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e Suppose features Ay, ..., A, and a set of possible target values Y

e Suppose development data as a set of instances

Data = {(x;, i), xi = (x\,...,x""),yi € Y}

where x; is a feature vector and y; is its true target value

Let h* be a best approximation of ¢ trained on Data.
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Model complexity and overfitting

Finding a model that minimizes generalization error
. is one of central goals of the machine learning process
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Model complexity and overfitting

No universal definition

Here ... model complexity is the number of hypothesis parameters

©=(O0,...,0m)
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Model complexity and overfitting
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Bias and variance

@ Select a machine learning algorithm
® Get k different training sets
© Get k predictors hy, ..., h;

e Bias measures error that originates from the learning algorithm
— how far off in general the predictions by k predictors are from the true

output value

e Variance measures error that originates from the training data
— how much the predictions for a test instance vary between k predictors
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Bias and variance

low variance high variance

high bias

low bias
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©
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Bias and variance

Generalization error errorp(h) measures how well a hypothesis h generalizes
beyond the used training data set, to unseen data with distribution D. Usually it
is defined as follows

o for regression: errorp(h) = E (§; — y;)?
o for classification: errorp(h) = Pr(9; # y;)

Decomposition of errorp(h)

errorp(h) = Bias® + Variance
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Bias and variance

e underfitting = high bias
e overfitting = high variance
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Bias and variance

k-Nearest Neighbor

e 1 k —] variance and 7 bias
e | k —1 variance and | bias

e Increasing k "simplifies" decision boundary (averaging more instances)

1-nearest neighbour 5-nearest neighbour
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Bias and variance

k-Nearest Neighbor

5-nearest neighbour 8-nearest neighbour
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Bias and variance

k-Nearest Neighbor

8-nearest neighbour 10-nearest neighbour
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Bias and variance

k-Nearest Neighbor

10-nearest neighbour 15-nearest neighbour
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Regularization

We want a model in between which is

e powerful enough to model the underlying structure of data

e not so powerful to model the structure of the training data

Let's prevent overfitting by complexity regularization, a technique that
regularizes the parameter estimates, or equivalently, shrinks the parameter
estimates towards zero.
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Regularization

e A machine learning algorithm estimates hypothesis parameters
O =(00,01,...,0)
using ©* that minimizes loss function for the data D

©* = argmin loss(©)
[C]

¢ Regularization
©* = argmin loss(©) + X x penalty(©)
[}

where A > 0 is a tuning parameter
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Regularization — Ridge regression

penalty(@) = @2 ... 4 @2

©% +--- + ©2 is the £, norm

©* = argmin loss(@) + A % (03 + - + ©2)
[©]

The penalty is applied to ©1,...,0,,, but not to ©g since the goal is to regularize
the estimated association between each feature and the target value.
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Ridge regression

©* = argmin loss(@) + A % (07 4 --- + ©02))

[C]
e Let ©F,,...,03,, be ridge regression parameter estimates for a particular
value of A
e Let ©F,...,0} be unregularized parameter estimates

6*2 +H‘+e*2
O < il Am < 1
= 912+“,+e;12 =

When A =0, then ©}; =07 fori=1,...,m

When ) is extremely large, then ©3; is very small for i =1,...,m

When )\ between, we are fitting a model and skrinking the parameteres
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Ridge regression
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Regularization — Lasso

penalty(@) = [©1| + -+ + |Op|

|©1] + - -+ + [©n] is the £1 norm

©* = argmin loss(@) + A * (|©1] + -+ [Op])
e

NPFLO054, 2017 Hladka & Holub Lecture 10, page 20/74



Lasso

©* = argmin loss(@) + A x (|©1] + -+ + [On|)
e

Let ©3,,...,03,, be lasso regression parameter estimates

Let ©7,...,0O}, be unregularized parameter estimates

When A =0, then ©}; =O7 fori=1,...,m

When X grows, then the impact of penalty grows

When ) is extremely large, then ©%; =0fori=1,...,m
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Coefficients
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Ridge regression and Lasso — comparison

Difference between Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso
can shrink some parameters to zero.
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A loss function L(y, y) measures the cost of predicting  when the true value is
y € {—1,41}. Commonly used loss functions are

Squared (RSS) L(9,y) = (y — §)?

