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PROJECT DESCRIPTION 

 

 

Named entities (NEs) can be classified according to the type of entity that they 

represent (i.e. person, geographical place, company, etc.).  Different NE classification systems 

exist.  In this project, two different supervised machine-learning algorithms were implemented 

for the classification task: decision trees and a Naive Bayes Classifier.  The performance of these 

two algorithms on the same data was compared.  Similarly, the performance was measured 

against the type of information that was used for the learning. 
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1   DATA DESCRIPTION 

 

 

1.0   Introduction 

 
 For any type of Machine Learning task, one needs to have appropriate information that 

the algorithm can be trained, or learned from.  For this task, morphologically processed data 

from the Czech National Corpus (CNC) was used1.  CNC contains sentences in Czech and is rich 

in morphological information.  For each word in CNC the form, the lemma and the 

morphological tag are provided.  The form is what the word looks like in the sentence.  The 

lemma represents the underlying lexical units.  The morphological tag contains fifteen different 

values that can be selected, such as the part of speech (POS), the gender of the word, etc.  Each 

word also contains a unique id.  This id contains the number of the sentence that the word is in, 

as well as the index of the word. 

 The classification here was done using a supervised learning method.  That is, a list of 

the correct named entities (NE) was provided.  Characteristics extracted from these NEs would 

be used for the learning to occur.  This way new NEs could be classified based on this learned 

information. 

 

1.1   Data Size 

 

 For this project the data used was divided into three parts: a training set, a development 

set and an evaluation set.  The first set is used for the algorithm to learn the parameters of the 

NEs (i.e. to train).  The second set is used to test out different aspects of the data and the 

algorithm.  Finally, the third set is used strictly for evaluation of the algorithms.  Originally, the 

training set consisted of 6112 NEs, the development set of 826 NEs and the evaluation set of 

806 NEs.  Since this project deals with supervised learning, the NEs and their correct 

classification types were known.  Along a file with a list of all the NEs and their correct type 

classification, a file was used that contains a list of the NEs and the sentence that they are 

                                                           
1
 http://ucnk.ff.cuni.cz/english/index.html 
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extracted from.  These files also contain the morphological information on each word, as 

provided by the Prague Dependency Treebank. 

 Several different NE type classification hierarchies exist.  In this project the system 

provided by Magda Ševčíková and her colleagues was used2.  This hierarchy has both one level 

(i.e. p – personal names) and two-level classification (i.e. pf – first names and ps – surnames).  

In this project I decided to use one-level classification due to the fact that for the two-level 

classification there were too many categories with too few instances.  Sufficient amount of data 

is needed for each class in order to insure that proper learning is taking place.  I also decided to 

discard the NE types that were not part of the provided methodology file.  This included the 

following types: f, segm, text, cap, lower, upper and ?.  After removing these NEs, the training 

set had 5732 instances, the development set had 783 instances and the evaluation set had 759 

instances. 

 

1.3   Extracted Features 

 

 There are many different types of features that can be extracted for the NEs.  I decided 

to extract nineteen features.  I divided these features into four categories based on the type of 

information they contain: morphological features, context features, typographic features and 

structural features.  Morphological features are based on information that can be found inside 

the morphological tag of a word or the lemma.  Context features look at the context that the NE 

is in.  Typographical features look at the typography of the word.  Structural features are those 

that are based only on information that can be extracted from the sentence and the location of 

the NE in the sentence. 

 Morphological features are important because they show deeper information about the 

word.  It has also been shown that context (i.e. words that surround the word being examined) 

can be very helpful for learning.  It is therefore useful to consider extracting morphological 

features not only for the NE itself, but for the words that surround it as well. 

There are four morphological features that I extracted.  While there are fifteen 

morphological values inside the tag, I extracted the part of speech (POS) at index one, the 

                                                           
2
 Magda Ševčíková,  TR-2007-36 Zpracování pojmenovaných entit v českých textech 
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gender at index three and the case at index five.  All these features are categorical.  For the POS 

there are twelve possible values, for the gender ten and for the case eight3.  The next 

morphological feature looks at the lemma of the word.  In examining the lemmas it became 

clear that a lot of them contain the form ;X (where X represents some letter).  I extracted this 

categorical feature with five possible values: G if ;G was found inside the lemma, S if ;S was 

found, Y if ;Y was found, K if ;K was found and N otherwise.  There were more ;Xs than the four 

specified, but their number of occurrences were low, so I decided not to use them. 

