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Machine learning process and development cycle

Machine learning process

Formulating >
the task

Getting Building o~ Final
data predictor " | evaluation
ML method . Predictor
selection to use
Development cycle
Feature Predictor |Development| Parameter
engineering training evaluation tuning
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Machine learning as building a prediction function

Real world
objects

Feature
vectors

predictor

e if target values are continuous numbers, we speak about regression
= estimating or predicting a continuous response

o if target values are discrete/categorical, we speak about classification
= identifying group membership
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Prediction function and its relation to the data

Real world
objects

Idealized model of supervised learning

e x; are feature vectors, y; are true predictions
e prediction function h* is the “best” of all possible hypotheses h

e learning process is searching for h*, which means to search the hypothesis
space and minimize a predefined loss function

e ideally, the learning process results in h* so that predicted §; = h*(x;) is
equal to the true target values y;
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Linear regression

Machine learning process

! Building
Formulating Getting »| Linear - Final - Predictor
the task data regression evaluation to use
predictor
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Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg Miles per gallon

cylinders Number of cylinders between 4 and 8

displacement | Engine displacement (cu. inches)

horsepower Engine horsepower

weight Vehicle weight (lbs.)

acceleration | Time to accelerate from 0 to 60 mph (sec.)

year Model year (modulo 100)

origin Origin of car (1. American, 2. European, 3. Japanese)
name Vehicle name
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Dataset Auto from the ISLR package
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Linear regression

h has a form of linear function

h(x):60+@1x1+...6mxm:60+<€)1,...,€)m>Tx (1)

Linear regression is a parametric method.

We estimate m + 1 parameters (@) instead of fitting data with an entirely
arbitrary function h.

NPFLO054, 2017 Hladka & Holub Lecture 5, page 9/73



Linear regression

Notation
1 x L.X
" ®% . X11 le
y=|...].0=1| ... ], X= a e 2m
Yn Om 1 X1 ... Xom

y = X0
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Simple linear regression

Simple regression is a linear regression
with a single feature.

h(x)=0©, +0 x

Attr = {A1}

e x={x)

h(X) =0+ 0O1x (o) I
. . 1

©; is the average change in y for a o

unit change in Ay, if A is a 0— _

continuous feature |a-b|=1

a b A1

NPFLO054, 2017 Hladka & Holub Lecture 5, page 11/73



Simple linear regression

How to choose parameters ©p and ©,7
Idea: Choose them so that h(x) is close to y for training examples (x, y)

How to measure closeness? Using e.g., the least squares criterion
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Least squares criterion

e Residual e; = y; — h(x;)
o Residual sum of squares RSS(

ISLR: Auto data set

h) = 27:1 e
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Simple linear regression

Hypothesis h(x) = ©9 + O1x1
Hypothesis parameters O = (6y,01)

e Loss function
L(®) = RSS = (XO — y)2 (2)

e Optimization task
O* = argmingL(©) 3)

The argmin operator will give ® for which L(®) is minimal.
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Simple linear regression

Solving the loss function analytically

e Find the pair (©9, ©1) that minimizes L(®) = >/, (yi — ©o — ©1x;)?

NPFL054, 2017

OO — S 2(yi — ©p — O1x7)
—3" 2(yi— @ — O1x)) =0 => Z;’:l(y; — 0y —0:1x)=0

o = = 2 2l = €0 — O1x))

— 27:1 2xi(yi — ©0 — ©1x;) =0 = 27:1 Xi(yi —©0— ©1x) =0

Using the Normal equations calculus (see below), the minimizers are
.o - > =R i=Y)

Z;’:l(xi_;)2

e Q) =y—0O1x
wherey = 320, ok =150 x
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Simple linear regression

Solving the loss function analytically

Normal Equations Calculus

Find © that minimizes e =y — XO

©” is a least squares solution to y = XO & O is a solution to the Normal
equation XTXO = XTy.
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Simple linear regression

Solving the loss function analytically

Normal Equations Calculus

0" = (XTX)"1XTy
e Thus we work with a system of (m + 1) equations in (m + 1) unknowns.

The term “normal equations” derives from the fact that the solution ©
satisfies at X7 (y — X@) = 0 where the residual vector y — X@ is a normal to
the columns of X.