Zero-one (0/1) L(y,y) =I(yy <0)
indicator variable 1is 1 if yy < 0, 0 otherwise

Hinge L(y,y) = max(0,1 - yy)

Logistic L(¥, y) = max(0, log(1 + e™))

Exponential L(§,y) = e ¥
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Recap of linear regression

Linear regression is a regression algorithm

©* = argmin h(x;) — vi)?
ain > (40x) )

where

° h(X):90+91X1+-~-+9me

e loss function = residual sum of squares
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Recap of linear regression

Intepretation of @

o h(X):@0+@1X1+~-'+eme

e O; gives an average change in a target value with one-unit change in feature
A;, holding other features fixed
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Regularized linear regression

h(X) = @0 + elxl + -+ eme
loss(@) = RSS =Y (h(x;) — yi)?

= argmm Z 2 1 )\ x penalty(©)
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Ridge regression — alternative formulation

n
@* = argmin h(x;) — y;)?
i (h6x) )
subject to ©3 +--- + 02, <s

e the gray circle represents the
feasible region for Ridge regression

e the contours represent different loss
values for the unregularized model
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Ridge regression — alternative formulation

o

X

primary solution.

2
S
o If s is large enough so that the
minimum loss value falls into the
region of ridge regression
parameter estimates then the
alternative formulation yields the -S
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Lasso — alternative formulation

©®* = argmin h(x;) — vi)?
e ;( (xi) — i)
subject to |O1|+ -+ |Om| < s

e the grey square represents the
feasible region of the Lasso

e the contours represent different loss
values for the unregularized model

o the feasible point that minimizes the
loss is more likely to happen on the
coordinates on the Lasso graph than
on the Ridge regression graph since
the Lasso graph is more angular
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Lasso — alternative formulation

0@

o If s is large enough so that the C
minimum loss value falls into the
region of loss parameter estimates .
then the alternative formulation ) 9
yields the primary solution.

~S
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Recap of logistic regression

Logistic regression is a classification algorithm

Assume Y = {0,1}

¢ modeling the probability h(x) = Pr(Y = 1|x; ®)

1
h(X) :g(GTX) = m ,Where G = <@0,...,em>
e prediction function of x
[ 1if h(x)>05
Tl 0if h(x)<05
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Recap of logistic regression

h
o 1_(772)() = odds ratio
¢ log odds is linear
h(x) T
| =0
€1 h(x) X
e recall linear regression
h(x) = ©@7Tx
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Recap of logistic regression

Interpretation of ©

Suppose @ =< O, 07 >

e linear regression h(x) = ©g + ©1x;: ©; gives an average change in a target
value with one-unit change in A;

e logistic regression log 1f(,f()x) = Qg + O1x1: ©1 gives an average change in

logit h(x) with one-unit change in A;
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Recap of logistic regression

Estimating © by maximizing the likelihood

e loss function

L(®) = yilog P(yilxi; ©) + (1 - y) log(1 — P(ylxi; ©))
i=1

e optimization task
O* = argmaxg L(O)
= argming — L(©)

= argming » _ —yilog P(yilxi; ®) — (1 — y;) log(1 — P(yifx;; ©))

i=1
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Recap of logistic regression

Multinomial logistic regression Y = {y1,...,y«}

e train k one-versus-all binary classifiers h¥,i=1,... k

i

o classify x into the class K that maximizes h}(x)
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Regularized logistic regression

©* = argmin — L(O®) + A * penalty(©)
e
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SVM and Logistic regression

Logistic regression with Ridge regression

L(®) = _[Z yilog(h(x;)) + (1 — yi) log(1 — h(x;))] + A Z o7

©* = argming L(O)
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SVM and Logistic regression

Logistic regression with Ridge regression

L(©) = —[’Z;:yf log(h(xi)) + (1 — yi) log(1 — h(x))] + )\Z 02 =
= ZY' log(h(x;))) + (1 — yi)(— log(1 — h(x;))) + /\Zm;ej? -
—Zm +(1- y)Lo(® +>\Z@2
A+)B=CA+B,C= X

argming L(©) = argming Z o7 + ([ Zy,-Ll(O) + (1 —yi)Lo(O)]

j=1 i=1

where [1(©) = —log —L— and Lo(®) = —log(1 —
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SVM and regularized logistic regression

¢ Regularized logistic regression

argming Z 612 +C Z log(1 + e*WGT"")
=1 i=1

where

- —1if y,ZO
y"{ 1if y=1

e SVM

m n
argming Z @J? +C Z max(0,1 — y,-@Tx,-)
j=1 i=1

Soft-margin is equivalent to the regularization problem
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SVM and regularized logistic regression

Hinge loss: max(0,1 — y,-OTx)

(1) y;@Tx,- > 1: no contribution to loss
(2] y,-GTx,- = 1: no contribution to loss