 The context a word is in is also very important.  I extracted ten context features.  I 

extracted the morphological tag for the previous word (w i-1), the word before the previous (w i-

2) and the word following the NE (w i+1).  For each of these, I extracted the part of speech (POS) 

found at index one, the gender (index three) and the case (index five).  Second I extracted 

whether there are any NEs before the current NE in the same sentence.  For the look-back 

window I choose to look back four indexes.  This is a categorical variable with two possible 

values (Y/N).     

 The typographical features look at the actual form of the word.  In looking at the NEs, 

one of the first things that come across is that some NEs are strictly numerical, while other are 

made up of characters.  Also, some have capitals while other are small letters.  There are also 

similar patterns that can be found inside the lemma. 

 I extracted one form feature, which looked at the typography of the word.  This is also a 

categorical feature.  There are five possible values: C if the word begins with capitals, A if the 

word is made up of all capital letters, N if the word has numbers, S if the word is made up of all 

small letters and O otherwise.   

 The structural features are features that do not look at morphological information, but 

look at the word and the sentence that it occurs in.  These types of features do not look at the 

morphological information of the context, but rather looks at the word and how the sentence 

structure relates to it.   

I extracted four structural features.  First, there is a feature that tells whether the NE is 

the first word in the sentence or not.  This is a categorical variable with two possible values 

                                                           
3
 For more information about the morphological tag and the information it contains see: 

http://ufal.mff.cuni.cz/rest/CAC/doc/cac-guide/eng/html/chapter12.html 
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(Y/N).  Next, I extracted the word length.  This is a continuous variable with values ranging from 

one to twenty.  Third, I extracted the length of the sentence.  This is also a continuous variable 

with values ranging from one to one hundred and twenty.  Finally, I extracted the index of the 

word in the sentence.  Once again, this is a continuous variable with values ranging from one to 

one hundred.  

 

1.4   Data Issues 

 

 One of the issues that was encountered is that in all the three files there were instances 

for which one NE had multiple (i.e. two) classifications.  In the training file I found 344 such 

cases, 58 in the development file and 48 in the evaluation file.  This poses two problems.  First, 

this hinders the learning because you have the same extracted features with different results.  

Second, our evaluation assigns only one NE type for each instance.  In these multi-type cases at 

least one of the two classifications is bound to be wrong, thereby increasing the error rate.  In 

the training file I found 344 such cases, 58 in the development file and 48 in the evaluation file.  

This represents about 6-7.5% of the entire data.   

 There are two ways to deal with this problem: one is to add an extra feature which 

states whether this NE has a single or multiple classifications.  The second is to remove the 

second classification for these multi-type instances.  I decided to use the second method.  The 

reason is that since the algorithm can only produce one type for an NE (even one with multi-

type classification), it makes sense to only look at single classification NEs.  Removing the multi- 

NEs resulted in the training set having 5388 instances, the development set 725 and the 

evaluation set 701. 

 

1.5   Algorithms 

 

 In deciding which machine-learning algorithm to use, there were several issues that 

needed to be considered.  First, it is possible that the training data might contain some errors.  

Therefore, any algorithm used would have to be robust to noisy data.  Second, it is likely that 

not all possible values for each attribute would be encountered in the training data.  Also, the 

algorithm would have to output a discrete value from a given set (i.e. the given set of possible 
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NE types).  Further, the features include both discrete and continuous values.  Therefore, the 

algorithms used would have to be able to handle both such attributes.  Finally, the algorithms 

would have to be able to handle a disjunction of expressions, where each expression consisting 

of a conjunction of attribute values.  Therefore, I chose to use the decision tree and Naive Bayes 

algorithms.  Both these algorithms fit the above criteria, and both are good machine-learning 

algorithms to use for classification of items based on a conjunction of features. 
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2   THEORETICAL ASPECTS OF METHODS (MODELS) 

 
  

2.1   Decision Trees 

 

For the first machine-learning algorithm, I chose to use decision trees.  This is an 

inductive inference algorithm, where the learned function is represented as a decision tree.  

