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Outline

e Support Vector Machines (SVM)

o Evaluation of binary classifiers (cntnd): ROC curve
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Support Vector Machines

Basic idea of SVM for binary classification tasks

We find a plane that separates the two classes in the feature space.

If it is not possible
e allow some training errors, or

e enrich the feature space so that finding a separating plane is possible
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Support Vector Machines

Three key ideas Key concepts needed
e Maximizing the margin e Hyperplane
e Duality optimization task e Dot product
e Kernels e Quadratic programming
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Hyperplane

A hyperplane of an m-dimensional space is a subspace with dimension m — 1.

Mathematical definition
©+ O x =0,where® = (©4,...,0,,)

e If m=2, a hyperplane is a line

If m = 3, a hyperplane is a plane

e O is a normal vector

If X satisfies the equation, then it lies on the hyperplane
If © + ©® "X £ 0, then X lies to one side of the hyperplane
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Hyperplane
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Hyperplane
Separating hyperplane
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Hyperplane

Point-hyperplane distance

Distance of x to the hyperplane ©; + O'x=0

o) = |00 + @ 7|
18]l
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e xcR™
e length of x [|x|| = /> x?

e dot product of two vectors x;,x, € R™

m
X1Xo2 = E X1;X2;
i=1

o x1x2 = ||x1]].||%2||. cos &

e geometric interpretation of xixa:
the length of the projection of x; onto the unit vector x2 (||x2|| = 1)

o xox = x|
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[Ixa|| = 1

X,

X
X X_=||x ||cosa 2
1 2 1
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Quadratic programming

Quadratic programming is the problem of optimizing a quadratic function of
several variables subject to linear constraints on these variables.
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Support Vector Machines

Binary classification task Y = {+1, -1}

h has a form of

h(x) = sgn(© + ©x)
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Support Vector Machines

Binary classification task Y = {+1,

QOutline

@ Large margin classifier (linear separability)
@® Soft margin classifier (not linear separability)
© Kernels (non-linear class boundaries)
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Support Vector Machines

Binary classification task Y = {+1, -1}

Data set Data = {(x;,y;),x; € X,y; € {—1,+1}} is linearly separable

if there exists a hyperplane so that all instances from Data are classified correctly.
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Support Vector Machines

Binary classification task Y = {+1, -1}

Assume a hyperplane g: ©9+ 0O x =0

e Margin of x w.r.t. g is distance of x to g:

|©0 + OTx|
pg(x) = W

e Functional margin of x, (x,y) € Data w.r.t. g is

Pe(x,y) = y(60 + ©7x)

Is x classified correctly or not?
Large functional margin represents correct and confident classification.

e Geometric margin of x, (x,y) € Dataw.r.t. g is

pe(x,y) = Dg(x,¥)/11©]]

l.e. functional margin scaled by ||©||
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Geometric margin of x
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Functional margin of Data w.r.t. g

Pg(Data) = min x yyc pataPy (X, ¥)
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Geometric margin of Data w.r.t. g

pg(Data) = miny ) epataPg(X, y)
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Large Margin Classifier

Training data is linearly separable

We look for g* so that

g" = argmax,pg(Data)
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Large Margin Classifier

Training data is linearly separable

Oy + ©"x and kO + (kO)Tx define the same hyperplane.

vi(©o + ©7x)) _ yi(k©g + (k©) "x;)
e kel
Thus, we can choose @ so that p,(Data) = 1. Then

g" = argmax,p,(Data) = argmax

1
1ol
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Large Margin Classifier
Training data is linearly separable

0 D +dx=-1" A

NPFLO054, 2017 Hladka & Holub Lecture 8, page 21/53



Large Margin Classifier

Training data is linearly separable

Goal: Orientate the separatig hyperplane to be as far as possible from the closest
instances of both classes.

