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Outline

• Support Vector Machines (SVM)

• Evaluation of binary classifiers (cntnd): ROC curve
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Support Vector Machines

Basic idea of SVM for binary classification tasks

We find a plane that separates the two classes in the feature space.

If it is not possible
• allow some training errors, or
• enrich the feature space so that finding a separating plane is possible
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Support Vector Machines

Three key ideas

• Maximizing the margin
• Duality optimization task
• Kernels

Key concepts needed

• Hyperplane
• Dot product
• Quadratic programming
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Hyperplane

A hyperplane of an m-dimensional space is a subspace with dimension m − 1.

Mathematical definition

Θ0 + ΘTx = 0,whereΘ = 〈Θ1, . . . ,Θm〉

• If m = 2, a hyperplane is a line
• If m = 3, a hyperplane is a plane
• Θ is a normal vector
• If x satisfies the equation, then it lies on the hyperplane
• If Θ0 + ΘTx 6= 0, then x lies to one side of the hyperplane
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Hyperplane
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Hyperplane
Separating hyperplane
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Hyperplane
Point-hyperplane distance
Distance of x to the hyperplane Θ0 + ΘTx = 0

ρ(x) =
|Θ0 + ΘTx|
||Θ||
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Dot product

• x ∈ Rm

• length of x ||x|| =
√∑m

i=1 x2
i

• dot product of two vectors x1, x2 ∈ Rm

x1x2 =
m∑

i=1
x1i x2i

• x1x2 = ||x1||.||x2||. cosα

• geometric interpretation of x1x2:
the length of the projection of x1 onto the unit vector x2 (||x2|| = 1)

• xx = ||x||2
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Dot product

||x2|| = 1
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Quadratic programming

Quadratic programming is the problem of optimizing a quadratic function of
several variables subject to linear constraints on these variables.
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Support Vector Machines
Binary classification task Y = {+1,−1}

h has a form of

h(x) = sgn(Θ0 + ΘTx)
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Support Vector Machines
Binary classification task Y = {+1,−1}

Outline
1 Large margin classifier (linear separability)
2 Soft margin classifier (not linear separability)
3 Kernels (non-linear class boundaries)
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Support Vector Machines
Binary classification task Y = {+1,−1}

Data set Data = {〈xi , yi〉, xi ∈ X , yi ∈ {−1,+1}} is linearly separable

if there exists a hyperplane so that all instances from Data are classified correctly.
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Support Vector Machines
Binary classification task Y = {+1,−1}

Assume a hyperplane g : Θ0 + ΘTx = 0
• Margin of x w.r.t. g is distance of x to g :

ρg (x) =
|Θ0 + ΘTx|
||Θ||

• Functional margin of x, 〈x, y〉 ∈ Data w.r.t. g is

ρg (x, y) = y(Θ0 + ΘTx)

Is x classified correctly or not?
Large functional margin represents correct and confident classification.

• Geometric margin of x, 〈x, y〉 ∈ Data w.r.t. g is

ρg (x, y) = ρg (x, y)/||Θ||

I.e. functional margin scaled by ||Θ||
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Geometric margin of x
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Functional margin of Data w.r.t. g

ρg (Data) = min〈x,y〉∈Dataρg (x, y)
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Geometric margin of Data w.r.t. g

ρg (Data) = min〈x,y〉∈Dataρg (x, y)
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Large Margin Classifier
Training data is linearly separable

We look for g? so that

g? = argmaxgρg (Data)
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Large Margin Classifier
Training data is linearly separable

Θ0 + ΘTx and kΘ0 + (kΘ)Tx define the same hyperplane.

yi (Θ0 + ΘTxi )

||Θ||
=

yi (kΘ0 + (kΘ)Txi )

||kΘ||
Thus, we can choose Θ so that ρg (Data) = 1. Then

g? = argmaxgρg (Data) = argmaxg
1
||Θ||
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Large Margin Classifier
Training data is linearly separable
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Large Margin Classifier
Training data is linearly separable

Goal: Orientate the separatig hyperplane to be as far as possible from the closest
instances of both classes.

