Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

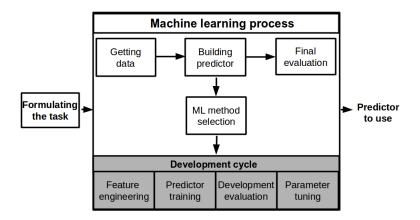
Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

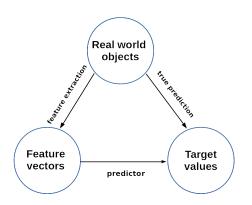
Outline

- Linear regression
 - Auto data set
- Logistic regression
 - Auto data set

Machine learning process and development cycle



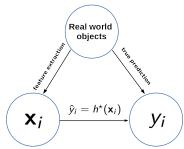
Machine learning as building a prediction function



- if target values are *continuous* numbers, we speak about **regression**= estimating or predicting a continuous response
- if target values are *discrete/categorical*, we speak about **classification**= identifying group membership

Prediction function and its relation to the data

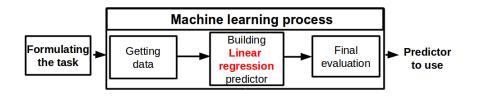
Idealized model of supervised learning



- x_i are feature vectors, y_i are true predictions
- prediction function h^* is the "best" of all possible hypotheses h
- **learning process** is searching for h^* , which means to search the **hypothesis** space and minimize a predefined **loss function**
- ideally, the learning process results in h^* so that predicted $\hat{y}_i = h^*(\mathbf{x}_i)$ is equal to the true target values y_i

NPFL054, 2017 Hladká & Holub Lecture 5, page 5/73

Linear regression

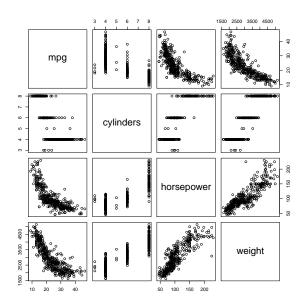


Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg	Miles per gallon
cylinders	Number of cylinders between 4 and 8
displacement	Engine displacement (cu. inches)
horsepower	Engine horsepower
weight	Vehicle weight (lbs.)
acceleration	Time to accelerate from 0 to 60 mph (sec.)
year	Model year (modulo 100)
origin	Origin of car (1. American, 2. European, 3. Japanese)
name	Vehicle name

Dataset Auto from the ISLR package



Linear regression

h has a form of linear function

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots \Theta_m x_m = \Theta_0 + \langle \Theta_1, \dots, \Theta_m \rangle^T \mathbf{x}$$
 (1)

Linear regression is a parametric method.

We estimate m+1 parameters (Θ) instead of fitting data with an entirely arbitrary function h.

Linear regression

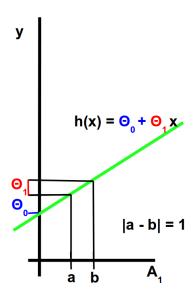
Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}, \ \mathbf{\Theta} = \begin{pmatrix} \Theta_0 \\ \dots \\ \Theta_m \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ 1 & x_{21} & \dots & x_{2m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{\Theta}$$

Simple linear regression

Simple regression is a linear regression with a single feature.

- $Attr = \{A_1\}$
- $\mathbf{x} = \langle x_1 \rangle$
- $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$
- Θ₁ is the average change in y for a unit change in A₁, if A₁ is a continuous feature



NPFL054, 2017 Hladká & Holub Lecture 5, page 11/73

Simple linear regression

How to choose parameters Θ_0 and Θ_1 ?

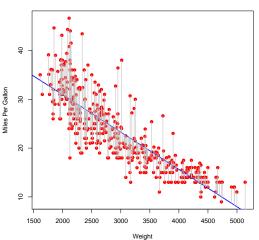
Idea: Choose them so that $h(\mathbf{x})$ is close to y for training examples $\langle \mathbf{x}, y \rangle$

How to measure closeness? Using e.g., the least squares criterion

Least squares criterion

- Residual $e_i = y_i h(\mathbf{x}_i)$
- Residual sum of squares $RSS(h) = \sum_{i=1}^{n} e_i^2$

ISLR: Auto data set



Simple linear regression

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 \\ \mathbf{\Theta} = \langle \Theta_0, \Theta_1 \rangle$$

Loss function

$$L(\mathbf{\Theta}) = RSS = (\mathbf{X}\mathbf{\Theta} - \mathbf{y})^2 \tag{2}$$

Optimization task

$$\mathbf{\Theta}^{\star} = \operatorname{argmin}_{\mathbf{\Theta}} L(\mathbf{\Theta}) \tag{3}$$

The argmin operator will give Θ for which $L(\Theta)$ is minimal.

