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Outline

• Instance-based learning

• Naïve Bayes algorithm

• Bayesian networks
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Instance-based learning
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Instance-based learning
Key idea

• IBL methods initially store the training data (that is why IBL methods are
often referred to as "lazy" methods).

• For a new instance, prediction is based on local similarity, i.e. a set of similar
instances are retrieved and used for prediction

• IBL methods can construct a different approximation of a target function for
each distinct test instance.

• Both classification and regression.
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Instance-based learning
Key points

1 A distance metric
2 How many nearby neighbours look at?
3 A weighting function
4 How to fit with local points?

NPFL054, 2017 Hladká & Holub Lecture 6, page 5/38



Instance-based learning
Distance metric

The most common ones

• Euclidean distance

E (xi, xj) =

√√√√ m∑
r=1

(xir − xjr )2 (1)

• Manhattan distance

M(xi, xj) =
m∑

r=1
|xir − xjr | (2)

NPFL054, 2017 Hladká & Holub Lecture 6, page 6/38



Instance-based learning
Learning algorithms

• k-Nearest Neighbour
• Distance weighted k-NN
• Locally weighted linear regression
• . . .
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Instance-based learning
k-Nearest Neighbour algorithm

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k
3 A weighting function: unused
4 How to fit with local points?

• k-NN classification

h(x) = argmaxv∈Y

k∑
i=1

δ(v , yi ), (3)

where δ(a, b) = 1 if a = b, otherwise 0
• k-NN regression

h(x) =

∑k
i=1 yi

k (4)
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Instance-based learning
Distance-weighted k-NN algorithm

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k
3 A weighting function: greater weight closer neighbours

wi (x) ≡ 1
d(x, xi)2

4 How to fit with local points?

• Classification

h(x) = argmaxv∈Y

k∑
i=1

wi (x)δ(v , yi ) (5)

• Regression

h(x) =

∑k
i=1 wi (x)yi∑k
i=1 wi (x)

(6)
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Instance-based learning
Distance-weighted k-NN algorithm

Shepard’s method

• Classification

h(x) = argmaxv∈Y

n∑
i=1

wi (x)δ(v , yi ) (7)

• Regression

h(x) =

∑n
i=1 wi (x)yi∑n
i=1 wi (x)

(8)
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Instance-based learning
Locally weighted linear regression

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k
3 A weighting function: wi (x)

4 How to fit with local points?

Θ? = argminΘ

k∑
i=1

wi (x)(ΘTxi − yi )
2 (9)
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Instance-based learning
Locally weighted linear regression
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Instance-based learning
LW linear regression vs. simple regression
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Naïve Bayes classifier
Bayes theorem

P(A|B) =
P(A,B)

P(B)
,P(B|A) =

P(A,B)

P(A)
(10)

P(A|B) =
P(A) ∗ P(B|A)

P(B)
(11)

• P(A) is the prior probability (marginal) probability of A. It does not take into
account any information about B.

• P(A|B) is the conditional probability of A, given B. So called the posterior
probability because it depends upon the specified value of B; P(B|A) is the
conditional probability of B given A.

• P(B) is the prior (marginal) probability of B, and acts as a normalizing
constant.
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Naïve Bayes classifier
Bayes theorem

Pr(Y |A1, . . . ,Am) =
Pr(Y )× Pr(A1, . . . ,Am |Y )

Pr(A1, . . . ,Am)
(12)

posterior =
prior× likelihood

evidence (13)
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Naïve Bayes classifier
Conditional independence

Let X ,Y and Z be three descrete random variables. We say that X is
conditionally independent of Y given Z if

∀xi , yj , zk , xi ∈ Values(X ), yj ∈ Values(Y ), zk ∈ Values(Z ) :

Pr(X = xi |Y = yj ,Z = zk) = Pr(X = xi |Z = zk) (14)

I.e., P(X |Y ,Z ) = P(X |Z ).
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Naïve Bayes classifier
Conditional independence

Thunder & Rain & Lighting
Assume three variables: Thunder, Rain, and Lighting.
Thunder is conditionally independent of Rain given Lighting:

Pr(Thunder|Rain,Lighting) = Pr(Thunder|Lighting)
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Naïve Bayes classifier
Discriminative vs. generative classifiers

• discriminative classifier does not care about how the data was generated.
It simply classifies a given example.

