Machine learning overview

Machine learning process

- Getting data
- Building predictor
- Final evaluation

Formulating the task

ML method selection

Development cycle

- Feature engineering
- Predictor training
- Development evaluation
- Parameter tuning

Predictor to use
Machine learning overview

machine learning = representation + evaluation + optimization

<table>
<thead>
<tr>
<th>representation</th>
<th>evaluation</th>
<th>optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>instances</td>
<td>evaluation function</td>
<td>combinatorial</td>
</tr>
<tr>
<td>k-NN</td>
<td>accuracy/error rate</td>
<td>greedy search</td>
</tr>
<tr>
<td>decision trees</td>
<td>precision, recall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROC curve</td>
<td></td>
</tr>
<tr>
<td>hyperplanes</td>
<td>objective function</td>
<td>continuous</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>generative</td>
<td>unconstrained</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>discriminative</td>
<td>gradient descent, maximum likelihood estimation</td>
</tr>
<tr>
<td>SVM</td>
<td>(conditional probability)</td>
<td>constrained</td>
</tr>
<tr>
<td>Perceptron</td>
<td>margin</td>
<td>quadratic programming</td>
</tr>
<tr>
<td></td>
<td>(conditional probability)</td>
<td></td>
</tr>
<tr>
<td>graphical models</td>
<td>mean square error</td>
<td></td>
</tr>
<tr>
<td>Bayesian networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>neural networks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Machine learning overview

Task and data management
1. Time management
2. Formulating the task
3. Getting data
4. The more data, the better
5. Feature engineering
6. Curse of dimensionality

Methods and evaluation
7. Learning algorithms
8. Development cycle
9. Evaluation
10. Optimizing learning parameters
11. Overfitting
12. The more classifiers, the better
13. Theoretical aspects of ML
(1) Time management

How much time do particular steps take?

- Formulating the task
- Getting data
- Development cycle
- Final evaluation
- Feature engineering
- Predictor training
- Parameter tuning
- Development evaluation
(2) Formulating the task

- Precise formulation of the task
- What are the objects of the task?
- What are the target values of the task?
(3) Getting data

- Gather data
- Assign true prediction
- Clean it
- Preprocess it
- Analyse it
(4) The more data, the better

If we don’t have enough data

- **cross-validation** – The data set $Data$ is partitioned into subsets of equal size. In the i-th step of the iteration, the i-th subset is used as a test set, while the remaining parts from the training set.

- **bootstrapping** – New data sets $Data_1, \ldots, Data_k$ are drawn from $Data$ with replacement, each of the same size as $Data$. In the i-th iteration, $Data_i$ forms the training set, the remaining examples in $Data$ form the test set.
(5) Feature engineering

- Understand the properties of the objects
 - How they interact with the target value
 - How they interact each other
 - How they interact with a given ML algorithm
 - Domain specific

- Feature selection manually

- Feature selection automatically: generate large number of features and then filter some of them out
(6) Curse of dimensionality

- A lot of features \rightarrow high dimensional spaces
- The more features, the more difficult to extract useful information
- Dimensionality increases \rightarrow predictive power of predictor reduces
- The more features, the harder to train a predictor
- **Remedy**: feature selection, dimensionality reduction
(7) Learning algorithms

Which one to choose?

First, identify appropriate learning paradigm

- Classification? Regression?
- Supervised? Unsupervised? Mix?
- If classification, are class proportions even or skewed?

In general, no learning algorithm dominates all others on all problems.
(8) Development cycle

- Test developer’s expectation
- What does it work and what doesn’t?
(9) Evaluation

Model assessment

• **Metrics** and **methods** for performance evaluation
 How to evaluate the performance of a predictor?
 How to obtain reliable estimates?

• **Predictor comparison**
 How to compare the relative performance among competing predictors?

• **Predictor selection**
 Which predictor should we prefer?
(10) Optimizing learning parameters

Searching for the best predictor, i.e.

- adapting ML algorithms to the particulars of a training set
- optimizing predictor performance

Optimization techniques

- Greedy search
- Beam search
- Grid search
- Gradient descent
- Quadratic programming
- ...
(11) Overfitting

- bias
- variance

To avoid overfitting using

- cross-validation
- feature engineering
- parameter tuning
- regularization
The more classifiers, the better

- **Build an ensemble of classifiers** using:
 - different learning algorithm
 - different training data
 - different features

- **Analyze** their performance: complementarity implies potential improvement

- **Combine** classification results (e.g. majority voting).

Examples of ensemble techniques

- **bagging** works by taking a bootstrap sample from the training set

- **boosting** works by changing weights on the training set
Computational learning theory (CLT) aims to understand fundamental issues in the learning process. Mainly

- How computationally hard is the learning problem?

- How much data do we need to be confident that good performance on that data really means something? I.e., accuracy and generalization in more formal manner

- CLT provides a formal framework to formulate and address questions regarding the performance of different learning algorithms. Are there any general laws that govern machine learners? Using statistics, we compare learning algorithms empirically
References

 - https://medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3