Simple linear regression Solving the loss function analytically

• Find the pair (Θ_0, Θ_1) that minimizes $L(\Theta) = \sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)^2$

•
$$\frac{\partial L(\Theta)}{\partial \Theta_0} = -\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)$$

 $-\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0 \implies \sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0$

$$\bullet \frac{\partial L(\Theta)}{\partial \Theta_1} = -\sum_{i=1}^n 2\mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) - \sum_{i=1}^n 2\mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0 \implies \sum_{i=1}^n \mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0$$

Using the Normal equations calculus (see below), the minimizers are

$$\begin{array}{l} \bullet \ \ \Theta_1 = \frac{\displaystyle\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})(y_i - \overline{y})}{\displaystyle\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})^2}, \\ \bullet \ \ \Theta_0 = \overline{y} - \Theta_1 \overline{\mathbf{x}} \\ \text{where } \overline{y} = \frac{1}{n} \displaystyle\sum_{i=1}^n y_i, \overline{\mathbf{x}} = \frac{1}{n} \displaystyle\sum_{i=1}^n \mathbf{x}_i \end{array}$$

NPFL054, 2017 Hladká & Holub Lecture 5, page 15/73

Simple linear regression Solving the loss function analytically

Normal Equations Calculus

Find $\boldsymbol{\Theta}$ that minimizes $\boldsymbol{e} = \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\Theta}$

Theorem

 Θ^{\star} is a least squares solution to $\mathbf{y} = \mathbf{X}\Theta \Leftrightarrow \Theta^{\star}$ is a solution to the Normal equation $\mathbf{X}^{\mathsf{T}}\mathbf{X}\Theta = \mathbf{X}^{\mathsf{T}}\mathbf{y}$.

Simple linear regression Solving the loss function analytically

Normal Equations Calculus

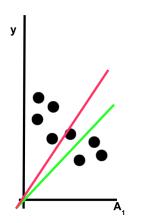
- $\bullet \ \mathbf{\Theta}^{\star} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$
- Thus we work with a system of (m+1) equations in (m+1) unknowns.
- The term "normal equations" derives from the fact that the solution $\boldsymbol{\Theta}$ satisfies at $\mathbf{X}^{T}(\mathbf{y} \mathbf{X}\boldsymbol{\Theta}) = 0$ where the residual vector $\mathbf{y} \mathbf{X}\boldsymbol{\Theta}$ is a normal to the columns of \mathbf{X} .
- (Two non-zero vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{ab} = 0$.)

Simple linear regression Solving the loss function analytically

- When using the Normal equations for solving the cost function analytically one has to compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$
- But it is computationally expensive:-(calculating the inverse of a $(m+1)\times(m+1)$ matrix is $O(m+1)^3$ and as m increases it can take a very long time to finish.
- When m is low one can think of Normal equations as the better option for calculation Θ, however for greater values the Gradient Descent Algorithm is much more faster.

Simple linear regression **Gradient Descent Algorithm**

Simplification: $\Theta_0 = 0$, $\Theta_1 \neq 0$



Hypothesis

$$h(\mathbf{x}) = \Theta_1 x_1$$

Hypothesis parameters

$$\Theta_1 \; (\mathbf{\Theta} = \langle 0, \Theta_1 \rangle)$$

Loss function

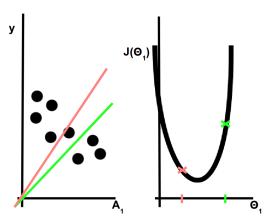
$$L(\mathbf{\Theta}) = RSS$$

task

Optimization
$$\Theta_1^{\star} = \operatorname{argmin}_{\Theta_1} L(\mathbf{\Theta})$$