That is, in the tree each node represents an attribute with each edge that leads from the node 

representing the value of the attribute.  A classification is therefore obtained by traversing the 

tree from the root to a leaf.  Each leaf is a classification.  Therefore, its output is a discrete 

value.  This algorithm is robust to noisy data.  Further, the decision tree does not have to 

contain all possible attribute values.  This algorithm however requires all the attribute values be 

categorical.  It is easy to turn continuous values into categorical ones by creating intervals.  

Therefore, this algorithm is a good candidate for the task at hand. 

 In the decision tree algorithm first the root is created.  From there each node represents 

one attribute with the edges leading from this node representing the possible values for this 

attribute.  The most important part of this algorithm is choosing which attribute is placed 

where in the tree.  For this, the information gain measure is used.   

Information Gain is defined as follows: 
 
Gain(D,A) = Entropy(D) - ΣvεValues(A)(|Dv|/|D|)Entropy(Dv) 
where 
D = training data 
Dv = {d ε D; A(d) = v} 
A = attribute 
A(d) = attribute value A in instance d 
Values(A) = set of all possible values of attribute A 
 
and 
            c 

Entropy(D) = Σ – pi log2 pi 

               
i=1 

where  
pi is the proportion of the training data that belongs to class i 
c is the number of discrete values that the classification can produce 
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This information gain is used to decide which attribute is assigned at which node.  This gain 

represents how effective this attribute is in classifying the training data4.  

 
 
2.2   Naive Bayes Classifier 

 
 For the second algorithm I choose to use the Naive Bayes Classifier.  This classifier can 

be used when each instance can be described as a conjunction of attribute values and where 

the output is discrete valued.  For our task, each training example is defined as a conjunction of 

features.  Also, the output is discrete valued.  Further, the algorithm is robust to noisy data, and 

can handle if not all the values of an attribute are present in the training data (i.e. by using 

smoothing).   

 This classifier is based on Bayesian learning where probabilities of different hypothesis 

are estimated based on counts of their occurrences in the data.  The classification is therefore 

made by choosing the most probable hypothesis, given the training data.  The Naive Bayes 

classifier is different from the Bayes classifier in that it assumes that the attribute values are 

independently conditioned for any given target value. 

That is, the classification is produced by the following equation: 
 
v NBC = argmax vi ε V P(vi) ∏iP(ai|vi) 
 
where  
vi = target value 
V = set of all possible target values 
ai = attribute value 
The above probabilities are estimated by frequency counts obtained from the training data.5  
 

Therefore, the Naive Bayes classifier does not search through a hypothesis space, but 

rather calculates the most probable classification, based on the counted frequencies from the 

training data. 

 

 

                                                           
4
Mitchell, Tom M.  (1997)  Machine Learning.  WCB McGraw-Hill: New York, New York; pp. 52-78.  

5
 Mitchell, Tom M.  (1997)  Machine Learning.  WCB McGraw-Hill: New York, New York; pp. 154-199. 
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3   PRACTICAL ASPECTS OF METHODS (MODELS) 

 

  

For the implementation of the NE type classification I used the R environment.  I used 

the R environment because it provides a remarkable number of already implemented machine 

learning algorithms.  It also has a class that can be used to handle XML data.  

The first thing I did is extract the nineteen features from the training file.  I used the 

unique id specified for each NE in the train.ne.oneword.xml file to locate the word inside the 

train.m.xml file and extract the specified features.  I created a data frame with all this extracted 

information.  In the data frame each row contains the values of the nineteen extracted features 

for this particular NE and its correct type.   

 For the decision tree algorithm I used the rpart library in R.  I used the rpart method to 

grow the decision tree.  For the Naive Bayes classification I used the e1071 class, and the 

naiveBayes method to estimate the probabilities.   

