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Outline
• Model complexity, overfitting, bias and variance
• Regularization

• Ridge regression
• Lasso
• Linear regression
• Logistic regression
• SVM

• Principal Component Analysis
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Settings

• Suppose features A1, . . . ,Am and a set of possible target values Y
• Suppose development data as a set of instances

Data = {(xi , yi ), xi = 〈x1
i , . . . , xm

i 〉, yi ∈ Y }

where xi is a feature vector and yi is its true target value

Let h? be a best approximation of c trained on Data.
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Model complexity and overfitting

Finding a model that minimizes generalization error
. . . is one of central goals of the machine learning process
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Model complexity and overfitting

No universal definition

Here . . .model complexity is the number of hypothesis parameters

Θ = 〈Θ0, . . . ,Θm〉
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Model complexity and overfitting
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Bias and variance

1 Select a machine learning algorithm
2 Get k different training sets
3 Get k predictors h?1 , . . . , h?k

• Bias measures error that originates from the learning algorithm
– how far off in general the predictions by k predictors are from the true
output value

• Variance measures error that originates from the training data
– how much the predictions for a test instance vary between k predictors
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Bias and variance
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Bias and variance

Generalization error errorD(h) measures how well a hypothesis h generalizes
beyond the used training data set, to unseen data with distribution D. Usually it
is defined as follows

• for regression: errorD(h) = E (ŷi − yi )
2

• for classification: errorD(h) = Pr (ŷi 6= yi )

Decomposition of errorD(h)

errorD(h) = Bias2 + Variance
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Bias and variance
• underfitting = high bias
• overfitting = high variance
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Bias and variance
k-Nearest Neighbor

• ↑ k →↓ variance and ↑ bias
• ↓ k →↑ variance and ↓ bias
• Increasing k "simplifies" decision boundary (averaging more instances)
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Bias and variance
k-Nearest Neighbor

5−nearest neighbour
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Bias and variance
k-Nearest Neighbor

8−nearest neighbour
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Bias and variance
k-Nearest Neighbor

10−nearest neighbour
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15−nearest neighbour
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Regularization

We want a model in between which is
• powerful enough to model the underlying structure of data
• not so powerful to model the structure of the training data

Let’s prevent overfitting by complexity regularization, a technique that
regularizes the parameter estimates, or equivalently, shrinks the parameter
estimates towards zero.
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Regularization

• A machine learning algorithm estimates hypothesis parameters
Θ = 〈Θ0,Θ1, . . . ,Θm〉

using Θ? that minimizes loss function for the data D

Θ? = argmin
Θ

loss(Θ)

• Regularization

Θ? = argmin
Θ

loss(Θ) + λ ∗ penalty(Θ)

where λ ≥ 0 is a tuning parameter
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Regularization – Ridge regression

penalty(Θ) = Θ2
1 + · · ·+ Θ2

m

Θ2
1 + · · ·+ Θ2

m is the `2 norm

Θ? = argmin
Θ

loss(Θ) + λ ∗ (Θ2
1 + · · ·+ Θ2

m)

The penalty is applied to Θ1, . . . ,Θm, but not to Θ0 since the goal is to regularize
the estimated association between each feature and the target value.
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Ridge regression

Θ? = argmin
Θ

loss(Θ) + λ ∗ (Θ2
1 + · · ·+ Θ2

m)

• Let Θ?
λ1, . . . ,Θ

?
λm be ridge regression parameter estimates for a particular

value of λ

• Let Θ?
1 , . . . ,Θ

?
m be unregularized parameter estimates

• 0 ≤ Θ?2
λ1+···+Θ?2

λm
Θ?1

2+···+Θ?m
2 ≤ 1

• When λ = 0, then Θ?
λi = Θ?

i for i = 1, . . . ,m

• When λ is extremely large, then Θ?
λi is very small for i = 1, . . . ,m

• When λ between, we are fitting a model and skrinking the parameteres
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Ridge regression
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Regularization – Lasso

penalty(Θ) = |Θ1| + · · ·+ |Θm|

|Θ1|+ · · ·+ |Θm| is the `1 norm

Θ? = argmin
Θ

loss(Θ) + λ ∗ (|Θ1| + · · ·+ |Θm|)
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Lasso