• generative classifier models how the data was generated in order to classify
an example. It asks the question Based on the generation assumptions, which
class is most likely to generate this example?
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Naïve Bayes classifier
Discriminative vs. generative classifiers

Pr(y |x) =?

• Logistic regression classifier is a discriminative classifier

hΘ(x) = p(y = 1|x,Θ)

• Naïve Bayes classifier is a generative classifier

1 Learn Pr(x|y) and Pr(y)

2 Apply Bayes rule to get

Pr(y |x) = Pr(x|y)Pr(y)
Pr(x) ∼ Pr(x|y)Pr(y)

3
ŷ = argmaxy Pr(y |x) = argmaxy Pr(x|y)Pr(y)
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Naïve Bayes classifier

If we work with two features A1,A2 and we assume that they are conditionally
independent given the target class Y , then

Pr(A1,A2|Y )
product rule

= Pr(A1|A2,Y ) ∗ Pr(A2|Y )
conditional independence assumption

=

= Pr(A1|Y ) ∗ Pr(A2|Y )
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Naïve Bayes classifier

Assume conditional independence of features A1, . . . ,Am given Y . Thus

Pr(x|y) = Pr(x1, x2, . . . , xm|y)
chain rule

=
∏m

j=1 Pr(xj |x1, x2, . . . , xj−1, y)
c. i. a.

=

=
∏m

j=1 Pr(xj |y)

Naïve Bayes classifier

ŷ = argmaxyk∈Y Pr(yk)
m∏

j=1
Pr(xj |yk) (15)
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Naïve Bayes classifier

Naive assumption of feature conditional independence given a target
class is rarely true in real world applications. Nevertheless, Naïve
Bayes classifier surprisingly often shows good performance in classi-
fication.
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Naïve Bayes Classifier
is a linear classifier

NB classifier gives a method for predicting rather than an explicit classifier.

Prediction function

ŷ = argmaxyk∈Y Pr(yk)
m∏

j=1
Pr(xj |yk)

We focus on binary classification Y = {0, 1} with binary features A1, . . . ,Am.

We predict ŷ = 1 iff

Pr(y = 1)
∏m

j=1 Pr(xj |y = 1)

Pr(y = 0)
∏m

j=1 Pr(xj |y = 0)
> 1
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Naïve Bayes Classifier
is a linear classifier

Denote pj = Pr(xj = 1|y = 1), qj = Pr(xj = 1|y = 0)

Then

Pr(y = 1)
∏m

j=1 pxj
j (1− pj)

1−xj

Pr(y = 0)
∏m

j=1 qxj
j (1− qj)1−xj

> 1

Pr(y = 1)
∏m

j=1(1− pj)(
pj

1−pj
)xj

Pr(y = 0)
∏m

j=1(1− qj)(
qj

1−qj
)xj

> 1

Take logarithm
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Naïve Bayes Classifier
is a linear classifier

log Pr(y = 1)

Pr(y = 0)
+

m∑
j=1

log 1− pj
1− qj

+
m∑

j=1
(log pj

1− pj
− log qj

1− qj
)xj > 0

NB classifier as a linear classifier where

Θj = log pj
1− pj

− log qj
1− qj
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Bayesian belief networks
Motivation

Task: Will students fall asleep during the lecture?

Attr = {It’s raining, They are tired, They were at the party last night}

Values(It’s raining) = {Yes, No}
Values(They are tired) = {Yes, No}
Values(They were at the party last night) = {Yes, No}

Y = FallAsleep, Values(FallAsleep) = {Yes, No}
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Bayesian belief networks
Motivation

Naïve Bayes assumption
– features are conditionally independent given the value of the target class.
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Bayesian belief networks
Motivation

... but
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Bayesian belief networks
Motivation

• Naïve Bayes classifier assumes that ALL features are conditionally
independent given the value of the target class.