(Two non-zero vectors a and b are orthogonal if and only if ab=0.)
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Simple linear regression

Solving the loss function analytically

e When using the Normal equations for solving the cost function analytically
one has to compute (XTX)"!XTy

e But it is computationally expensive:-( calculating the inverse of a
(m+1) x (m+ 1) matrix is O(m + 1)® and as m increases it can take a very
long time to finish.

e When m is low one can think of Normal equations as the better option for
calculation ®, however for greater values the Gradient Descent Algorithm
is much more faster.
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Simple linear regression

Gradient Descent Algorithm

Simplification: ©3 =0, ©; #£0

NPFL054, 2017
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Hypothesis
parameters

Loss
function

Optimization
task
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h(X) = 61x1

©1 (0 =(0,61))

L(®) = RSS

©7 = argming L(©)
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Simple linear regression

Gradient Descent Algorithm

©0=0,0;#0
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Jo,)

Hladka & Holub Lecture 5, page 20/73



Simple linear regression

Gradient Descent Algorithm

© #0,0: #0

20 20 4

Credits: Andrew Ng

T X

1
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Gradient Descent Algorithm

Gradient descent algorithm is an optimization algorithm to find a local minimum
of a function f.

f(x)
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Gradient Descent Algorithm

1. Start with some xg.
f(x)

step O
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Gradient Descent Algorithm

2. Keep changing x; to reduce f(x;) until you end up at a minimum.
f(x) (x)

step O step O

step 1 step 1

f(z) f(z)
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Gradient Descent Algorithm

Je,8)

Credits: Andrew Ng
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Gradient Descent Algorithm

e We are seeking the solution to the minimum of a function f(x). Given some
initial value xg, we can change its value in many directions.

e What is the best direction to minimize f7 We take the gradient Vf of f

Of (X1, %2, + +, Xm) Of (x1, X2, « -+ y Xm)
Dt e D ) (4

Vi(x1, X2y« oy Xm) = {

e Intuitively, the gradient of f at any point tells which direction is the steepest
from that point and how steep it is. So we change x in the opposite direction
to lower the function value.
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Gradient Descent Algorithm

Choice of the step

f(x) k_-

step O
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Gradient Descent Algorithm

Choice of the step

f(x)

step O
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Gradient Descent Algorithm

Choice of the step

f(x)

step i+1

step i
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Gradient Descent Algorithm

repeat until convergence {

B OL(o,01) .
0, :=9; aT,J—OJ (5)

(simultaneously update ©; for j =0 and j = 1)

}

— «v is a positive step-size parameter that controls how big step we'll take downhill
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Gradient Descent Algorithm

o If o is too large, GDA can overshoot the minimum. It may fail to converge,
or even diverge.

e |f o is too small, GDA can be slow.

NPFLO054, 2017 Hladka & Holub Lecture 5, page 31/73



Simple linear regression

Gradient Descent Algorithm

OL(©0,0,) _ 9 Z )—yi)? 9" (©o+O1xy —yi)

9, O; ©;
«j=0: %&Oﬂ i (h(xi) = yi)
=1 PO T ()

* ©9:=0—aY. (h(xi)—yi)
* O1:= 01 —a) i (h(xi) - yi)x,

Batch gradient descent uses all the training examples at each step.
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Simple linear regression

Gradient Descent Algorithm

Squared error function L(@®) is a convex function, so there is no local optimum,
just global minimum.
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Assessing the accuracy of the model

Coefficient of determination R?

R? measures the proportion of variance in a target value that is reduced by taking
into account x

o TSS=3"",(yi —y)? # total variance in Y
o RSS=31,(yvi—9)

2 _ TSS—RSS _ 1 _ RSS (o
o RP= "0 =1- 755 (%)
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Multivariate linear regression

Multivariate regression is a linear regression with multiple features.

o X = (X1, X2y ey Xm)

h(X) =0y +O1x1 + ... +Omxm (6)

e (0,01,...,0,) € R™!
o Define xg = 1, s0 x = (Xg, X1, X2, -y Xm)

e O; is the average change in y for a unit change in A; holding all other
features fixed, if A; is a continuous feature
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Multivariate linear regression

Hypothesis h(x) = ©"x
Hypothesis parameters O =(00,01,...,0n)
Loss function L(®) = RSS = Y"1, (h(xi) — yi)?

Optimization task O* = argmingL(O)
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Multivariate linear regression

Auto data set

ISLR: Auto data set
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Multivariate linear regression

Gradient Descent Algorithm

repeat until convergence {

ef ™ .= 0 — avL(eF), @)

where

VL(©") = XT(X0" —y) (8)
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Polynomial regression

Polynomial regression is an extension of linear regression where the relationship
between features and target value is modelled as a d-th order polynomial.

