P. Pecina

Appendix

 $\textbf{Table 3} \ \ \text{The inventory of lexical association measures used for collocation extraction used in our experiments}$

#	Name	Formula
	Joint probability	P(xy)
	Conditional probability	P(y x)
	Reverse conditional probability	P(x y)
4.	Pointwise mutual information	$\log \frac{P(xy)}{P(x*)P(*y)}$
5.	Mutual dependency (MD)	$\log \frac{P(xy)^2}{P(x*)P(*y)}$
6.	Log frequency biased MD	$\log \frac{P(xy)^2}{P(x)P(*y)} + \log P(xy)$
7.	Normalized expectation	$\frac{2f(xy)}{f(x*)+f(*y)}$
8.	Mutual expectation	$\frac{2f(xy)}{f(x*)+f(*y)} \cdot P(xy)$
9.	Salience	$\log \frac{P(xy)^2}{P(x)} \cdot \log f(xy)$
10.	Pearson's χ^2 test	$\sum_{i,j} \frac{(f_{ij} - \hat{f}_{ij})^2}{\hat{f}_{ij}}$
11.	Fisher's exact test	$\frac{f(x*)!f(\bar{x}*)!f(*y)!f(*\bar{y})!}{N!f(xy)!f(x\bar{y})!f(\bar{x}\bar{y})!f(\bar{x}\bar{y})!}$
12.	t test	$\frac{f(xy) - \hat{f}(xy)}{\sqrt{f(xy)(1 - (f(xy)/N))}}$
13.	z score	$\frac{f(xy) - \hat{f}(xy)}{\sqrt{\hat{f}(xy)(1 - (\hat{f}(xy)/N))}}$
14.	Poison significance measure	$\frac{\hat{f}(xy) - f(xy)\log\hat{f}(xy) + \log f(xy)!}{\log N}$
15.	Log likelihood ratio	$-2\sum_{i,j} f_{ij} \log \frac{f_{ij}}{\hat{f}_{ii}}$
16.	Squared log likelihood ratio	$-2\sum_{i,j}\frac{\log f_{ij}^2}{\hat{f}_{ii}}$
Assoc	iation coefficients:	31)
17.	Russel-Rao	$\frac{a}{a+b+c+d}$
18.	Sokal-Michiner	$\frac{a+d}{a+b+c+d}$
19.	Rogers-Tanimoto	$\frac{a+d}{a+2b+2c+d}$
20.	Hamann	$\frac{(a+d)-(b+c)}{a+b+c+d}$
21.	Third Sokal-Sneath	$\frac{b+c}{a+d}$
22.	Jaccard	$\frac{a}{a+b+c}$
*23.	First Kulczynsky	$\frac{a}{b+c}$
24.	Second Sokal-Sneath	$\frac{a}{a+2(b+c)}$
25.	Second Kulczynski	$\frac{1}{2}\left(\frac{a}{a+b} + \frac{a}{a+c}\right)$
26.	Fourth Sokal-Sneath	$\frac{1}{4}\left(\frac{a}{a+b} + \frac{a}{a+c} + \frac{d}{d+b} + \frac{d}{d+c}\right)$
	Odds ratio	ad bc
	Yulle's ω	$\frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}$
	Yulle's Q	$\frac{ad-bc}{ad+bc}$
30.	Driver-Kroeber	$\frac{a}{\sqrt{(a+b)(a+c)}}$
31.	Fifth Sokal-Sneath	$\frac{ad}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$