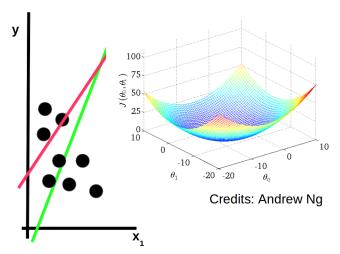
Simple linear regression Gradient Descent Algorithm

$$\Theta_0=0,\,\Theta_1\neq 0$$

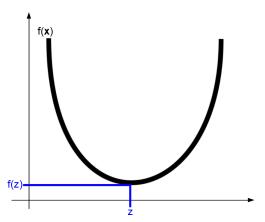


Simple linear regression Gradient Descent Algorithm

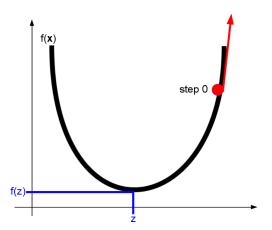
$$\Theta_0 \neq 0, \Theta_1 \neq 0$$



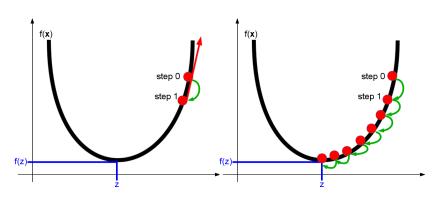
Gradient descent algorithm is an optimization algorithm to find a local minimum of a function f.

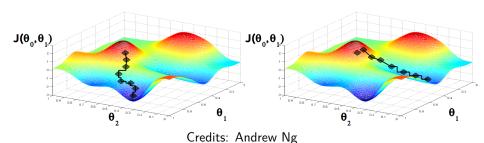


1. Start with some \mathbf{x}_0 .



2. Keep changing \mathbf{x}_i to reduce $f(\mathbf{x}_i)$ until you end up at a minimum.



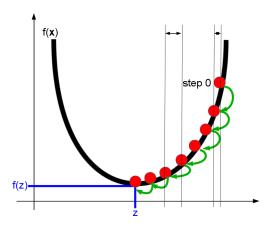


- We are seeking the solution to the minimum of a function $f(\mathbf{x})$. Given some initial value \mathbf{x}_0 , we can change its value in many directions.
- What is the best direction to minimize f? We take the **gradient** ∇f of f

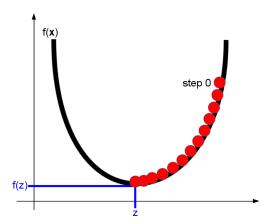
$$\nabla f(x_1, x_2, \dots, x_m) = \langle \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_1}, \dots, \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_m} \rangle \qquad (4)$$

• Intuitively, the gradient of f at any point tells which direction is the steepest from that point and how steep it is. So we change \mathbf{x} in the opposite direction to lower the function value.

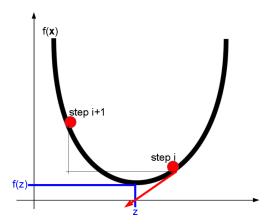
Choice of the step



Choice of the step



Choice of the step



repeat until convergence {

$$\Theta_j := \Theta_j - \alpha \frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_j}, j = 0, 1$$
 (5)

(simultaneously update Θ_j for j=0 and j=1)

– α is a positive step-size parameter that controls how big step we'll take downhill

• If α is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

• If α is too small, GDA can be slow.

Simple linear regression Gradient Descent Algorithm

$$\frac{\partial L(\Theta_0,\Theta_1)}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)^2}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (\Theta_0 + \Theta_1 \mathbf{x}_{i_1} - y_i)^2}{\partial \Theta_j}$$

•
$$j = 0$$
: $\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_0} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$

•
$$j = 1$$
: $\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_1} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$

•
$$\Theta_0 := \Theta_0 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$$

•
$$\Theta_1 := \Theta_1 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$$

Batch gradient descent uses all the training examples at each step.

Simple linear regression Gradient Descent Algorithm

Squared error function $\mathrm{L}(\Theta)$ is a convex function, so there is no local optimum, just global minimum.

Assessing the accuracy of the model Coefficient of determination R^2

 R^2 measures the proportion of variance in a target value that is reduced by taking into account ${\bf x}$

•
$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2 \# \text{ total variance in } Y$$

•
$$RSS = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

•
$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
 (%)

Multivariate linear regression

Multivariate regression is a linear regression with multiple features.