. 1
0" = argmaxew

Support vectors are the instances touching the margins.
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Large Margin Classifier

Training data is linearly separable

SVM
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Large Margin Classifier

Training data is linearly separable

1 1
©* = argmaxg —— = argming ~||@||?
lel| 2
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Large Margin Classifier

Training data is linearly separable

Primal problem
Optimization problem in m + 1 parameters with n linear inequality constrainst

Minimize 1
Z11@])?
Sllel|
subject to
Vi(©+0OTx)>1,i=1,...n
Properties

@ Convex optimization

® Unique solution for linearly separable training data
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Large Margin Classifier

Training data is linearly separable

For each training example (x;, y;)
introduce Lagrange multiplier o; > 0. Let a = (g, ..., ).

Primal Lagrangian L(©, ©g, «) is given by
1
L(®. 80, @) = 5||” - zj:a;(y;(@o +07x)-1) (1)

subject to
ailyi(©o + @TX,') —-1]=0,i=1,...n
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Large Margin Classifier

Training data is linearly separable

1. Minimize L w.r.t. ©®
Thus differentiate L w.r.t. ® and g—é =0
It gives

0= Zn: Qi YiXi )
i=1

2. Minimize L w.r.t. ©g
Thus differentiate L w.r.t. ©¢ and 8%0 =0
It gives

> aiyi=0 ®3)
i=1
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Large Margin Classifier

Training data is linearly separable

3. Substitute (2) into the primal form (1).
Then

L(©, 0, Zoz, Za,-ozjy,-ij,-ij

ij

subject to
a;20,Za;y,-zO,i:1 ...n
i

4. Solve the dual problem, i.e. maximize a quadratic function.
5. Get a*
6. Then @ = Y7 afyix;, O = —4(miny,— ;1 (0" x;) + max,— (0" x,))
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Large Margin Classifier

Training data is linearly separable

e @” is the solution to the primal problem
e o’ is the solution to the dual problem

e due to certain properties of @* and a*, the solutions must satisfy the
Karush-Kuhn-Tucker conditions where one of them is so called KKT dual
complementarity:

aix(1—yi(©+07x) =0

e yi(©o +©7x;) # 1 (x; is not support vector) = a; =0
e a; #0=y(00+0O7x;) =1 (x is support vector)

l.e., finding © is equivalent to finding support vectors and their weights
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Large Margin Classifier

Training data is linearly separable

Prediction for a new instance x

h(x) = sgn(z @;yiXix + ©q)

i=1

e similarity between x and support vector x;: a support vector that is more
similar contributes more to the classification

e support vector that is more important, i.e. has larger «;, contributes more to
the classification

e if y; is positive, than the contribution is positive, otherwise negative
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Soft Margin Classifier

Training data is not linearly separable

In a real problem it is unlikely that a line will exactly separate the data — even if a
curved decision boundary is possible. So exactly separating the data is probably
not desirable — if the data has noise and outliers, a smooth decision boundary that

ignores a few data points is better than one that loops around the outliers.
Thus

minimize ||®||> AND the number of training mistakes
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Soft Margin Classifier
Training data is not linearly separable
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Soft Margin Classifier

Training data is not linearly separable

Introducing slack variables & > 0

o & = 0if x; is correctly classified

e & is distance to "its supporting hyperplane" otherwise
e 0 <& <1/||O©]]: margin violation

e & > 1/||O||: misclassification
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Soft Margin Classifier

Training data is not linearly separable

Primal problem
Minimize

1 n
SICIE DS
i=1
subject to constraint
Vi@ +0OTx)>1-¢,i=1,...n

e C > 0 trade-off parameter
e small C = large margin
relaxed model; misclassifications are not penalized
e large C = narrow margin
misclassifications are penalized strongly
the model will not generalize much
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Soft Margin Classifier

Training data is not linearly separable

e Do quadratic programming as for Large Margin Classifier

e Prediction for a new instance x

h(x) = sgn(z a;yixix + ©g)

i=1
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Support Vector Machines

Non-linear boundary

If the examples are separated by a nonlinear region
y=1
2
®e

X

cision boundary

de
o
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Support Vector Machines

Non-linear boundary

Recall polynomial regression

Polynomial regression is an extension of linear regression where the relationship
between features and target value is modelled as a d-th order polynomial.