Θ? = argmaxΘ

1
||Θ||

Support vectors are the instances touching the margins.
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Large Margin Classifier
Training data is linearly separable
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Large Margin Classifier
Training data is linearly separable

Θ? = argmaxΘ

1
||Θ||

≡ argminΘ

1
2 ||Θ||

2
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Large Margin Classifier
Training data is linearly separable

Primal problem
Optimization problem in m + 1 parameters with n linear inequality constrainst

Minimize
1
2 ||Θ||

2

subject to
yi (Θ0 + ΘTxi ) ≥ 1, i = 1, . . . n

Properties
1 Convex optimization
2 Unique solution for linearly separable training data
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Large Margin Classifier
Training data is linearly separable

For each training example 〈xi , yi〉
introduce Lagrange multiplier αi ≥ 0. Let α = 〈α1, ..., αn〉.

Primal Lagrangian L(Θ,Θ0,α) is given by

L(Θ,Θ0,α) =
1
2 ||Θ||

2 −
∑

i
αi (yi (Θ0 + ΘTxi )− 1) (1)

subject to
αi [yi (Θ0 + ΘTxi )− 1] = 0, i = 1, . . . n
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Large Margin Classifier
Training data is linearly separable

1. Minimize L w.r.t. Θ
Thus differentiate L w.r.t. Θ and ∂L

∂Θ = 0
It gives

Θ =
n∑

i=1
αiyixi (2)

2. Minimize L w.r.t. Θ0
Thus differentiate L w.r.t. Θ0 and ∂L

∂Θ0
= 0

It gives
n∑

i=1
αiyi = 0 (3)
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Large Margin Classifier
Training data is linearly separable

3. Substitute (2) into the primal form (1).
Then

L(Θ,Θ0,α) =
∑

i
αi −

1
2
∑
i,j
αiαjyiyjxT

i xj

subject to

αi ≥ 0,
∑

i
αiyi = 0, i = 1 . . . n

4. Solve the dual problem, i.e. maximize a quadratic function.
5. Get α?

6. Then Θ? =
∑n

i=1 α
?
i yixi , Θ0 = − 1

2 (minyi =+1(Θ?T
xi ) + maxyi =−1(Θ?T

xi ))
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Large Margin Classifier
Training data is linearly separable

• Θ? is the solution to the primal problem
• α? is the solution to the dual problem
• due to certain properties of Θ? and α?, the solutions must satisfy the
Karush-Kuhn-Tucker conditions where one of them is so called KKT dual
complementarity :

αi ∗ (1− yi (Θ0 + ΘTxi ) = 0

• yi (Θ0 + ΘTxi ) 6= 1 (xi is not support vector) ⇒ αi = 0
• αi 6= 0⇒ yi (Θ0 + ΘTxi ) = 1 (xi is support vector)

I.e., finding Θ is equivalent to finding support vectors and their weights
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Large Margin Classifier
Training data is linearly separable

Prediction for a new instance x

h(x) = sgn(
n∑

i=1
αiyixix + Θ0)

• similarity between x and support vector xi : a support vector that is more
similar contributes more to the classification

• support vector that is more important, i.e. has larger αi , contributes more to
the classification

• if yi is positive, than the contribution is positive, otherwise negative
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Soft Margin Classifier
Training data is not linearly separable

In a real problem it is unlikely that a line will exactly separate the data – even if a
curved decision boundary is possible. So exactly separating the data is probably
not desirable – if the data has noise and outliers, a smooth decision boundary that
ignores a few data points is better than one that loops around the outliers.
Thus

minimize ||Θ||2 AND the number of training mistakes
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Soft Margin Classifier
Training data is not linearly separable
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Soft Margin Classifier
Training data is not linearly separable

Introducing slack variables ξi ≥ 0
• ξi = 0 if xi is correctly classified

• ξi is distance to "its supporting hyperplane" otherwise
• 0 < ξi ≤ 1/||Θ||: margin violation

• ξi > 1/||Θ||: misclassification
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Soft Margin Classifier
Training data is not linearly separable

Primal problem
Minimize

1
2 ||Θ||

2 + C
n∑

i=1
ξi

subject to constraint

yi (Θ0 + ΘTxi ) ≥ 1− ξi , i = 1, . . . n

• C ≥ 0 trade-off parameter
• small C ⇒ large margin

relaxed model; misclassifications are not penalized
• large C ⇒ narrow margin

misclassifications are penalized strongly
the model will not generalize much
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Soft Margin Classifier
Training data is not linearly separable

• Do quadratic programming as for Large Margin Classifier
• Prediction for a new instance x

h(x) = sgn(
n∑

i=1
αiyixix + Θ0)
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Support Vector Machines
Non-linear boundary

If the examples are separated by a nonlinear region
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Support Vector Machines
Non-linear boundary

Recall polynomial regression

Polynomial regression is an extension of linear regression where the relationship
between features and target value is modelled as a d-th order polynomial.

