Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká

Martin Holub

{Hladka | Holub}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Machine learning overview

machine learning = representation + evaluation + optimization

representation	evaluation	optimization
instances	evaluation function	combinatorial
k-NN	accuracy/error rate precision, recall	greedy search
decision trees	ROC curve	
hyperplanes	objective function	continuous
Naïve Bayes	generative	unconstrained
	(conditional probability)	gradient descent,
Logistic regression	discriminative	maximum likelihood estimation
0 , <i>4</i> , 4	(conditional probability)	constrained
SVM	margin	quadratic programming
Perceptron	mean square error	
graphical models Bayesian networks		
neural networks		

Task and data management

- 1 Time management
- 2 Formulating the task
- 6 Getting data
- 4 The more data, the better
- 6 Feature engineering
- 6 Curse of dimensionality

Methods and evaluation

- Icearning algorithms
- 8 Development cycle
- 9 Evaluation
- Optimizing learning parameters
- Overfitting
- De The more classifiers, the better
- Theoretical aspects of ML

How much time do particular steps take?

- Precise formulation of the task
- What are the objects of the task?
- What are the target values of the task?

- Gather data
- Assign true prediction
- Clean it
- Preprocess it
- Analyse it

If we don't have enough data

- **cross-validation** The data set *Data* is partitioned into subsets of equal size. In the *i*-th step of the iteration, the *i*-th subset is used as a test set, while the remaining parts from the training set.
- **bootstrapping** New data sets *Data*₁, ..., *Data*_k are drawn from *Data* with replacement, each of the same size as *Data*. In the *i*-th iteration, *Data*_i forms the training set, the remaining examples in *Data* form the test set

- Understand the properties of the objects
 - How they interact with the target value
 - How they interact each other
 - How they interact with a given ML algorithm
 - Domain specific
- Feature selection manually
- Feature selection automatically: generate large number of features and then filter some of them out

- A lot of features \longrightarrow high dimensional spaces
- The more features, the more difficult to extract useful information
- Dimensionality increases \longrightarrow predictive power of predictor reduces
- The more features, the harder to train a predictor
- Remedy: feature selection, dimensionality reduction

Which one to choose?

First, identify appropriate learning paradigm

- Classification? Regression?
- Supervised? Unsupervised? Mix?
- If classification, are class proportions even or skewed?

In general, no learning algorithm dominates all others on all problems.

- Test developer's expectation
- What does it work and what doesn't?

Model assessment

• **Metrics** and **methods** for performance evaluation How to evaluate the performance of a predictor? How to obtain reliable estimates?

Predictor comparison

How to compare the relative performance among competing predictors?

Predictor selection

Which predictor should we prefer?

Searching for the best predictor, i.e.

- adapting ML algorithms to the particulars of a training set
- optimizing predictor performance

Optimization techniques

- Greedy search
- Beam search
- Grid search
- Gradient descent
- Quadratic programming
- . . .

- bias
- variance

To avoid overfitting using

- cross-validation
- feature engineering
- parameter tuning
- regularization

(12) The more classifiers, the better

• Build an ensemble of classifiers using

- different learning algorithm
- different training data
- different features
- Analyze their performance: complementarity implies potential improvement
- **Combine** classification results (e.g. majority voting).

Examples of ensemble techniques

- **bagging** works by taking a bootstrap sample from the training set
- **boosting** works by changing weights on the training set

 $\begin{array}{c} \textbf{Computational learning theory} \ (\text{CLT}) \ \text{aims to understand fundamental issues in} \\ \text{the learning process.} \ \text{Mainly} \end{array}$

- How computationally hard is the learning problem?
- How much data do we need to be confident that good performance on that data really means something? I.e., accuracy and generalization in more formal manner
- CLT provides a formal framework to formulate and address questions regarding the performance of different learning algorithms. Are there any general laws that govern machine learners? Using statistics, we compare learning algorithms empirically

- Pedro Domingos. A Few Useful Things to Know about Machine Learning. 2012.
 - https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
- Pedro Domingos. Ten Myths About Machine Learning. 2016.
 - https:

 $//{\tt medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3}$