(3) y,-@Tx,- < 1: contribution to loss

NPFL054, 2017 Hladkéa & Holub
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SVM and regularized logistic regression

e & > 0is equivalent to & = max(0,1 — y,-G)Tx,-)
o argming L(®) = argming C Y./ ; max(0,1—y,0 x;) + 37,02 =

j=1
n m
= argmin@CZ &+ Z @J?
i=1 j=1

st.@'x >1-&ify,=land @ x < —1+& ify; = -1
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Principal Component Analysis (PCA)

e a tool to analyze the data

e a tool to do dimensionality reduction
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Auto data set
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Basic concepts needed

e data analysis: measures of center and spread, covariance and correlation

e linear algebra: eigenvectors, eigenvalues, dot product, basis
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Data analysis

How two features are related

Both covariance and correlation indicate how closely two features relationship
follows a straight line.

e Covariance measures the degree of the linear relationship between two
features

n

cov(X,Y) = ni 1 Z(Xi = X)yi =)

i=1

e > 0 both features increase or decrease together
e < 0 while one feature increases the other decreases
e = ( features are linearly independent of each other
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Data analysis

e Covariance matrix of features Aq,..., A, represents covariance among
them
var(Aq) cov(A1,Ap) ... cov(Ag,Ap)
COV(Ar,.... Ap) = cov(Az, Ay) var(Az) ... cov(Az, Ap)
cov(Am, A1) cov(An,,An) ... var(A,)
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Data analysis

How two features are related

e Correlation measures the degree to which the features tend to move
together.

cov(X,Y) -

—1<cor(X,Y)= <1

SXSy
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Data analysis

Auto data set

> cov(Auto[c("mpg", "cylinders", "ho
# mpg  cylinders
# mpg 60.91814 -10.352928
# cylinders -10.35293 2.909696
# horsepower -233.85793  55.348244
# weight -5517.44070 1300.424363
> cor(Auto[c("mpg", "cylinders", "ho
# mpg cylinders h
# mpg 1.0000000 -0.7776175 -
# cylinders -0.7776175 1.0000000
# horsepower -0.7784268 0.8429834
# weight -0.8322442 0.8975273

rsepower", "weight")])

horsepower weight
-233.85793 -5517.441
55.34824  1300.424
1481.56939 28265.620
28265.62023 721484.709

rsepower", "weight")])

orsepower weight
0.7784268 -0.8322442
0.8429834 0.8975273
1.0000000 0.8645377
0.8645377 1.0000000
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Linear algebra

e Eigenvector u, eigenvalue \: Au = \u

e u does not change its direction under the transformation
e )\u scales a vector u by A; it changes its length, not its direction

@ The covariance matrix of an n X m matrix X is an m X m symmetric matrix
: 1 T
given by ——5 XX

n—

® Any symmetric matrix m X m has a set of orthonormal eigenvectors

Vi,Vo,...,V, and associated eigenvalues A1, Ao, ..., Ay
o for any i, Av; = \v;
o [lvill =1

o vivy=0if i#j
© A is a symmetric m x m matrix and E is an m X m matrix whose i-th column
is the i-th eigenvector of A. The eigenvectors are ordered in terms of

decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A = EDET

O If the rows of E are orthogonal, then E71 = ET
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Linear algebra

e Dot product of xi,x2 € R™: x1x2 = 10y X1,%0,

e Basis of R™ is a set of linearly independent vectors uy, ..., un,

e none of them is a linear combination of other vectors

e uu;=0,i,j=1,...m i #j

e any u=qcu; + -+ Cplunm

o for example, the standard basis of the 3-dimensional Euclidean space R®

consists of x = (1,0,0),y = (0,1,0),z = (0,0,1). It is an example of
orthonormal basis, so called naive basis |
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Principal Component Analysis

e instances Data = {x;;x; € R™},|Data| = n
o features Attr = {Ay,...,Ap}

e representation of Data for PCA derivation

X11 . X1n
X — X21 ... Xop
Xmi -+ Xmn
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Which features to keep?

o features that change a lot, i.e. high variance

e features that do not depend on others, i.e. low covariance

Which features to ignore?

e features with some noise, i.e. low variance

NPFLO054, 2017 Hladka & Holub Lecture 10, page 54/74



PCA principles

@ high correlation ~ high redundancy

® the most important feature has the largest variance
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e Question

Is there any other representation of X to extract the most important features?

e Answer

Another basis

P'X =12

where P transforms X into Z

NPFL054, 2017 Hladkéa & Holub
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Heading for the P matrix

P11 ... ... Pim
P— P21 .. ... P2m
Pm1 - .- Pmm

e Principal components of X are the vectors p; = (p1i, .., Pmi)

¢ Principal component loadings of p; are the elements p;,

NPFL054, 2017 Hladkéa & Holub
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Heading for P

P1X1 cee oo P1Xp
7 — P2X1 cee oo P2Xp

PmX1 .-v ... PmXn

i-principal component scores of n instances are p;xi, piXa, . . .