 I used the development files (dtest.ne.oneword.xml and dtest.m.xml) to create a data 

frame with all the extracted features (like for the training files), except that the correct 

classification was withheld.  I used the predict method for both the algorithms to see what 

classification was produced for each of the two algorithms.  I used the development files to see 

how changes in the features used would affect the result. 

 Finally, I extracted the features from the evaluation testing files (etest.ne.oneword.xml 

and etest.m.xml) and once again used the predict method.  I computed the accuracy of the two 

algorithms by comparing the produced classification to the true classification provided in the 

etest.ne.oneword.xml file. 
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4   PROJECT ANALYSIS 

 

 

 In order to properly evaluate the performance of the NE classification, a baseline has to 

be created.  I created a baseline by classifying all the NE instances by the most common type 

(p).  This resulted in a 45.44% baseline for the development data and 51.14% for the evaluation 

data.   

 

4.1   Development Testing 

 

 I used the development data to test and further experiment with several features.  First, 

I experimented with the three continuous features.  That is, I tested the results with the 

features being left as being continuous and with the features being divided into discrete 

intervals.  However, this produced no change for either algorithm.  Also, playing around with 

different intervals produced no change as well.  Next, I played around with the look-back 

interval for any previous NEs.  Originally I used a look-back interval of four words.  Increasing 

this interval to six improved the accuracy by 2%.  Further increasing it to eight produced no 

change, while increasing it to ten brought the accuracy down by 0.5%.  I also tried including the 

number for the NE, the next word, the previous word or the word before the previous.  

However, this produced no improvement in the accuracy. 

 

4.2   Parameter Testing 

 

 All algorithms have different parameters that whose changes can influence the results.  

For decision trees one useful feature is pruning.  That is, pruning a tree often leads to 

improvements in the accuracy.  I used the prune function and changed around the complexity 

parameter.  However, this did not improve the results.  That is, the results stayed the same, or 

even started to decrease when the complexity parameter became too big.  (See Table 4.1 for 

the pruning results.) 
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Complexity parameter Accuracy 

Cp=0.2 0.704 

Cp=0.1 0.776 

Cp=0.05 0.787 

Cp=0.01 0.834 

Cp=0.005 0.834 

Table 4.1 changes in cp and the resulting accuracy for the etest files. 
 
 For the Naive Bayes classifier, one of the parameters that can be changed is the 

threshold that will be used when a probability being estimated is 0.  Playing around with this 

feature, once again, did not increase the accuracy.  That is, for certain values it remained the 

same as when the threshold was not changed, and for some it decreased.  (See Table 4.2 for 

details.) 

 

Threshold Accuracy 

0.0001 0.796 

0.001 0.836 

0.05 0.836 

0.1 0.82 

Table 4.2 shows how the changes in threshold affect the accuracy on the etest files. 
 

 

4.3   Evaluation Testing 

  
 Next, I tested the accuracy for both the development and evaluation data under several 

conditions.  I first tested both the algorithms with all the nineteen extracted features.  Next, I 

tested the two algorithms with all the features except those extracted from the morphological 

tags (for the current word, the next, the previous and the one before the previous) since this is 

the most numerous feature category.  For this project, the training data contained 

morphological information about the NEs.  This requires the data to be pre-processed.  This 

type of data is expensive.  I therefore decided to test the two algorithms only with features 

which can be extracted from the sentence and the word itself (this includes the structural 

features, the presence of NEs before the current one and the typography of the word).  Finally, 

in this instance we are dealing with text and therefore have access to information such as the 

typography.  However, if we were dealing with speech instead of text this information would 
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not be available.  Therefore, I decided to test the two algorithms with just the structural 

features. 

 

4.4   Results 

  

Type of test Decision Trees – 

etest 

Naive Bayes – 

etest 

Baseline 0.834 0.836 

Structural 

Features only 

0.820 0.813 

Structural + 

Topographical 

0.643 0.640 

No Tag 

Information 

0.526 0.511 

All features 0.501 0.501 

Table 4.3 The results. 
  

