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Outline

• Linear regression
• Auto data set

• Logistic regression
• Auto data set
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Machine learning process and development cycle
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Machine learning as building a prediction function

• if target values are continuous numbers, we speak about regression
= estimating or predicting a continuous response

• if target values are discrete/categorical, we speak about classification
= identifying group membership
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Prediction function and its relation to the data

Idealized model of supervised learning

• xi are feature vectors, yi are true predictions
• prediction function h? is the “best” of all possible hypotheses h
• learning process is searching for h?, which means to search the hypothesis
space and minimize a predefined loss function

• ideally, the learning process results in h? so that predicted ŷi = h?(xi ) is
equal to the true target values yi
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Linear regression
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Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg Miles per gallon
cylinders Number of cylinders between 4 and 8
displacement Engine displacement (cu. inches)
horsepower Engine horsepower
weight Vehicle weight (lbs.)
acceleration Time to accelerate from 0 to 60 mph (sec.)
year Model year (modulo 100)
origin Origin of car (1. American, 2. European, 3. Japanese)
name Vehicle name
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Dataset Auto from the ISLR package

mpg
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Linear regression

h has a form of linear function

h(x) = Θ0 + Θ1x1 + . . .Θmxm = Θ0 + 〈Θ1, . . . ,Θm〉Tx (1)

Linear regression is a parametric method.

We estimate m + 1 parameters (Θ) instead of fitting data with an entirely
arbitrary function h.
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Linear regression

Notation

y =

 y1
. . .
yn

, Θ =

Θ0
. . .
Θm

, X =


1 x11 . . . x1m
1 x21 . . . x2m
. . . . . . . . . . . .
1 xn1 . . . xnm


y = XΘ
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Simple linear regression

Simple regression is a linear regression
with a single feature.

• Attr = {A1}
• x = 〈x1〉
• h(x) = Θ0 + Θ1x1

• Θ1 is the average change in y for a
unit change in A1, if A1 is a
continuous feature
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Simple linear regression

How to choose parameters Θ0 and Θ1?

Idea: Choose them so that h(x) is close to y for training examples 〈x, y〉

How to measure closeness? Using e.g., the least squares criterion
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Least squares criterion
• Residual ei = yi − h(xi )
• Residual sum of squares RSS(h) =

∑n
i=1 e2

i
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Simple linear regression

Hypothesis h(x) = Θ0 + Θ1x1
Hypothesis parameters Θ = 〈Θ0,Θ1〉

• Loss function
L(Θ) = RSS = (XΘ− y)2 (2)

• Optimization task
Θ? = argminΘL(Θ) (3)

The argmin operator will give Θ for which L(Θ) is minimal.
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Simple linear regression
Solving the loss function analytically

• Find the pair (Θ0,Θ1) that minimizes L(Θ) =
∑n

i=1(yi −Θ0 −Θ1xi )
2

• ∂L(Θ)
∂Θ0

= −
∑n

i=1 2(yi −Θ0 −Θ1xi )

−
∑n

i=1 2(yi −Θ0 −Θ1xi ) = 0 =⇒
∑n

i=1(yi −Θ0 −Θ1xi ) = 0

• ∂L(Θ)
∂Θ1

= −
∑n

i=1 2xi (yi −Θ0 −Θ1xi )

−
∑n

i=1 2xi (yi −Θ0 −Θ1xi ) = 0 =⇒
∑n

i=1 xi (yi −Θ0 −Θ1xi ) = 0

• Using the Normal equations calculus (see below), the minimizers are

• Θ1 =

∑n
i=1

(xi −x)(yi −y)∑n
i=1

(xi −x)2 ,

• Θ0 = y − Θ1x
where y = 1

n
∑n

i=1 yi , x = 1
n

∑n
i=1 xi
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Simple linear regression
Solving the loss function analytically

Normal Equations Calculus

Find Θ that minimizes e = y− XΘ

Theorem
Θ? is a least squares solution to y = XΘ⇔ Θ? is a solution to the Normal
equation XTXΘ = XTy.
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Simple linear regression
Solving the loss function analytically

Normal Equations Calculus

• Θ? = (XTX)−1XTy
• Thus we work with a system of (m + 1) equations in (m + 1) unknowns.
• The term “normal equations” derives from the fact that the solution Θ
satisfies at XT (y−XΘ) = 0 where the residual vector y−XΘ is a normal to
the columns of X.

• (Two non-zero vectors a and b are orthogonal if and only if ab = 0.)
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Simple linear regression
Solving the loss function analytically

• When using the Normal equations for solving the cost function analytically
one has to compute (XTX)−1XTy

• But it is computationally expensive:-( calculating the inverse of a
(m + 1)× (m + 1) matrix is O(m + 1)3 and as m increases it can take a very
long time to finish.