Simple regression
y = Θ0 + Θ1x1

Polynomial regression
y = Θ0 + Θ1x1 + Θ2x2

1 + . . .Θdxd
1

It is still a linear model with features
A1,A2

1, . . . ,Ad
1 .

This defines a feature mapping φ(x1) = [x1, x2
1 , . . . , xd

1 ]
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Support Vector Machines
Kernels

Idea

• Apply Large/Soft margin classifier not to the orginal features but to the
features obtained by the feature mapping φ
– φ(x) : Rm → F

• Large/Soft margin classifier uses dot product xixj . Now, replace it with
φ(xi )φ(xj).
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Support Vector Machines
Kernels

Source: http://omega.albany.edu:
8008/machine-learning-dir/notes-dir/ker1/ker1-l.html
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Support Vector Machines
Kernels

However, finding φ could be expensive.

Kernel trick
• No need to know what φ is and what the feature space is, i.e. no need to
explicitly map the data to the feature space

• Define a kernel function K : Rm ×Rm → R
• Replace the dot product xixj with a Kernel function K (xi , xj) :

L(α) =
∑

i
αi −

1
2
∑
i,j
αiαjyiyjK (xi , xj)
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Support Vector Machines
Common kernel functions

• Linear
K (xi , xj) = xT

i xj

• Polynomial
K (xi , xj) = (γxT

i xj + c)d

– smaller degree can generalize better
– higher degree can fit (only) training data better

• Radial basis function
K (xi , xj) = exp(−γ(||xi − xj ||2))
– very robust
– use it when polynomial kernel is weak to fit data

• Sigmoid
K (xi , xj) = tanh(γxT

i xj + c), where tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x)
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Radial Basis Function Kernel

K (x, lj) = e−γ||x−lj ||2

Source: http://www.cs.toronto.edu/ duvenaud/cookbook/index.html
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Radial Basis Function Kernel

K (x, lj) = e−γ||x−lj ||2
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Support Vector Machines
Multiclass classification tasks

One-to-one
• Train

(K
2
)
SVM binary classifiers

• Classify x using each of the
(K

2
)
classifiers. The instance is assigned to the

class which is the most frequent class assigned in the pairwise classification.
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Support Vector Machines
Multiclass classification tasks

One-to-all
• Train K SVM binary classifiers. Each of them, doing classification of k-th
class (+1) to the others (-1), is characterized by the hypothesis parameters
Θk = 〈Θ0k , . . . ,Θmk 〉, k = 1, . . . ,K

• The instance x is assigned to the class k? = maxkΘ
T
k x
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Evaluation of binary classifiers
Sensitivity vs. specificity

Confusion matrix

Predicted class
Positive Negative

True class Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Measure Formula
Precision TP/(TP+FP)

Recall/Sensitivity TP/(TP+FN)
Specificity TN/(TN+FP)
1-Specificity FP/(TN+FP)
Accuracy (TP+TN)/(TP+FP+TN+FN)
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Evaluation of binary classifiers
Sensitivity vs. specificity

Perfect classifier
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Evaluation of binary classifiers
Sensitivity vs. specificity

Reality
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Evaluation of binary classifiers
Sensitivity vs. specificity

100% sensitive classifier

NPFL054, 2017 Hladká & Holub Lecture 8, page 49/53



Evaluation of binary classifiers
Sensitivity vs. specificity

100% specific classifier
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Evaluation of binary classifiers
Sensitivity vs. specificity

Sensitivity vs. specificity
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Evaluation of binary classifiers
ROC curve

Area Under the ROC (AUC) is a measure of how good is a distinguishing property
of classifier
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Summary of Examination Requirements

• Key ideas of SVM
maximizing the margin, duality optimization task, Kernels

• Geometric/Functional margin of example/dataset
• Linearly saparable data
• Large Marging Classifier
• Soft Margin Classifiers
• Kernel trick
• Binary classifier evaluation
sensitivity, specificity, ROC curve, AUC
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