Table 4.3 shows the results of the testing while the figure below show a comparison of 

the results for the two algorithms for the different instances that were being tested, for the 

evaluation data (see alsoFigure 4.4).  (For the results based on the development data, see 

Appendix A). 

 

 

Figure 4.4 The results based on the etest files for both the algorithms. 
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There are several things to be noticed.  First, the best overall result is obtained by the 

Naive Bayes classification for the evaluation files with all nineteen features extracted.  

However, the performance of the two algorithms is quite similar, and varies by 2-3% at the 

most.   

Regarding the features, removing the tag information (morphological features) 

decreases the result, but only so slightly.  Removing the lemma as well the morphological 

information decreases the accuracy quite a bit (20%).  However, the results are still 

approximately 15% higher than the baseline.  Finally, removing the topographical information 

(as well as the lemma and morphological features) produces results that are no better than the 

baseline.  What these results suggest is that the more information we have, the better the 

results.  It also shows how different types of features all seem to play an important role in the 

classification.  The data here is not very large, and one must not generalize from one set of 

results to all other instances.  However, what these results do show is that playing around with 

different types of features can produce different results and is an aspect that should further be 

examined.   

 

4.5   Error Analysis 

 

 Sometimes results can be hampered by one (or a couple) class which is being 

misclassified and bringing down the accuracy rate.  That is, it could be the case that all (or 

almost all) the errors are being caused by one class being misclassified.  In analyzing the NEs 

that were misclassified, it becomes clear that this is not the case for this project.  That is, the 

misclassification occurs for several different classes, for both the methods.  A confusion matrix 

for the Decision Trees Algorithm (Table 4.5) and the Naive Bayes Classifier (Table 4.6) can help 

us analyze the errors. 
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     TRUE 

 a g i m o p s T 

a 0 0 0 0 0 0 0 0 

g 0 113 20 0 1 12 0 0 

i 0 2 25 11 9 1 13 0 

m 0 0 0 0 0 0 0 0 

o 0 0 0 0 17 0 0 0 

p 0 14 8 2 14 338 0 4 

s 0 0 0 0 0 0 0 0 

t 0 0 0 0 5 0 0 91 

 

Table 4.5 shows the confusion matrix for the Decision Tree Algorithm. 

 

  From the above table, we can see that ‘i’ is very often wrongly predicted.  Also, the 

classification does not classify ‘s’ (even though there are thirteen instances of ‘s’, which are  

misclassified as ‘i’).   

 

    TRUE 

 a g i m o p s t 

a 0 0 0 0 0 0 0 0 

g 0 115 22 1 3 12 0 3 

i 0 9 22 3 7 7 2 0 

m 0 0 3 3 0 2 0 0 

o 0 1 1 1 27 7 1 4 

p 0 4 4 0 5 323 0 3 

s 0 0 1 5 3 0 10 0 

t 0 0 0 0 1 0 0 85 

Table 4.6 shows the confusion matrix for the Naive Bayes Classifier. 

 

 From the above table we can see that for the Naive Bayes Classifier ‘i’ is very often 

misclassified, as is ‘m’ and ‘o’.   

 For both the methods there are misclassifications for ‘g’ and ‘p’, but proportionally to 

the number of correct classifications, the errors are small. 

PREDICTED 

PREDICTED 



17 
 

It is interesting, as well, to see the differences in errors.  The Naive Bayes Classifier 

makes more different types of errors.  The Decision Tree Algorithm makes fewer types of 

errors, but for each type, the errors are more numerous. 

 

4.6   Significance of Results 
 
 There is a difference in the best performance of the two algorithms.  However, are these 

results statistically significant?   

 To test the significance, we test against the null hypothesis (Ho). 