Θ? = argmin
Θ

loss(Θ) + λ ∗ (|Θ1| + · · ·+ |Θm|)

• Let Θ?
λ1, . . . ,Θ

?
λm be lasso regression parameter estimates

• Let Θ?
1 , . . . ,Θ

?
m be unregularized parameter estimates

• When λ = 0, then Θ?
λi = Θ?

i for i = 1, . . . ,m

• When λ grows, then the impact of penalty grows

• When λ is extremely large, then Θ?
λi = 0 for i = 1, . . . ,m

NPFL054, 2017 Hladká & Holub Lecture 10, page 21/74



Lasso
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Ridge regression and Lasso – comparison

Difference between Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso
can shrink some parameters to zero.
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Loss function

A loss function L(ŷ , y) measures the cost of predicting ŷ when the true value is
y ∈ {−1,+1}. Commonly used loss functions are

• Squared (RSS) L(ŷ , y) = (y − ŷ)2

• Zero-one (0/1) L(ŷ , y) = I(y ŷ ≤ 0)
indicator variable I is 1 if y ŷ ≤ 0, 0 otherwise

• Hinge L(ŷ , y) = max(0, 1− y ŷ)

• Logistic L(ŷ , y) = max(0, log(1 + e−yŷ ))

• Exponential L(ŷ , y) = e−yŷ
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Recap of linear regression

Linear regression is a regression algorithm

Θ? = argmin
Θ

n∑
i=1

(h(xi )− yi )
2

where
• h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm

• loss function = residual sum of squares
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Recap of linear regression

Intepretation of Θ

• h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm

• Θj gives an average change in a target value with one-unit change in feature
Aj , holding other features fixed
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Regularized linear regression

h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm

loss(Θ) = RSS =
n∑

i=1
(h(xi )− yi )

2

Θ? = argmin
Θ

n∑
i=1

(h(xi )− yi )
2 + λ ∗ penalty(Θ)
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Ridge regression – alternative formulation

Θ? = argmin
Θ

n∑
i=1

(h(xi )− yi )
2

subject to Θ2
1 + · · ·+ Θ2

m ≤ s

• the gray circle represents the
feasible region for Ridge regression

• the contours represent different loss
values for the unregularized model
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Ridge regression – alternative formulation

• If s is large enough so that the
minimum loss value falls into the
region of ridge regression
parameter estimates then the
alternative formulation yields the
primary solution.
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Lasso – alternative formulation

Θ? = argmin
Θ

n∑
i=1

(h(xi )− yi )
2

subject to |Θ1|+ · · ·+ |Θm| ≤ s

• the grey square represents the
feasible region of the Lasso

• the contours represent different loss
values for the unregularized model

• the feasible point that minimizes the
loss is more likely to happen on the
coordinates on the Lasso graph than
on the Ridge regression graph since
the Lasso graph is more angular
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Lasso – alternative formulation

• If s is large enough so that the
minimum loss value falls into the
region of loss parameter estimates
then the alternative formulation
yields the primary solution.
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Recap of logistic regression

Logistic regression is a classification algorithm

Assume Y = {0, 1}

• modeling the probability h(x) = Pr(Y = 1|x;Θ)

h(x) = g(ΘTx) =
1

1 + e−ΘT x ,where Θ = 〈Θ0, . . . ,Θm〉

• prediction function of x

=

{
1 if h(x) ≥ 0.5
0 if h(x) < 0.5
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Recap of logistic regression

•
h(x)

1− h(x)
= odds ratio

• log odds is linear
log h(x)

1− h(x)
= ΘTx

• recall linear regression

h(x) = ΘTx
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Recap of logistic regression

Interpretation of Θ

Suppose Θ =< Θ0,Θ1 >

• linear regression h(x) = Θ0 + Θ1x1: Θ1 gives an average change in a target
value with one-unit change in A1