• $\mathbf{x} = \langle x_1, x_2, ..., x_m \rangle$

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots + \Theta_m x_m \tag{6}$$

- $\langle \Theta_0, \Theta_1, ..., \Theta_m \rangle \in \mathcal{R}^{m+1}$
- Define $x_0 = 1$, so $\mathbf{x} = \langle x_0, x_1, x_2, ..., x_m \rangle$
- Θ_i is the average change in y for a unit change in A_1 holding all other features fixed, if A_1 is a continuous feature

Multivariate linear regression

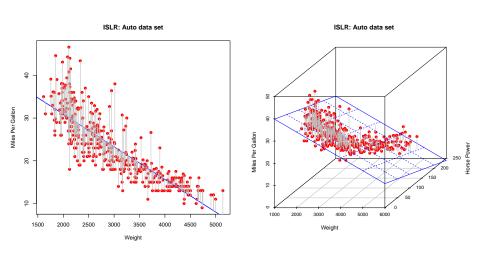
Hypothesis
$$h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$$

$$\mbox{ Hypothesis parameters } \qquad \mbox{ } \Theta = \langle \Theta_0, \Theta_1, \ldots, \Theta_m \rangle$$

Loss function
$$L(\Theta) = RSS = \sum_{i=1}^{n} (h(\mathbf{x}_i) - y_i)^2$$

Optimization task
$$\Theta^* = \operatorname{argmin}_{\Theta} L(\Theta)$$

Multivariate linear regression Auto data set



Multivariate linear regression Gradient Descent Algorithm

repeat until convergence $\{$

$$\mathbf{\Theta}^{K+1} := \mathbf{\Theta}^K - \alpha \nabla L(\mathbf{\Theta}^K),$$

where

$$\nabla L(\mathbf{\Theta}^{K}) = \mathbf{X}^{T}(\mathbf{X}\mathbf{\Theta}^{K} - \mathbf{y})$$
 (8)

(7)

NPFL054, 2017 Hladká & Holub Lecture 5, page 38/73

Polynomial regression

Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a *d*-th order polynomial.

Simple regression

$$y = \Theta_0 + \Theta_1 x_1$$

Polynomial regression

$$y = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_1^2 + \dots \Theta_d x_1^d$$

It is still a linear model with features A_1, A_1^2, \dots, A_1^d .

The *linear* in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\Theta_0, \Theta_1, \dots, \Theta_d$ can be easily estimated using least squares linear regression.

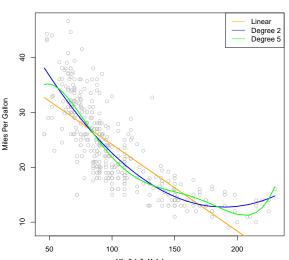
Polynomial regression

Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}, \ \mathbf{\Theta} = \begin{pmatrix} \Theta_0 \\ \dots \\ \Theta_d \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{11}^d \\ 1 & x_{21} & \dots & x_{21}^d \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{n1}^d \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{\Theta}$$

Polynomial regression Auto data set

ISLR: Auto data set



Simple regression with a categorical feature

- ullet assume a categorical feature with k values
- create k-1 dummy variables (DA^1 , DA^2 , ... DA^{k-1})
- then $y_i = \Theta_0 + \Theta_1 DA_i^1 + \cdots + \Theta_{k-1} DA_i^{k-1}$
- Example:
 - mpg \sim origin

	DA_1^1	DA_2^1
American	0	0
European	1	0
Japanase	0	1

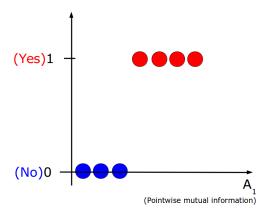
- $y_i = \Theta_0 + \Theta_1 DA_1^1 + \Theta_2 DA_2^1$
- $y_i = \Theta_0 + \Theta_1$ if the *i*-th car is European
- $y_i = \Theta_0 + \Theta_2$ if the *i*-th car is Japanese
- $y_i = \Theta_0$ if the *i*-th car is American