Table 3 continued

#	Name	Formula	
32.	Pearson	$\frac{ad-bc}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$	
33.	Baroni-Urbani	$a+\sqrt{ad}$ $a+b+c+\sqrt{ad}$	
34.	Braun-Blanquet		
35.	Simpson	$\frac{a}{\min(a+b,a+c)}$	
36.	Michael	$\frac{4(ad-bc)}{(a+d)^2+(b+c)^2}$	
37.	Mountford	$\frac{2a}{2bc+ab+ac}$	
38.	Fager	$\frac{a}{\sqrt{(a+b)(a+c)}} - \frac{1}{2}\max(b,c)$	
*39.	Unigram subtuples	$\log \frac{ad}{bc} - 3.29 \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$	
40.	U cost	$\log(1 + \frac{\min(b,c) + a}{\max(b,c) + a})$	
*41.	S cost	$\log(1+\frac{\min(b,c)}{a+1})^{-\frac{1}{2}}$	
42.	R cost	$\log(1 + \frac{a}{a+b}) \cdot \log(1 + \frac{a}{a+c})$	
43.	T combined cost	$\sqrt{U \times S \times R}$	
44.	Phi	$\frac{P(xy) - P(x*)P(*y)}{\sqrt{P(x*)P(*y)(1 - P(x*))(1 - P(*y))}}$	
45.	Карра	$\frac{P(xy) + P(\bar{x}\bar{y}) - P(x*)P(*y) - P(\bar{x}*)P(*\bar{y})}{1 - P(x*)P(*y) - P(\bar{x}*)P(*\bar{y})}$	
46.	J measure	$\max[P(xy)\log\frac{P(y x)}{P(*y)} + P(x\overline{y})\log\frac{P(\overline{y} x)}{P(*\overline{y})},$	
		$P(xy)\log\frac{P(x y)}{P(x*)} + P(\bar{x}y)\log\frac{P(\bar{x} y)}{P(\bar{x}*)}$	
47.	Gini index	$\max[P(x*)(P(y x)^2 + P(\bar{y} x)^2) - P(*y)^2$	
		$+P(\bar{x*})(P(y \bar{x})^2+P(\bar{y} \bar{x})^2)-P(*\bar{y})^2,$	
		$P(*y)(P(x y)^{2} + P(\bar{x} y)^{2}) - P(x*)^{2}$	
		$+P(*\bar{y})(P(x \bar{y})^{2}+P(\bar{x} \bar{y})^{2})-P(\bar{x}*)^{2}]$	
48.	Confidence	$\max[P(y x), P(x y)]$	
49.	Laplace	$\max[\frac{NP(xy)+1}{NP(x*)+2}, \frac{NP(xy)+1}{NP(*y)+2}]$	
50.	Conviction	$\max\left[\frac{P(x*)P(*y)}{P(x\bar{y})}, \frac{P(\bar{x}*)P(*y)}{P(\bar{x}y)}\right]$	
51.	Piatersky-Shapiro	P(xy) - P(x*)P(*y)	
52.	Certainity factor	$\max[\frac{P(y x)-P(*y)}{1-P(*y)}, \frac{P(x y)-P(x*)}{1-P(x*)}]$	
53.	Added value (AV)	$\max[P(y x) - P(*y), P(x y) - P(x*)]$	
54.	Collective strength	$\frac{P(xy)+P(\bar{x}\bar{y})}{P(x*)P(y)+P(\bar{x}*)P(*y)}.$	
		$\frac{1 - P(x*)P(*y) - P(\bar{x}*)P(*y)}{1 - P(xy) - P(\bar{x}\bar{y})}$	
55.	Klosgen	$\sqrt{P(xy)} \cdot AV$	
Conte	ext measures:		
	Context entropy	$-\sum_{w} P(w C_{xy}) \log P(w C_{xy})$	
*57.	Left context entropy	$-\sum_{w} P(w C_{xy}^{l}) \log P(w C_{xy}^{l})$	
*58.	Right context entropy	$-\sum_{w} P(w C_{xy}^r) \log P(w C_{xy}^r)$	
59.	Left context divergence	$P(x)\log P(x*) - \sum_{w} P(w C_{xy}^{l})\log P(w C_{xy}^{l})$	
60.	Right context divergence	$P(*y)\log P(*y) - \sum_{w} P(w C_{xy}^r) \log P(w C_{xy}^r)$	

