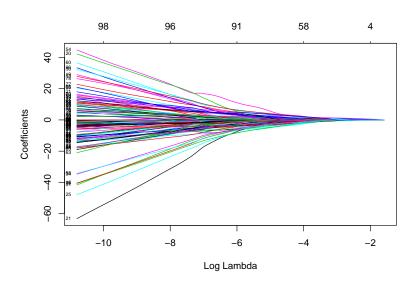
Ridge regression



Regularization Lasso

penalty(
$$\Theta$$
) = $|\theta_1| + \cdots + |\theta_m| = \ell_1$ norm

- Let $\theta^{\star}_{\lambda_1}, \dots, \theta^{\star}_{\lambda_m}$ be lasso regression parameter estimates
- Let $\theta_1^{\star}, \dots, \theta_m^{\star}$ be unregularized parameter estimates
- When $\lambda = 0$, then $\theta_{\lambda_i}^{\star} = \theta_i^{\star}$ for i = 1, ..., m
- When λ grows, then the impact of penalty grows
- When λ is extremely large, then $\theta^{\star}_{\lambda_i}=0$ for $i=1,\ldots,m$



Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso can shrink some parameters to zero.

Elastic net

$$\Theta_{R}^{\star} = \operatorname{argmin}_{\Theta}[L(\Theta) + \lambda \cdot (|\theta_{1}| + \dots + |\theta_{m}|) + (1 - \lambda) \cdot (\theta_{1}^{2} + \dots + \theta_{m}^{2})]$$

 $0 \le \lambda \le 1$ is a tuning parameter

Loss function

A loss function $L(\hat{y}, y)$ measures the cost of predicting \hat{y} when the true value is $y \in \{-1, +1\}$. Commonly used loss functions are

- **Zero-one** (0/1) $L(\hat{y}, y) = I(y\hat{y} \le 0)$ indicator variable I is 1 if $y\hat{y} \le 0$, 0 otherwise
- **Hinge** $L(\hat{y}, y) = \max(0, 1 y\hat{y})$
- Logistic $L(\hat{y}, y) = \max(0, \log(1 + e^{-y\hat{y}}))$
- Exponential $L(\hat{y}, y) = e^{-y\hat{y}}$

Regularized linear regression

$$f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_m x_m$$

$$L(\Theta) = RSS = \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

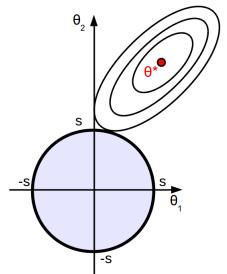
$$\Theta_{R}^{\star} = \mathrm{argmin}_{\Theta}[\mathit{RSS} + \lambda \cdot \mathsf{penalty}(\Theta)]$$

Ridge regression Alternative formulation

$$\Theta_R^{\star} = \underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i)^2$$

subject to
$$\theta_1^2 + \cdots + \theta_m^2 \le s$$

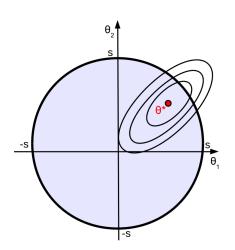
- the gray circle represents the feasible region for Ridge regression
- the contours represent different loss values for the unregularized model



NPFL054, 2018 Hladká & Holub Lecture 10, page 22/32

Ridge regression Alternative formulation

 If s is large enough so that the minimum loss value falls into the region of ridge regression parameter estimates then the alternative formulation yields the primary solution.



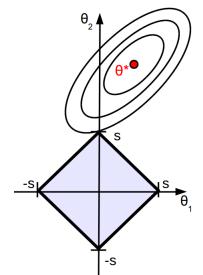
Lasso

Alternative formulation

$$\Theta_R^{\star} = \underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i)^2$$

subject to
$$|\theta_1| + \cdots + |\theta_m| \le s$$

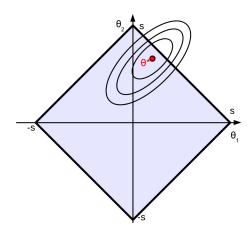
- the grey square represents the feasible region of the Lasso
- the contours represent different loss values for the unregularized model
- the feasible point that minimizes the loss is more likely to happen on the coordinates on the Lasso graph than on the Ridge regression graph since the Lasso graph is more angular



NPFL054, 2018 Hladká & Holub Lecture 10, page 24/32

Lasso Alternative formulation

 If s is large enough so that the minimum loss value falls into the region of loss parameter estimates then the alternative formulation yields the primary solution.