• When m is low one can think of Normal equations as the better option for
calculation Θ, however for greater values the Gradient Descent Algorithm
is much more faster.
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Simple linear regression
Gradient Descent Algorithm

Simplification: Θ0 = 0, Θ1 6= 0

Hypothesis h(x) = Θ1x1

Hypothesis Θ1 (Θ = 〈0,Θ1〉)
parameters

Loss L(Θ) = RSS
function

Optimization Θ?
1 = argminΘ1L(Θ)

task
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Simple linear regression
Gradient Descent Algorithm

Θ0 = 0, Θ1 6= 0
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Simple linear regression
Gradient Descent Algorithm

Θ0 6= 0,Θ1 6= 0
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Gradient Descent Algorithm

Gradient descent algorithm is an optimization algorithm to find a local minimum
of a function f .
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Gradient Descent Algorithm

1. Start with some x0.
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Gradient Descent Algorithm

2. Keep changing xi to reduce f (xi ) until you end up at a minimum.
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Gradient Descent Algorithm

Credits: Andrew Ng
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Gradient Descent Algorithm

• We are seeking the solution to the minimum of a function f (x). Given some
initial value x0, we can change its value in many directions.

• What is the best direction to minimize f ? We take the gradient ∇f of f

∇f (x1, x2, . . . , xm) = 〈∂f (x1, x2, . . . , xm)

∂x1
, . . . ,

∂f (x1, x2, . . . , xm)

∂xm
〉 (4)

• Intuitively, the gradient of f at any point tells which direction is the steepest
from that point and how steep it is. So we change x in the opposite direction
to lower the function value.
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Gradient Descent Algorithm

Choice of the step
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Gradient Descent Algorithm

Choice of the step
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Gradient Descent Algorithm

Choice of the step
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Gradient Descent Algorithm

repeat until convergence {

Θj := Θj − α
∂L(Θ0,Θ1)

∂Θj
, j = 0, 1 (5)

(simultaneously update Θj for j = 0 and j = 1)
}

– α is a positive step-size parameter that controls how big step we’ll take downhill
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Gradient Descent Algorithm

• If α is too large, GDA can overshoot the minimum. It may fail to converge,
or even diverge.

• If α is too small, GDA can be slow.
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Simple linear regression
Gradient Descent Algorithm

∂L(Θ0,Θ1)
∂Θj

=
∂

∑n
i=1

(h(xi )−yi )
2

∂Θj
=

∂
∑n

i=1
(Θ0+Θ1xi1−yi )

2

∂Θj

• j = 0 : ∂L(Θ0,Θ1)
∂Θ0

=
∑n

i=1(h(xi )− yi )

• j = 1 : ∂L(Θ0,Θ1)
∂Θ1

=
∑n

i=1(h(xi )− yi )xi1

• Θ0 := Θ0 − α
∑n

i=1(h(xi )− yi )

• Θ1 := Θ1 − α
∑n

i=1(h(xi )− yi )xi1

Batch gradient descent uses all the training examples at each step.
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Simple linear regression
Gradient Descent Algorithm

Squared error function L(Θ) is a convex function, so there is no local optimum,
just global minimum.
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Assessing the accuracy of the model
Coefficient of determination R2

R2 measures the proportion of variance in a target value that is reduced by taking
into account x

• TSS =
∑n

i=1(yi − y)2 # total variance in Y

• RSS =
∑n

i=1(yi − ŷ)2

• R2 = TSS−RSS
TSS = 1− RSS

TSS (%)
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Multivariate linear regression

Multivariate regression is a linear regression with multiple features.
• x = 〈x1, x2, ..., xm〉

h(x) = Θ0 + Θ1x1 + ...+ Θmxm (6)

• 〈Θ0,Θ1, ...,Θm〉 ∈ Rm+1

• Define x0 = 1, so x = 〈x0, x1, x2, ..., xm〉
• Θi is the average change in y for a unit change in A1 holding all other
features fixed, if A1 is a continuous feature
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Multivariate linear regression

Hypothesis h(x) = ΘTx

Hypothesis parameters Θ = 〈Θ0,Θ1, . . . ,Θm〉

Loss function L(Θ) = RSS =
∑n

i=1(h(xi )− yi )
2

Optimization task Θ? = argminΘL(Θ)
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Multivariate linear regression
Auto data set
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Multivariate linear regression
Gradient Descent Algorithm

repeat until convergence {

ΘK+1 := ΘK − α∇L(ΘK ), (7)

where

∇L(ΘK ) = XT (XΘK − y) (8)

}
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Polynomial regression

Polynomial regression is an extension of linear regression where the relationship
between features and target value is modelled as a d-th order polynomial.