Null Hypothesis: 

Ho: d = p1 – p2 = 0 where  p1 = success rate of Decision Trees = 0.836 

    p2 = success rate of Naive Bayes =  0.834 

    d = difference in performance rates 

Alternative hypothesis: 

H1: ď  = 0.836 – 0.834 

 = 0.002 

To test the hypothesis, we create a 95% two-sided confidence interval, using the following 

formula:  

ď  +- zn σ 

where σ = √(error(p1)(1-error(p1)))/n1 + (error(p2)(1-error(p2)))/n2 

where n1 = n2 = 701 (size of evaluation data) 

error(p1) = 0.164 

error(p2) = 0.166 

=>     σ  = √{[(0.164*0.836)/701] + [(0.166*0.834)/701]} 

 = 0.01983 

For a two-sided confidence interval zn = 1.96 

ď +- (1.96)(0.01983) => 0.002 +- 0.0389 

CI: [-0.0369, 0.0409] 

Since the confidence interval contains zero (0), we cannot reject the null hypothesis.  Therefore, 

at a 95% level, the difference between the two algorithms is not statistically significant. 
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4.7   Graphical Representation of Classification 

 

 A decision tree is not only useful in classifying future NEs, but it also offers a graphical 

representation of our classification.  We can examine the tree to see how the classification 

occurs, and also to see which features are proven to be most useful for our classification. 

 
Figure 4.7 shows the decision tree that is generated for the nineteen extracted features. 
 
 Pruning a tree, demonstrates a way of getting a much simpler tree (which requires less 

decisions and classification features), by keeping the accuracy close to that of the non-pruned 

tree. 
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Figure 4.8 shows the plotcp plot of the Decision Tree. 
 
We use the above graph to select a cp=0.20 for the pruning. 

Figure 4.9 shows the resulting pruned tree: 

 

Figure 4.9 The pruned tree. 
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The difference between the pruned and the non-pruned tree produce the same leafs, 

yet the non-pruned tree has more branches (eight, compared with six for the pruned).  One of 

the features that is in the non-pruned tree but is not in the pruned tree is the POS of the 

previous word (labelled ‘P1’).  What this suggests is that for this particular data, the context 

feature did not bring forth as much information for learning as the other two morphological 

and the one topographic features did. 

  

4.8   Conclusions 

 

Overall, the accuracy rates show that the methods chosen were successful for the 

classification task.  Further, the similar results for the two different methods show that the two 

algorithms are mutually competitive.  Also, the results are much higher than the baseline, 

further showing the success of the classification.  The results show the benefits of using 

supervised methods in machine learning, and the benefit of having pre-processed training data.   

What we can tell from the trees (Figure 4.8 and Figure 4.9) is the features that are most 

useful for the classification.  We can tell that the typography of the word (labelled ‘Char’), the 

lemma and the gender of the current word (labelled ‘C3’) are the most useful in classifying the 

data.  These are two morphological and one typographic features.  This shows that for this data 

with the Decision Tree algorithm, the morphological and typographic features were most useful 

for the classification task. 

  

 

4.9   Future Directions 

  

One thing that could be tested in the future is two-level classification.  The two-level 

classification is more fine-grained, and I believe that with sufficient training data it would 

outperform the one-level.  Other future directions include looking at getting similar results that 

are not so heavily based on pre-processed data.  This would not only be less expensive, but 

would also allow the classification task to be performed on more languages (ones that do not 

have corpuses or Treebanks available). 
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5   CONCLUSION 

 

 

This project has shown that both the Naive Bayes Classifier and Decision Trees can be 

successfully used for the Named Entity Type Classification.  Moreover, it has shown that the 

two methods are competitive machine-learning algorithms.  Further, while there are many 

different types of features that can be extracted, the best results are those based on heavily 

pre-processed data.  This shows how pre-processing data in such a way can later be beneficial 

for many other applications.  Finally, the results of this project show how machine-learning 

algorithms can be quite successful for natural language processing tasks. 
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6   APPENDIX A 

 

  

Type of test Decision Trees-

dtest 

Naive Bayes – 

dtest 

Baseline 0.837 0.800 

Structural 

Features only 

0.820 0.797 

Structural + 

Topographical 

0.579 0.583 

No Tag 

Information 

0.480 0.483 

All features 0.454 0.454 

Table A.1 The results of the tests run on the development data. 
 
 
 

 

Figure A.2   The comparison of results for the two methods on the development data. 
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