• logistic regression log h(x)
1−h(x) = Θ0 + Θ1x1: Θ1 gives an average change in

logit h(x) with one-unit change in A1
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Recap of logistic regression

Estimating Θ by maximizing the likelihood
• loss function

L(Θ) =
n∑

i=1
yi log P(yi |xi;Θ) + (1− yi ) log(1− P(yi |xi;Θ))

• optimization task

Θ? = argmaxΘ L(Θ)

= argminΘ − L(Θ)

= argminΘ

n∑
i=1
−yi log P(yi |xi;Θ)− (1− yi ) log(1− P(yi |xi;Θ))
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Recap of logistic regression

Multinomial logistic regression Y = {y1, . . . , yk}
• train k one-versus-all binary classifiers h?i , i = 1, . . . , k
• classify x into the class K that maximizes h?K (x)
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Regularized logistic regression

Θ? = argmin
Θ

− L(Θ) + λ ∗ penalty(Θ)
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SVM and Logistic regression

Logistic regression with Ridge regression

L(Θ) = −[
n∑

i=1
yi log(h(xi )) + (1− yi ) log(1− h(xi ))] + λ

m∑
j=1

Θ2
j

Θ? = argminΘL(Θ)
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SVM and Logistic regression

Logistic regression with Ridge regression

L(Θ) = −[
n∑

i=1
yi log(h(xi )) + (1− yi ) log(1− h(xi ))] + λ

m∑
j=1

Θ2
j =

=
n∑

i=1
yi (− log(h(xi ))) + (1− yi )(− log(1− h(xi ))) + λ

m∑
j=1

Θ2
j =

=
n∑

i=1
yiL1(Θ) + (1− yi )L0(Θ) + λ

m∑
j=1

Θ2
j

A + λB ≡ CA + B,C =
1
λ

argminΘL(Θ) = argminΘ

m∑
j=1

Θ2
j + C [

n∑
i=1

yiL1(Θ) + (1− yi )L0(Θ)]

where L1(Θ) = − log 1
1+e−ΘT x and L0(Θ) = − log(1− 1

1+e−ΘT x )
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SVM and regularized logistic regression

• Regularized logistic regression

argminΘ

m∑
j=1

Θ2
j + C

n∑
i=1

log(1 + e−yiΘ
T xi )

where

y i =

{
−1 if yi = 0
1 if yi = 1

• SVM

argminΘ

m∑
j=1

Θ2
j + C

n∑
i=1

max(0, 1− yiΘ
Txi )

Soft-margin is equivalent to the regularization problem
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SVM and regularized logistic regression

Hinge loss: max(0, 1− yiΘ
Tx)

1 yiΘ
Txi > 1: no contribution to loss

2 yiΘ
Txi = 1: no contribution to loss

3 yiΘ
Txi < 1: contribution to loss
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SVM and regularized logistic regression

• ξi ≥ 0 is equivalent to ξi = max(0, 1− yiΘ
Txi )

• argminΘ L(Θ) = argminΘC
∑n

i=1 max(0, 1− yiΘ
Txi ) +

∑m
j=1 Θ2

j =

= argminΘC
n∑

i=1
ξi +

m∑
j=1

Θ2
j

s.t. ΘTxi ≥ 1− ξi if yi = 1 and ΘTxi ≤ −1 + ξi if yi = −1
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Principal Component Analysis (PCA)

• a tool to analyze the data
• a tool to do dimensionality reduction
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Basic concepts needed

• data analysis: measures of center and spread, covariance and correlation
• linear algebra: eigenvectors, eigenvalues, dot product, basis
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Data analysis

How two features are related

Both covariance and correlation indicate how closely two features relationship
follows a straight line.