Simple regression Polynomial regression

y =00+ 0O1x y:eo+91X1+er12+...edeI
It is still a linear model with features
A, A2 AL

This defines a feature mapping ¢(x1) = [x1, 57, ..., x{]
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Support Vector Machines

Kernels

Idea

e Apply Large/Soft margin classifier not to the orginal features but to the
features obtained by the feature mapping ¢
-¢(x) : R™ > F

e Large/Soft margin classifier uses dot product x;x;. Now, replace it with

d(xi)p(x;).
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Support Vector Machines
Kernels

¢ (1, 02) — (a3, V22122,23)
B+ =13+

B2

Source: http://omega.albany.edu:
8008/machine-learning-dir/notes-dir/kerl/ker1-1.html
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Support Vector Machines

Kernels

However, finding ¢ could be expensive.
Kernel trick

e No need to know what ¢ is and what the feature space is, i.e. no need to
explicitly map the data to the feature space

e Define a kernel function K : R™" x R™ — R

¢ Replace the dot product x;x; with a Kernel function K(x;,x;) :

1
He) = o 5 Zatsx)

iJ
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Support Vector Machines

Common kernel functions

e Linear
.
K(xi, x;) = x; %

Polynomial

K(xi, %) = (vx/ x; + ¢)?

— smaller degree can generalize better

— higher degree can fit (only) training data better
Radial basis function

K(xi, %)) = exp(=(||xi = x;[[*))

— very robust

— use it when polynomial kernel is weak to fit data

Sigmoid

K(x;,x;) = tanh(yx7 x; + c), where tanh(x) = 22{x)—ee(=)

exp(x)-+exp(—x)
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Radial Basis Function Kernel

K(x, ;) = e IIx=1l?

kernel

Source: http://www.cs.toronto.edu/ duvenaud/cookbook/index.html
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Radial Basis Function Kernel

K(x, Ij) = e*'Y”X*IjHZ

kern
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Support Vector Machines

Multiclass classification tasks

One-to-one

e Train (g) SVM binary classifiers

e Classify x using each of the (g) classifiers. The instance is assigned to the

class which is the most frequent class assigned in the pairwise classification.
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Support Vector Machines

Multiclass classification tasks

One-to-all

e Train K SVM binary classifiers. Each of them, doing classification of k-th
class (+1) to the others (-1), is characterized by the hypothesis parameters
Ok=(©g,..-,Om ), k=1,...,K

e The instance x is assigned to the class k* = maka)ka
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Evaluation of binary classifiers

Sensitivity vs. specificity

Confusion matrix

Predicted class
Positive Negative
True class Positive | True Positive (TP) | False Negative (FN)
Negative | False Positive (FP) | True Negative (TN)

] Measure \ Formula |
Precision TP/(TP+FP)
Recall/Sensitivity TP/(TP+FN)
Specificity TN/(TN+FP)
1-Specificity FP/(TN+FP)
Accuracy (TP+TN)/(TP+FP+TN+FN)
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Evaluation of binary classifiers

Sensitivity vs. specificity

Perfect classifier

® _®©

0@.
®
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Evaluation of binary classifiers

Sensitivity vs. specificity

Reality
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Evaluation of binary classifiers

Sensitivity vs. specificity

100% sensitive classifier
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Evaluation of binary classifiers

Sensitivity vs. specificity

100% specific classifier

FN

@ - o
0.(? ®
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Evaluation of binary classifiers

Sensitivity vs. specificity

Sensitivity vs. specificity

¥*
p\ict\"\\
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Evaluation of binary classifiers
ROC curve

Area Under the ROC (AUC) is a measure of how good is a distinguishing property
of classifier
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Summary of Examination Requirements

e Key ideas of SVM
maximizing the margin, duality optimization task, Kernels

e Geometric/Functional margin of example/dataset
e Linearly saparable data

e Large Marging Classifier

e Soft Margin Classifiers

o Kernel trick

e Binary classifier evaluation
sensitivity, specificity, ROC curve, AUC
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