• A Bayesian network is a graphical model that encodes probabilistic
relationships among attributes of interest.

• BBNs allow stating conditional independence assumptions that apply to
SUBSETs of the attributes.

• Dependencies are modeled as graph where nodes correspond to attributes
and edges go from cause to effect.

• BBNs combine prior knowledge with observed data.
• BBNs are less constraining than the global assumption by NB.
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Bayesian belief networks
Settings

Consider an arbitrary set of random variables X1,X2, ...,Xm. Each variable Xi can
take on the set of possible values Values(Xi ).

We define the joint space of the variables X1,X2, ...,Xm to be the cross product
Values(X1)× Values(X2)× Values(X3)× ...× Values(Xm).

The probability distribution over the joint space is called the joint probability
distribution Pr(x1, x2, ..., xm) where
x1 ∈ Values(X1), x2 ∈ Values(X2), ..., xn ∈ Values(Xm).

BBN describes the joint probability distribution for a set of variables by specifying
a set of conditional independence assumptions together with sets of local
conditional probabilities.
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Bayesian belief networks

Representation
1 A directed acyclic graph G = (V ,E )

• nodes are random variables
• arcs between nodes represent probabilistic dependencies
• arcs are drawn from cause to effect
• Y is a descendant of X if there is a directed path from X to Y .

2 The network arcs represent the assertion that the variable X is conditionally
independent of its nondescendants given its immediate predecessors
Parents(X ); Pr(X |Xi )Xi∈Parents(X)

3 A set of tables for each node in the graph - a conditional probability table is
given for each variable; it describes the probability distribution for that
variable given the values of its immediate predecessors.
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Building a Bayes net

1. Choose the variables to be included in the net: A,B,C ,D,E
2. Add the links
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Building a Bayes net

3. Add a probability table for each root node Pr(X ) and nonroot node
Pr(X |Xi )Xi∈Parents(X)
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Once the net is built ...

The join probability of any assignment of values x1, x2, ..., xm to the tuple of
network variables X1,X2, ...,Xm can be computed by the formula

Pr(x1, x2, ..., xm) = Pr(X1 = x1∧X2 = x2∧· · ·∧Xm = xm) =
m∏

i=1
Pr(xi |Parents(Xi ))

(16)
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Bayesian belief networks

Two components
1 A function for evaluating a given network based on the data.
2 A method for searching through the space of possible networks.

Learning the network structure
• searching through the space of possible sets of edges
• estimating the conditional probability tables for each set
• computing the quality of the network
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K2 algorithm

This ’search and score’ algorithm heuristically searches for the most probable
belief-network structure given a training data.

It starts by assuming that a node has no parents, after which, in every step it adds
incrementally the parent whose addition mostly increase the probability of the
resulting structure. K2 stops adding parents to the nodes when the addition of a
single parent cannot increase the probability of the network given the data.

In general, the BBNs deal with probability propagation that consists of updating
the probability values of the variables in a dependence graph, given some variables
that have been observed.
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K2 algorithm
INPUT

• a set of m nodes (i.e., attributes)
• an ordering on the nodes X1,X2, ...,Xm (parents are before their kids)
• an upper bound u on the number of parents a node may have,
• training data D, |D| = n

OUTPUT
• for each node, a printout of the parent nodes

Note on the initial nodes ordering: the Naïve Bayes Classifier is a network with an
edge leading from the target feature to each other features. This network can be
used as a starting point for the search.
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Summary of Examination Requirements

• Key points of instance-based learning – distance metric, number of
neighbours, weighting function, fitting local points

• k-NN (weighted) algorithm
• Locally weighted linear regression
• Discriminative and generative classifiers
• Naïve Bayes Classifier – conditional independence, linear decision boundary
• Bayesian belief networks – structure, conditional probabilities
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