Interpretation

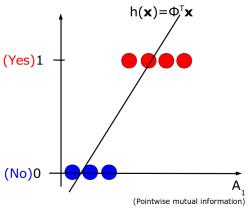
- ullet Θ_0 as the average mpg for American cars
- ullet Θ_1 as the average difference in mpg between European and American cars
- O₂ as the average difference in mpg between Japanese and American cars
 NPFL054, 2017
 Hladká & Holub

 Lecture 5, page 42/73

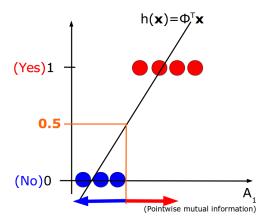
- $Attr = \{A_1\}$ (e.g., Pointwise mutual information)
- $Y = \{0, 1\}$



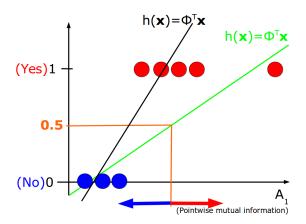
• Fit the data with a linear function h



- prediction function of x
 - if $h(x) \ge 0.5$, predict 1
 - if h(x) < 0.5, predict 0



Add one more training instance



It can happen that $h(\mathbf{x}) > 1$ or $h(\mathbf{x}) < 0$ but we predict 0 and 1.

Logistic regression



Logistic regression

h has a form of **sigmoid function** $g(z) = \frac{1}{1+e^{-z}}$

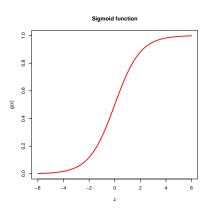
$$h(\mathbf{x}) = g(\mathbf{\Theta}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{\Theta}^T \mathbf{x}}} = \frac{e^{\mathbf{\Theta}^T \mathbf{x}}}{1 + e^{\mathbf{\Theta}^T \mathbf{x}}}$$
(9)

Sigmoid function

•
$$g(z) = \frac{1}{1+e^{-z}}$$

•
$$\lim_{z\to+\infty} g(z)=1$$

•
$$\lim_{z\to-\infty} g(z)=0$$



Logistic regression

• We interpret the output of $h(\mathbf{x})$ as estimated probability of y=1 given \mathbf{x} parameterized by $\mathbf{\Theta}$, i.e. $h(\mathbf{x}) = \Pr(y=1|\mathbf{x};\mathbf{\Theta})$

• the ratio of the probability of success and the probability of failure $\mathbf{odds} = \frac{h(\mathbf{x})}{1 - h(\mathbf{x})} = e^{\mathbf{\Theta}^T \mathbf{x}} \in (0, +\infty)$

• log-odds (logit) is linear in x

$$\log \frac{h(\mathbf{x})}{1 - h(\mathbf{x})} = \mathbf{\Theta}^{\mathsf{T}} \mathbf{x} \in (-\infty, +\infty)$$

• recall linear regression $h(x) = \Theta^T x$

Logistic regression Interpretation of Θ for continuous features

Suppose
$$\Theta = \langle \Theta_0, \Theta_1 \rangle$$

- linear regression $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in a target value with one-unit change in A_1
- logistic regression $\log \frac{h(x)}{1-h(x)} = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in logit h(x) with one-unit change in A_1

NPFL054, 2017 Hladká & Holub Lecture 5, page 52/73

Logistic regression Interpretation of Θ for binary features

Example:

disease	female		
	0 (male)	1 (female)	Total
no	74	77	151
yes	17	32	49
Total	91	109	200

• the odds of having the disease for male: $Pr(disease = yes|female = 0)/Pr(disease = no|female = 0) = \frac{17/91}{74/91} = 0.23$

- the odds of having the disease for female: $Pr(\mathrm{disease} = \mathit{yes} | \mathrm{female} = 1) / Pr(\mathrm{disease} = \mathit{no} | \mathrm{female} = 1) = \frac{32/109}{77/109} = 0.42$
- the ratio of the odds for female to the odds for male 0.42/0.23=1.81, i.e. the odds for female are about 81% higher than the odds for males

Logistic regression Interpretation of Θ for binary features

•
$$\log \frac{p_1}{1-p_1} = \Theta_0 + \Theta_1 * \text{female}$$

If female == 0 then
$$\frac{\rho_1}{1-\rho_1} = e^{\Theta_0}$$
 - the intercept Θ_0 is the log odds for men