• Covariance measures the degree of the linear relationship between two
features

cov(X ,Y ) =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

• > 0 both features increase or decrease together
• < 0 while one feature increases the other decreases
• = 0 features are linearly independent of each other
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Data analysis

• Covariance matrix of features A1, . . . ,Am represents covariance among
them

COV(A1, . . . ,Am) =


var(A1) cov(A1,A2) . . . cov(A1,Am)

cov(A2,A1) var(A2) . . . cov(A2,Am)
. . . . . . . . . . . .

cov(Am,A1) cov(Am,A2) . . . var(Am)
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Data analysis

How two features are related

• Correlation measures the degree to which the features tend to move
together.

−1 ≤ cor(X ,Y ) =
cov(X ,Y )

sX sY
≤ 1

NPFL054, 2017 Hladká & Holub Lecture 10, page 48/74



Data analysis
Auto data set

> cov(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 60.91814 -10.352928 -233.85793 -5517.441
# cylinders -10.35293 2.909696 55.34824 1300.424
# horsepower -233.85793 55.348244 1481.56939 28265.620
# weight -5517.44070 1300.424363 28265.62023 721484.709

> cor(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 1.0000000 -0.7776175 -0.7784268 -0.8322442
# cylinders -0.7776175 1.0000000 0.8429834 0.8975273
# horsepower -0.7784268 0.8429834 1.0000000 0.8645377
# weight -0.8322442 0.8975273 0.8645377 1.0000000
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Linear algebra

• Eigenvector u, eigenvalue λ: Au = λu
• u does not change its direction under the transformation
• λu scales a vector u by λ; it changes its length, not its direction

1 The covariance matrix of an n ×m matrix X is an m ×m symmetric matrix
given by 1

n−1XX
T

2 Any symmetric matrix m ×m has a set of orthonormal eigenvectors
v1, v2, . . . , vm and associated eigenvalues λ1, λ2, . . . , λm

• for any i , Avi = λivi
• ||vi || = 1
• vivj = 0 if i 6= j

3 A is a symmetric m×m matrix and E is an m×m matrix whose i-th column
is the i-th eigenvector of A. The eigenvectors are ordered in terms of
decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A = EDET

4 If the rows of E are orthogonal, then E−1 = ET
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Linear algebra

• Dot product of x1, x2 ∈ Rm: x1x2 =
∑m

i=1 x1i x2i

• Basis of Rm is a set of linearly independent vectors u1, . . . ,um

• none of them is a linear combination of other vectors

• uiuj = 0, i , j = 1, . . .m, i 6= j

• any u = c1u1 + · · ·+ cmum

• for example, the standard basis of the 3 -dimensional Euclidean space R3

consists of x = 〈1, 0, 0〉, y = 〈0, 1, 0〉, z = 〈0, 0, 1〉. It is an example of
orthonormal basis, so called naive basis I
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Principal Component Analysis

• instances Data = {xi ; xi ∈ Rm}, |Data| = n
• features Attr = {A1, . . . ,Am}
• representation of Data for PCA derivation

X =


x11 . . . x1n
x21 . . . x2n
. . . . . . . . .
xm1 . . . xmn
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PCA
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PCA

Which features to keep?
• features that change a lot, i.e. high variance
• features that do not depend on others, i.e. low covariance

Which features to ignore?
• features with some noise, i.e. low variance
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PCA

PCA principles

1 high correlation ∼ high redundancy
2 the most important feature has the largest variance
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PCA

• Question

Is there any other representation of X to extract the most important features?

• Answer

Another basis

PTX = Z

where P transforms X into Z
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PCA

Heading for the P matrix

P =


p11 . . . . . . p1m
p21 . . . . . . p2m
. . . . . . . . . . . .
pm1 . . . . . . pmm



• Principal components of X are the vectors pi = 〈p1i , . . . , pmi〉
• Principal component loadings of pi are the elements pi1, . . . , pim
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PCA

Heading for P

Z =


p1x1 . . . . . . p1xn
p2x1 . . . . . . p2xn
. . . . . . . . . . . .
pmx1 . . . . . . pmxn


i-principal component scores of n instances are pix1,pix2, . . . ,pixn
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PCA
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PCA

Heading for P

• What is a good choice of P?

• What features we would like Z to exhibit?

Goal: Z is a new representation of X
The new features are linear combinations of the original features whose weights
are given by P.