Simple regression
y = Θ0 + Θ1x1

Polynomial regression
y = Θ0 + Θ1x1 + Θ2x2

1 + . . .Θdxd
1

It is still a linear model with features
A1,A2

1, . . . ,Ad
1 .

The linear in linear model refers to the hypothesis parameters, not to the features.
Thus, the parameters Θ0,Θ1, . . . ,Θd can be easily estimated using least squares
linear regression.
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Polynomial regression

Notation

y =

 y1
. . .
yn

, Θ =

Θ0
. . .
Θd

, X =


1 x11 . . . xd

11
1 x21 . . . xd

21
. . . . . . . . . . . .
1 xn1 . . . xd

n1


y = XΘ
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Polynomial regression
Auto data set
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Simple regression with a categorical feature

• assume a categorical feature with k values
• create k − 1 dummy variables ( DA1, DA2, . . .DAk−1)
• then yi = Θ0 + Θ1DA1

i + · · ·+ Θk−1DAk−1
i

• Example:
• mpg ∼ origin

DA1
1 DA1

2
American 0 0
European 1 0
Japanase 0 1

• yi = Θ0 + Θ1DA1
1 + Θ2DA1

2
• yi = Θ0 + Θ1 if the i-th car is European
• yi = Θ0 + Θ2 if the i-th car is Japanese
• yi = Θ0 if the i-th car is American

Interpretation
• Θ0 as the average mpg for American cars
• Θ1 as the average difference in mpg between European and American cars
• Θ2 as the average difference in mpg between Japanese and American cars
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Linear regression on binary classification

• Attr = {A1} (e.g., Pointwise mutual information)
• Y = {0, 1}
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Linear regression on binary classification

• Fit the data with a linear function h
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Linear regression on binary classification

• prediction function of x
• if h(x) ≥ 0.5, predict 1

• if h(x) < 0.5, predict 0
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Linear regression on binary classification

• Add one more training instance
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Linear regression on binary classification

It can happen that h(x) > 1 or h(x) < 0 but we predict 0 and 1.
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Logistic regression
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Logistic regression

h has a form of sigmoid function g(z) = 1
1+e−z

h(x) = g(ΘTx) =
1

1 + e−ΘT x =
eΘT x

1 + eΘT x (9)
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Sigmoid function

• g(z) = 1
1+e−z

• limz→+∞ g(z) = 1

• limz→−∞ g(z) = 0

−6 −4 −2 0 2 4 6
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Sigmoid function

z

g(
z)
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Logistic regression

• We interpret the output of h(x) as estimated probability of y = 1 given x
parameterized by Θ, i.e. h(x) = Pr(y = 1|x; Θ)

• the ratio of the probability of success and the probability of failure
odds = h(x)

1− h(x)
= eΘT x ∈ (0,+∞)

• log-odds (logit) is linear in x

log h(x)

1− h(x)
= ΘTx ∈ (−∞,+∞)

• recall linear regression h(x) = ΘTx
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Logistic regression
Interpretation of Θ for continuous features

Suppose Θ =< Θ0,Θ1 >

• linear regression h(x) = Θ0 + Θ1x1: Θ1 gives an average change in a target
value with one-unit change in A1

• logistic regression log h(x)
1−h(x) = Θ0 + Θ1x1: Θ1 gives an average change in

logit h(x) with one-unit change in A1
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Logistic regression
Interpretation of Θ for binary features

Example:
disease female

0 (male) 1 (female) Total
no 74 77 151
yes 17 32 49
Total 91 109 200

• the odds of having the disease for male:
Pr(disease = yes|female = 0)/Pr(disease = no|female = 0) = 17/91

74/91 = 0.23
• the odds of having the disease for female:
Pr(disease = yes|female = 1)/Pr(disease = no|female = 1) = 32/109

77/109 = 0.42
• the ratio of the odds for female to the odds for male 0.42/0.23 = 1.81, i.e.
the odds for female are about 81% higher than the odds for males
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Logistic regression
Interpretation of Θ for binary features

• log p1
1−p1

= Θ0 + Θ1 ∗ female

If female == 0 then p1
1−p1

= eΘ0

– the intercept Θ0 is the log odds for men

• log p2
1−p2

= Θ0 + Θ1 ∗ female If female == 1 then p2
1−p2

= eΘ0+Θ1

• odds ratio = p2
1−p2

/ p1
1−p1

= eΘ1

– the parameter Θ1 is the log of odds ratio between men and women
Assume the output of logistic regression Θ0 = −1.471, Θ1 = 0.593. Then relate
the odds for males and famels and the parameters:
−1.471 = log(0.23), 0.593 = log(1.81)
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Logistic regression