•
$$\log \frac{\rho_2}{1-\rho_2} = \Theta_0 + \Theta_1 * \mathrm{female}$$
 If $\mathrm{female} == 1$ then $\frac{\rho_2}{1-\rho_2} = e^{\Theta_0 + \Theta_1}$

• odds ratio = $\frac{\rho_2}{1-\rho_2}/\frac{\rho_1}{1-\rho_1}=e^{\Theta_1}$ - the parameter Θ_1 is the log of odds ratio between men and women

Assume the output of logistic regression $\Theta_0=-1.471,\ \Theta_1=0.593.$ Then relate the odds for males and famels and the parameters:

$$-1.471 = \log(0.23)$$
, $0.593 = \log(1.81)$

Logistic regression

$$h(\mathbf{x}) = \frac{1}{1 + e^{-\Theta^T \mathbf{x}}}$$

Hypothesis parameters $\Theta = \langle \Theta_0, \dots, \Theta_m \rangle$

$$\pmb{\Theta} = \langle \Theta_0, \dots, \Theta_m \rangle$$

Loss function

$$L(\mathbf{\Theta}) = -\sum_{i=1}^{n} y_i \log P(y_i | \mathbf{x_i}; \mathbf{\Theta}) + (1 - y_i) \log(1 - P(y_i | \mathbf{x_i}; \mathbf{\Theta}))$$
(10)

Optimization task

$$\Theta^{\star} = \operatorname{argmin}_{\Theta} L(\Theta)$$

The argmin operator will give Θ for which $L(\Theta)$ is minimal.

Logistic regression Estimating Θ by maximizing the likelihood

(Maximum likelihood principle will be taught in details later on.)

likelihood of the data

$$\mathcal{L}(y_1,\ldots,y_n;\mathbf{\Theta},\mathbf{X})=\prod_{i=1}^n\mathsf{P}(y_i|\mathbf{x}_i;\mathbf{\Theta})$$

log likelihood of the data

$$\ell(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X}) = \log \mathcal{L}(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X})$$

$$= \sum_{i=1}^n \log P(y_i | \mathbf{x_i}; \boldsymbol{\Theta})$$

$$= \sum_{i=1}^n y_i \log P(y_i | \mathbf{x_i}; \boldsymbol{\Theta}) + (1 - y_i) \log(1 - P(y_i | \mathbf{x_i}; \boldsymbol{\Theta}))$$

loss function $\mathrm{L}(\mathbf{\Theta}) = \ell(y_1, \dots, y_n; \mathbf{\Theta}, \mathbf{X})$

Logistic regression

prediction function of x

- $h(\mathbf{x}) = g(\mathbf{\Theta}^T \mathbf{x})$
- $g(z) \ge 0.5$ whenever $z \ge 0$ and g(z) < 0.5 whenever z < 0
 - if $h(\mathbf{x}) \geq 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} \geq 0$, predict 1
 - if $h(\mathbf{x}) < 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} < 0$, predict 0

Decision boundary

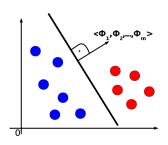
partitions a feature space into two sets, one for each class. Decision boundary takes a form of function h.

Hyperplane

Assume a linear decision boundary, called hyperplane, of the form

$$h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x} = \Theta_0 + \sum_{i=1}^m \Theta_i \mathbf{x}_i$$

where direction of $\langle \Theta_1, \Theta_2, \dots, \Theta_m \rangle$ is perpendicular to the hyperplane and Θ_0 determines position of the hyperplane with respect to the origin

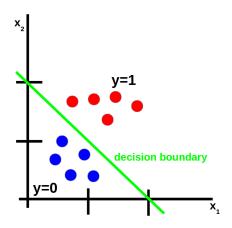


Hyperplane

- · Logistic regression models imply a linear decision boundary.
- A condition for instance \mathbf{x} to be on the hyperplane is $h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x} = 0$.
- Decision boundaries are the set of points with $\log odds = 0$