The covariance matrix of Z is diagonal and the entries on the diagonal are in
descending order, i.e. the covariance of any pair of distinct features is zero, and
the variance of each of our new features is listed along the diagonal.
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PCA

Heading for P

• principal components are new basis vectors to represent xj , j = 1, . . . , n

• pixj is a projection of xj on pi

• changing the basis does not change data, it changes their representation
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PCA

The covariance matrix cov(A1,A2, . . . ,Am):
• on the diagonal, large values correspond to interesting structure
• off the diagonal, large values correspond to high redundancy
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Derivation of PCA

1 preprocessing Data
mean normalization to get centered data → X

2 cov(X) = A = 1
n−1XX

T

3 Compute eigenvectors v1, . . . , vm and eigenvalues λ1, . . . , λm of A

4 Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest
to lowest: p1, . . . ,pm, λ1 ≥ λ2 ≥ · · · ≥ λm

5 The principal components p1, . . . ,pm become columns of P

pi =

p1i
. . .
pmi
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Properties of PCA

PTX = Z

The i-th diagonal value of cov(Z) is the variance of X along pi.

Z =


p1x1 . . . . . . p1xn
p2x1 . . . . . . p2xn
. . . . . . . . . . . .
pmx1 . . . . . . pmxn



• We calculate a rotation of the original coordinate system such that all
non-diagonal elements of the new covariance matrix become zero.

• The eigenvectors (principal components) define the basis of the new
coordinate axes and the eigenvalues correspond to the diagonal elements of
the new covariance matrix.

• So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

cov(PTX)
see p.46.1

=
1

n − 1 (PTX)(PTX)T =

1
n − 1P

TXXTP let A=XXT

=
1

n − 1P
TAP =

see p.46.3
=

1
n − 1P

T(PDPT)P see p.46.4
=

1
n − 1P

T (PT )−1DPT (PT )−1 =
1

n − 1D
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Properties of PCA

A geometric interpretation for the first principal component p1

It defines a direction in feature space along which the data vary the most. If we
project the n instances x1, . . . , xn onto this direction, the projected values are the
principal component scores z11, . . . , zn1 themselves.

NPFL054, 2017 Hladká & Holub Lecture 10, page 66/74



Proportion of Variance Explained (PVE)

How much of the information in a given data set is lost by projecting the instances
onto the first few principal components?

In other words, how much of the variance in the data is not contained in the first
few principal components?

• total variance in X:
∑m

j=1 var(Aj) =
∑m

i=1
1
n
∑n

i=1 x2
ij (assuming feature

normalization)
• variance expressed by pk : 1

n
∑n

i=1 z2
ki

• PVE(pk) =

∑n
i=1

z2
ki∑m

i=1

∑n
i=1

x2
ij

• PVE(p1, . . . ,pM) =
∑M

i=1 PVE(pi ), M ≤ m
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PCA
Auto data set

> a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
> summary(pca.a)

# Importance of components:
# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA
Auto data set

Scree plot
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PCA
Auto data set

> pca.a$rotation
PC1 PC2 PC3 PC4

mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

• PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

• PC2 places most of its weight on mpg and less weight on the other three
featres.

• Overall, cylinders, horsepower, and weight are located close to each
other while mpg is far from the other three. It indicates that the three
features are correlated with each other and mpg is less correlated with them.
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PCA
Auto data set
A biplot displays both the PC scores and the PC loadings.
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PCA
Auto data set

The biplot for the Auto data set is showing
• the scores of each example (i.e., cars) on the first two principal components
with axes on the top and right
– see the id cars in black

• the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
– see the red arrows
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PCA

In general, a m × n matrix X has min(n − 1,m) distinct principal components.

• Question
How many principal components are needed?

• Answer
Unfortunately, there is no single answer to this question. Study scree plots.
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Summary of Examination Requirements

• Bias and variance
• Lasso and Ridge regularization for linear and logistic regression
• SVM and regularized logistic regression
• Principal Component Analysis – derivation, scree plot, biplot
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