Hypothesis h(x) = 1
1+e−ΘT x

Hypothesis parameters Θ = 〈Θ0, . . . ,Θm〉
• Loss function

L(Θ) = −
n∑

i=1
yi log P(yi |xi; Θ) + (1− yi ) log(1− P(yi |xi; Θ)) (10)

• Optimization task
Θ? = argminΘL(Θ)

The argmin operator will give Θ for which L(Θ) is minimal.
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Logistic regression
Estimating Θ by maximizing the likelihood
(Maximum likelihood principle will be taught in details later on.)

• likelihood of the data

L(y1, . . . , yn; Θ,X) =
n∏

i=1
P(yi |xi; Θ)

• log likelihood of the data

`(y1, . . . , yn; Θ,X) = logL(y1, . . . , yn; Θ,X)

=
n∑

i=1
log P(yi |xi; Θ)

=
n∑

i=1
yi log P(yi |xi; Θ) + (1− yi ) log(1− P(yi |xi; Θ))

loss function L(Θ) = `(y1, . . . , yn; Θ,X)
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Logistic regression

prediction function of x
• h(x) = g(ΘTx)

• g(z) ≥ 0.5 whenever z ≥ 0 and g(z) < 0.5 whenever z < 0
• if h(x) ≥ 0.5, i.e. ΘTx ≥ 0, predict 1

• if h(x) < 0.5, i.e. ΘTx < 0, predict 0
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Decision boundary

partitions a feature space into two sets, one for each class. Decision boundary
takes a form of function h.
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Hyperplane

Assume a linear decision boundary, called hyperplane, of the form

h(x) = ΘT x = Θ0 +
∑m

i=1 Θixi

where direction of 〈Θ1,Θ2, . . . ,Θm〉 is perpendicular to the hyperplane and Θ0
determines position of the hyperplane with respect to the origin
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Hyperplane

• Logistic regression models imply a linear decision boundary.
• A condition for instance x to be on the hyperplane is h(x) = ΘTx = 0.
• Decision boundaries are the set of points with log odds = 0
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Logistic regression

• Predict y = 1 if h(x) ≥ 0.5, i.e. ΘTx ≥ 0
• Predict y = 0 if h(x) < 0.5, i.e. ΘTx < 0
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Non-linear decision boundary

• Let h(x) = g(Θ0 + Θ1x1 + Θ2x2 + Θ3x2
1 + Θ4x2

2 ) (a higher degree polynomial)
• Assume Θ0 = −1, Θ1 = 0,Θ2 = 0, Θ3 = 1,Θ4 = 1
• Predict y = 1 if −1 + x2

1 + x2
2 ≥ 0, i.e. x2

1 + x2
2 ≥ 1
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Non-linear decision boundary
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More complicated decision boundary
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Logistic regression
Gradient Descent Algorithm

Loss function L(Θ) = −
∑n

i=1 yi log(h(xi )) + (1− yi ) log(1− h(xi ))

Optimization task Θ? = argminΘL(Θ)

Use Gradient descent algorithm
Repeat until convergence
{

Θj := Θj − α
∂L(θ)

∂Θj
(11)

(simultaneously update Θj for j = 1, . . . ,m)
}
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Logistic regression
Gradient descent algorithm

Repeat until convergence
{

Θj := Θj − α
n∑

i=1
(h(xi )− yi )xij (12)

(simultaneously update Θj for j = 1, . . . ,m)
}

Have you already meet it? Yes, see linear regression.
• linear regression h(x) = ΘTx
• logistic regression h(x) = 1

1+e−ΘT x
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Logistic regression
Summary

Classification of x by h?

1 Project x onto Θ? to convert it into a real number z in the range 〈−∞,+∞〉
• i.e. z = (Θ?)Tx

2 Map z to the range 〈0, 1〉 using the sigmoid function g(z) = 1/(1 + e−z )
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm

New instance x:
• h(x) = Pr(y = red |x; Θ)

• h(x) = Pr(y = blue|x; Θ)

• h(x) = Pr(y = green|x; Θ)

Classify x into class i ∈ {red , green, blue} that maximizes h(x).
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Summary of Examination Requirements

• Simple linear regression
• Multivariete linear regression
• Polynomial linear regression
• Coefficient of determination
• Gradient Descent Algorithm
• Logistic regression
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