Logistic regression

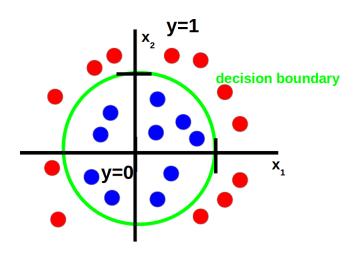
- Predict y = 1 if $h(\mathbf{x}) \ge 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} \ge 0$
- Predict y = 0 if $h(\mathbf{x}) < 0.5$, i.e. $\boldsymbol{\Theta}^T \mathbf{x} < 0$



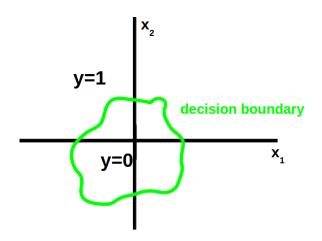
Non-linear decision boundary

- Let $h(\mathbf{x}) = g(\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_1^2 + \Theta_4 x_2^2)$ (a higher degree polynomial)
- Assume $\Theta_0=-1$, $\Theta_1=0, \Theta_2=0$, $\Theta_3=1, \Theta_4=1$
- Predict y = 1 if $-1 + x_1^2 + x_2^2 \ge 0$, i.e. $x_1^2 + x_2^2 \ge 1$

Non-linear decision boundary



More complicated decision boundary



Logistic regression Gradient Descent Algorithm

Loss function
$$L(\mathbf{\Theta}) = -\sum_{i=1}^{n} y_i \log(h(\mathbf{x}_i)) + (1 - y_i) \log(1 - h(\mathbf{x}_i))$$

Optimization task $\Theta^* = \operatorname{argmin}_{\Theta} L(\Theta)$

Use Gradient descent algorithm

Repeat until convergence

$$\Theta_j := \Theta_j - \alpha \frac{\partial \mathcal{L}(\theta)}{\partial \Theta_i} \tag{11}$$

(simultaneously update Θ_j for $j=1,\ldots,m$)

Logistic regression Gradient descent algorithm

```
Repeat until convergence \{ \Theta_j := \Theta_j - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) \mathbf{x}_{i_j}  (12) (simultaneously update \Theta_j for j=1,\ldots,m)
```

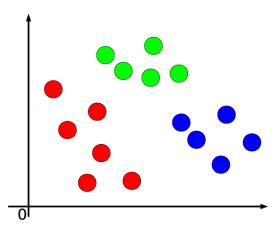
Have you already meet it? Yes, see linear regression.

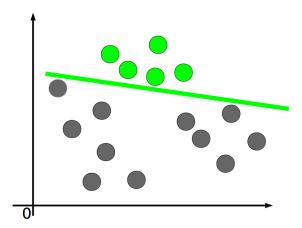
- linear regression $h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$
- logistic regression $h(\mathbf{x}) = \frac{1}{1+e^{-\Theta^T \mathbf{x}}}$

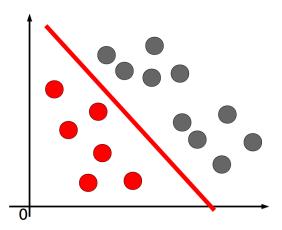
Logistic regression Summary

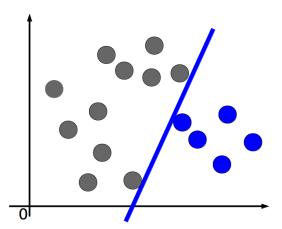
Classification of x by h^*

- ① Project ${\bf x}$ onto ${\bf \Theta}^{\star}$ to convert it into a real number z in the range $\langle -\infty, +\infty \rangle$
 - i.e. $z = (\mathbf{\Theta}^*)^T \mathbf{x}$
- 2 Map z to the range $\langle 0,1 \rangle$ using the sigmoid function $g(z)=1/(1+e^{-z})$









One-vs-all algorithm

New instance x:

- $h(\mathbf{x}) = \Pr(y = red | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = blue | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = green|\mathbf{x}; \Theta)$

Classify **x** into class $i \in \{red, green, blue\}$ that maximizes $h(\mathbf{x})$.

Summary of Examination Requirements

- Simple linear regression
- Multivariete linear regression
- Polynomial linear regression
- Coefficient of determination
- Gradient Descent Algorithm
- Logistic regression