Simple regression Polynomial regression
y:90+@1X1 y:@0+91x1+92x12+...6dx1"

It is still a linear model with features
Al,A%,...,Ai’.

The linear in linear model refers to the hypothesis parameters, not to the features.
Thus, the parameters ©g, ©1,...,04 can be easily estimated using least squares
linear regression.
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Polynomial regression

Notation o y
N TP ) WO ISR
g O 1o

y = X0
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Polynomial regression

Auto data set

ISLR: Auto data set
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Simple regression with a categorical feature

e assume a categorical feature with k values
create k — 1 dummy variables ( DA!, DA?, ...DAk_l)
then y; = ©g + (%)1DA,-1 + -+ ekleAf-(_l

[ ]
e Example:
® mpg ~ origin
| DAT DA
American 0 0
European 1 0
Japanase 0 1

yi = ©9 + ©:DA} + ©,DA}

yi = ©¢ + O if the i-th car is European
i = ©9 + O if the j-th car is Japanese
yi = ©p if the i-th car is American

e o o o
<

Interpretation

e O as the average mpg for American cars
e ©; as the average difference in mpg between European and American cars

e O, as the average difference in mpg between Japanese and American cars
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Linear regression on binary classification

o Attr = {A;1} (e.g., Pointwise mutual information)
e Y =1{0,1}

(Yes)l H

(No)o 9O @

A

1
(Pointwise mutual information)
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Linear regression on binary classification

e Fit the data with a linear function h
h(x)=®'x

(Yes)1l —

(No)0 —

A

1
(Pointwise mutual information)

NPFLO054, 2017 Hladka & Holub Lecture 5, page 44/73



Linear regression on binary classification

e prediction function of x
e if h(x) > 0.5, predict 1

e if h(x) < 0.5, predict 0

(Yes)1 - 0000

0.5

(Pointwise mutual information)
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Linear regression on binary classification

e Add one more training instance

(Yes)1

0.5

(No)0 —

NPFL054, 2017
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1
(Pointwise mutual information)
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Linear regression on binary classification

It can happen that h(x) > 1 or h(x) < 0 but we predict 0 and 1.
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Logistic regression

Machine learning process

Formulating
the task

NPFL054, 2017

Getting
data
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Logistic
regression
predictor
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Final
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Logistic regression

h has a form of sigmoid function g(z) = Ti_z
1 eGTx

h(x) = g(©@"x) = lre©x 11 e07x 9)
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Sigmoid function

Sigmoid function

° g(z):pr%

9(2)

e lim,,, g(z)=1

o lim,, oo g(z)=0
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Logistic regression

We interpret the output of h(x) as estimated probability of y = 1 given x
parameterized by ©, i.e. h(x) = Pr(y = 1|x; O)

the ratio of the probability of success and the probability of failure

_ h(X) _ _0"x
OddS = 1—7})()() =€ e (0, +OO)

log-odds (logit) is linear in x

h(x)

67 _
gm—@ XG( OO,+OO)

lo

recall linear regression h(x) = @ x
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Logistic regression

Interpretation of © for continuous features

Suppose @ =< ©g, 01 >
e linear regression h(x) = ©¢ + ©1x;: O gives an average change in a target

value with one-unit change in Ay

e logistic regression log 1f(:()x) = Qg + O1x1: ©1 gives an average change in

logit h(x) with one-unit change in A;
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Logistic regression

Interpretation of © for binary features

Example:
disease | female
0 (male) 1 (female) | Total
no 74 77 151
yes 17 32 49
Total 91 109 200

e the odds of having the disease for male:
Pr(disease = yes|female = 0)/ Pr(disease = no|female = 0) = 9L _0.23

e the odds of having the disease for female:
Pr(disease = yes|female = 1)/ Pr(disease = nolfemale = 1) = 32/109 — 0.42

= 7ajo1

77/100 — 7

o the ratio of the odds for female to the odds for male 0.42/0.23 = 1.81, i.e.
the odds for female are about 81% higher than the odds for males

NPFL054, 2017
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Logistic regression

Interpretation of © for binary features

o log lflpl = Oy + ©; * female

If female == 0 then l_p—lpl = %o
— the intercept Oy is the log odds for men

o log 22~ = O + O1 * female If female == 1 then {2~ = e tOr

e odds ratio = 2~ /8- = =%

— the parameter @1 is the log of odds ratio between men and women

Assume the output of logistic regression ©¢g = —1.471, ©; = 0.593. Then relate
the odds for males and famels and the parameters:
—1.471 = log(0.23), 0.593 = log(1.81)
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Logistic regression