Regularized logistic regression

$$f(\mathbf{x}) = \frac{1}{1 + e^{-\Theta^{\top}\mathbf{x}}}$$

$$L(\Theta) = -\sum_{i=1}^{n} y_{i} \log P(y_{i}|\mathbf{x}_{i};\Theta) + (1 - y_{i}) \log(1 - P(y_{i}|\mathbf{x}_{i};\Theta))$$

$$\Theta_{R}^{\star} = \operatorname{argmin}_{\Theta}[L(\Theta) + \lambda \cdot \operatorname{penalty}(\Theta)]$$

Regularized logistic regression Ridge regression

$$\begin{split} \Theta_R^{\star} &= \operatorname{argmin}_{\Theta} - \left[\sum_{i=1}^n y_i \log(f(\mathbf{x}_i)) + (1 - y_i) \log(1 - f(\mathbf{x}_i)) \right] + \lambda \sum_{j=1}^m \theta_j^2 \right] = \\ &= \operatorname{argmin}_{\Theta} \left[\sum_{i=1}^n y_i (-\log(f(\mathbf{x}_i))) + (1 - y_i) (-\log(1 - f(\mathbf{x}_i))) + \lambda \sum_{j=1}^m \theta_j^2 \right] = \\ &= \operatorname{argmin}_{\Theta} \left[\sum_{i=1}^n y_i L_1(\Theta) + (1 - y_i) L_0(\Theta) + \lambda \sum_{j=1}^m \Theta_j^2 \right] \end{split}$$

NPFL054, 2018 Hladká & Holub Lecture 10, page 27/32

Regularized logistic regression Ridge regression

Since

$$\mathbf{A} + \lambda \mathbf{B} \equiv C\mathbf{A} + \mathbf{B}, C = \frac{1}{\lambda}$$

then

$$\Theta_R^{\star} = \operatorname{argmin}_{\Theta} \left[\sum_{i=1}^m \theta_i^2 + C \left[\sum_{i=1}^n y_i L_1(\Theta) + (1 - y_i) L_0(\Theta) \right] \right]$$

where

$$L_1(\Theta) = -\log \frac{1}{1 + e^{-\Theta^{\top} x}}$$

$$L_0(\Theta) = -\log(1 - \frac{1}{1 + e^{-\Theta^T x}})$$

Regularized logistic regression Ridge regression

$$\Theta_{R}^{\star} = \operatorname{argmin}_{\Theta} [\sum_{j=1}^{m} \theta_{j}^{2} + C \sum_{i=1}^{n} \log (1 + e^{-\overline{y_{i}}\Theta^{\top} x_{i}})]$$

where

$$\overline{y}_i = \begin{cases} -1 & \text{if} \quad y_i = 0 \\ +1 & \text{if} \quad y_i = 1 \end{cases}$$

$$\Theta^* = \operatorname{argmin}_{\Theta} \sum_{j=1}^{m} \theta_j^2 + C \sum_{i=1}^{n} \xi_i$$

 $\xi_i \geq 0$ is equivalent to $\xi_i = \max(0, 1 - y_i \Theta^\top \mathbf{x}_i)$, i.e.

$$\Theta^* = \operatorname{argmin}_{\Theta} \left[\sum_{j=1}^m \theta_j^2 + C \sum_{i=1}^n \max(0, 1 - y_i \Theta^\top \mathbf{x}_i) \right]$$

s.t.
$$\Theta^{\top} \mathbf{x}_i \geq 1 - \xi_i$$
 if $y_i = +1$ and $\Theta^{\top} \mathbf{x}_i \leq -1 + \xi_i$ if $y_i = -1$

Hinge loss = $\max(0, 1 - y_i \Theta^{\top} \mathbf{x})$

- **1** $y_i \Theta^{\top} \mathbf{x}_i > 1$: no contribution to loss
- 2 $y_i \Theta^{\top} \mathbf{x}_i = 1$: no contribution to loss
- **3** $v_i \Theta^{\top} \mathbf{x}_i < 1$: contribution to loss

 $Soft-margin\ is\ equivalent\ to\ the\ regularization\ problem.$

Summary of Examination Requirements

- Model complexity, generalization error, Bias and variance
- Lasso and Ridge regularization for linear and logistic regression
- Soft margin classifier and regularization