P. Pecina

Table 3 continued

# Name	Formula
61. Cross entropy	$-\sum_{w} P(w C_x) \log P(w C_y)$
*62. Reverse cross entropy	$-\sum_{w} P(w C_y) \log P(w C_x)$
63. Intersection measure	$\frac{2 C_X \cap C_Y }{ C_X + C_Y }$
64. Euclidean norm	$\sqrt{\sum_{w}(P(w C_x)-P(w C_y))^2}$
65. Cosine norm	$\frac{\sum_{w} P(w C_x)P(w C_y)}{\sum_{w} P(w C_x)^2 \cdot \sum_{w} P(w C_y)^2}$
66. <i>L1</i> norm	$\sum_{w} P(w C_x) - P(w C_y) $
67. Confusion probability	$\sum_{w} \frac{P(x C_{w})P(y C_{w})P(w)}{P(x*)}$
*68. Reverse confusion probability	$\sum_{w} \frac{P(y C_{w})P(x C_{w})P(w)}{P(*y)}$
69. Jensen-Shannon divergence	$\frac{1}{2}[D(p(w C_x)) \frac{1}{2}(p(w C_x)+p(w C_y)))$
	$+D(p(w C_y) \frac{1}{2}(p(w C_x)+p(w C_y)))]$
70. Cosine of pointfwise MI	$\frac{\sum_{w} MI(w,x)MI(w,y)}{\sqrt{\sum_{w} MI(w,x)^{2}} \cdot \sqrt{\sum_{w} MI(w,y)^{2}}}$
71. KL divergence	$\sum_{w} P(w C_x) \log \frac{P(w C_x)}{P(w C_y)}$
72. Reverse KL divergence	$\sum_{w} P(w C_y) \log \frac{P(w C_y)}{P(w C_y)}$
73. Skew divergence	$D(p(w C_x) \alpha p(w C_y) + (1-\alpha)p(w C_x))$
74. Reverse skew divergence	$D(p(w C_y) \alpha p(w C_x) + (1-\alpha)p(w C_y))$
*75. Phrase word coocurrence	$\frac{1}{2}\left(\frac{f(x C_{xy})}{f(xy)} + \frac{f(y C_{xy})}{f(xy)}\right)$
76. Word association	$\frac{1}{2} \left(\frac{f(x C_y) - f(xy)}{f(xy)} + \frac{f(y C_x) - f(xy)}{f(xy)} \right)$
Cosine context similarity:	$\frac{1}{2}(\cos(\mathbf{c}_x,\mathbf{c}_{xy})+\cos(\mathbf{c}_y,\mathbf{c}_{xy}))$
	$\mathbf{c}_z = (z_i); \cos(\mathbf{c}_x, \mathbf{c}_y) = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \cdot \sqrt{\sum y_i^2}}$
*77. in boolean vector space	$z_i = \delta(f(w_i C_z))$
78. in tf vector space	$z_i = f(w_i C_z)$
79. in $tf \cdot idf$ vector space	$z_i = f(w_i C_z) \cdot \frac{N}{df(w_i)}; df(w_i) = \{x: w_i \in C_x\} $
Dice context similarity:	$\frac{1}{2}(\operatorname{dice}(\mathbf{c}_x,\mathbf{c}_{xy})+\operatorname{dice}(\mathbf{c}_y,\mathbf{c}_{xy}))$
	$\mathbf{c}_z = (z_i); \operatorname{dice}(\mathbf{c}_x, \mathbf{c}_y) = \frac{2\sum x_i y_i}{\sum x_i^2 + \sum y_i^2}$
80. in boolean vector space	$z_i = \delta(f(w_i C_z))$ $z_i = f(w_i C_z)$
*81. in tf vector space	$z_i = f(w_i C_z)$
*82. in $tf \cdot idf$ vector space	$z_i = f(w_i C_z) \cdot \frac{N}{df(w_i)}; df(w_i) = \{x : w_i \in C_x\} $

a = f(xy)	$b = f(x\overline{y})$	f(x*)
$c = f(\bar{x}y)$	$d=f(\overline{x}\overline{y})$	$f(\bar{x}*)$
f(*y)	$f(*\bar{y})$	N

C_w	empirical context of w	
C_{xy}	empirical context of xy	
C_{xy}^l	left immediate context of xy	
C_{xy}^{r}	right immediate context of xy	

A contingency table contains observed joint and marginal frequencies for a bigram $xy; \bar{w}$ stands for any word except w; * stands for any word; N is a total number of bigrams. The table cells are sometimes referred to as f_{ij} . Statistical tests of independence work with contingency tables of expected frequencies $\hat{f}(xy) = f(x*)f(*y)/N$