Hypothesis h(x) = 1+e—9T

Hypothesis parameters O =(0,...,0n)

e Loss function
== yilogP(yilxi; ©) + (1 — y;) log(1 — P(yilx;; ®)) (10

e Optimization task
O* = argmingL(©)

The argmin operator will give ® for which L(®) is minimal.
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Logistic regression

Estimating © by maximizing the likelihood

(Maximum likelihood principle will be taught in details later on.)
¢ likelihood of the data

n

£(y1, ey Y G,X) = H P(y,'|Xi; G)

i=1
¢ log likelihood of the data

f()/h cees Ym eax) = |0g£()’1; sy Y O,X)

= Z log P(yi|xi; ©)
i=1

= ZYI log P(yi|xi; ©) + (1 — y;) log(1 — P(yilxi; ©))

loss function L(@) = {(y1, ..., yn; ©,X)
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Logistic regression

prediction function of x
« h(x) = g(@"x)

e g(z) > 0.5 whenever z > 0 and g(z) < 0.5 whenever z < 0
e if h(x) > 0.5, i.e. @"x >0, predict 1

e if h(x) < 0.5, i.e. @"x < 0, predict 0
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Decision boundary

partitions a feature space into two sets, one for each class. Decision boundary
takes a form of function h.
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Hyperplane

Assume a linear decision boundary, called hyperplane, of the form
h(X) = OTX =0+ 27;1 Oix;

where direction of (©1,0,,...,0,,) is perpendicular to the hyperplane and ©q
determines position of the hyperplane with respect to the origin
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Hyperplane

e Logistic regression models imply a linear decision boundary.
e A condition for instance x to be on the hyperplane is h(x) = @' x = 0.

e Decision boundaries are the set of points with logodds =0
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Logistic regression

o Predict y = 1if h(x) > 0.5, i.e. @' x>0
e Predict y = 0 if h(x) < 0.5, i.e. @' x <0

X
2
y=1
[
[ W o
®
— @
. o decision boundary
oo
=0 1
I X,
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Non-linear decision boundary

e Let h(x) = g(©g+O1x1 + O2x2 + O3x2 + O4x2) (a higher degree polynomial)
e Assume @0 = —1, @1 :0792 ZO, @3 = 1,@4 =1
o Predict y =1if ~1+x2+x3>0,ie x2+x3>1
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Non-linear decision boundary

decision boundary
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More complicated decision boundary

=1

"\decision boundary

y:Ol 1
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Logistic regression

Gradient Descent Algorithm

Loss function L(®) = —>"", yilog(h(x;)) + (1 — y;) log(1 — h(x;))

Optimization task ©” = argmingL(O)

Use Gradient descent algorithm
Repeat until convergence

{
_ OL(9)
@j = @J « 8@J (11)
(simultaneously update ©; for j =1,...,m)
}
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Logistic regression

Gradient descent algorithm

Repeat until convergence

{
j = 0 —az — Yi)X;, (12)

(simultaneously update ©; for j =1,...,m)

}

Have you already meet it? Yes, see linear regression.

e linear regression h(x) = 0'x
1

e logistic regression h(x) = e

NPFLO054, 2017 Hladka & Holub Lecture 5, page 66/73



Logistic regression

Summary

Classification of x by h*

© Project x onto @ to convert it into a real number z in the range (—oo, +0c0)

o ie z=(0%)"x

® Map z to the range (0, 1) using the sigmoid function g(z) =1/(1+ e~ %)

NPFLO054, 2017 Hladka & Holub Lecture 5, page 67/73



Logistic regression for multi-class classification

One-vs-all algorithm

¥
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Logistic regression for multi-class classification

One-vs-all algorithm

N
- X X
® o ®
0
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm
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Logistic regression for multi-class classification

One-vs-all algorithm

New instance x:
o h(x) = Pr(y = red|x; ©)
o h(x) = Pr(y = blue|x; ©)
e h(x) = Pr(y = green|x; ©)

Classify x into class i € {red, green, blue} that maximizes h(x).
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Summary of Examination Requirements

Simple linear regression

Multivariete linear regression

Polynomial linear regression

Coefficient of determination

Gradient Descent Algorithm

Logistic regression
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