NPFL054, 2017 Hladka & Holub
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P, direction A A

p

irection
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Heading for P

e What is a good choice of P?
e What features we would like Z to exhibit?
Goal: Z is a new representation of X

The new features are linear combinations of the original features whose weights
are given by P.

The covariance matrix of Z is diagonal and the entries on the diagonal are in
descending order, i.e. the covariance of any pair of distinct features is zero, and
the variance of each of our new features is listed along the diagonal.
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Heading for P

e principal components are new basis vectors to represent x;, j =1,...,n
e p;x; is a projection of x; on p;

e changing the basis does not change data, it changes their representation
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The covariance matrix cov(A1, Ag, ..., Ap):

e on the diagonal, large values correspond to interesting structure

e off the diagonal, large values correspond to high redundancy
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Derivation of PCA

@ preprocessing Data
mean normalization to get centered data — X

Y T
O cov(X) = A = XX
©® Compute eigenvectors v, ...,V and eigenvalues A1, ..., A, of A

O Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest

to lowest: p1,...,Pm, A1 > A2 >+ > Ay
® The principal components p1,...,pn become columns of P

Pii

pi=1|-..

Pmi
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Properties of PCA

PTX=2

The i-th diagonal value of cov(Z) is the variance of X along p;.

P1X1 [ P1Xp
y P2X1 ceeeee o P2Xp
PmX1 ... ... PmXn

e We calculate a rotation of the original coordinate system such that all
non-diagonal elements of the new covariance matrix become zero.

e The eigenvectors (principal components) define the basis of the new

coordinate axes and the eigenvalues correspond to the diagonal elements of
the new covariance matrix.

e So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

see p_.46.1

cov(PTX) ﬁ(PTX)(PTX)T =

let A=XXT

1 1
——PTXX™P ——PTAP =
n—1 n—1

1 1
PT(PDPT)p 2404 PT(PT)"IDPT(PT) 1= —D
—P( ) —P'(P") (P =—-——

see p_.46.3 1
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Properties of PCA

A geometric interpretation for the first principal component p;

It defines a direction in feature space along which the data vary the most. If we
project the n instances xi,...,X, onto this direction, the projected values are the
principal component scores z1, ..., 2z, themselves.
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Proportion of Variance Explained (PVE)

How much of the information in a given data set is lost by projecting the instances
onto the first few principal components?

In other words, how much of the variance in the data is not contained in the first
few principal components?

. . . m ) — m l n 2 .
e total variance in X: > myvar(A) =300 > im; X (assuming feature
normalization)

o variance expressed by px: 37 | Z2

"
o PVE(px) = %
i=1 i=1 U

e PVE(py,...,pm) = Y12, PVE(p)), M < m
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PCA

Auto data set

v

a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
summary (pca.a)

v

# Importance of components:

# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA

Auto data set

Scree plot
Scree plot: Auto data set Scree plot: Auto data set
e T o
- S o "
s o
k=3 o /
2 o 2 o
S o i o
8 S g o
Qo 8 o
g o 7 2 o7
£ 5
8 =
z = g = |
S o 5 o
c 8
s g
2 [
5 o o
g 2 £ 8
g £
o | T e—— E o |
° T T T T T T T o ° T T T T T T T
1.0 15 2.0 25 3.0 35 4.0 1.0 15 2.0 25 3.0 35 4.0
Principal Component Principal Component

NPFLO054, 2017 Hladka & Holub Lecture 10, page 69/74



PCA

Auto data set

> pca.a$rotation

PC1 PC2 PC3 PC4
mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

e PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

e PC2 places most of its weight on mpg and less weight on the other three
featres.

e Overall, cylinders, horsepower, and weight are located close to each
other while mpg is far from the other three. It indicates that the three
features are correlated with each other and mpg is less correlated with them.
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PCA

Auto data set

A biplot displays both the PC scores and the PC loadings.

Biplot: scaled Auto data set
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PCA

Auto data set

The biplot for the Auto data set is showing

e the scores of each example (i.e., cars) on the first two principal components
with axes on the top and right
— see the id cars in black

e the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
— see the red arrows
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In general, a m x n matrix X has min(n — 1, m) distinct principal components.

e Question
How many principal components are needed?

e Answer
Unfortunately, there is no single answer to this question. Study scree plots.
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Summary of Examination Requirements

Bias and variance

Lasso and Ridge regularization for linear and logistic regression

SVM and regularized logistic regression

Principal Component Analysis — derivation, scree plot, biplot
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