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1. Introduction 
 
Named entity classification is the recognition 
and identification of linguistics elements that can 
be cataloged in several categories as names of 
organizations, persons, locations, time 
expressions, among others [1]. This 
classification represents an important subtask of 
more complex information extraction and 
linguistic applications, given that named entities 
represents the main content of a document [2].  
 
Several rule based approaches have been used to 
work out this problem. Usually in these 
approaches finite state patters are built using 
specific linguistic information and word patters 
[3]. However, recently machine learning 
approaches have became more attractive given 
that such methods overcome many of the 
difficulties intrinsic in based rules approaches, as 
their adaptability to different application contexts 
and cost of maintenance [2].  
 
Thus in the present work two different machine 
learning approaches are contrasted. The first 
method applied is Classification tree learning. 
This method was chosen because it is easier to 
understand and to interpret the results intrinsic in 
the algorithm, which is very useful since the 
main goal of this work is to analyze the impact 
of different features in the classification task. 
The second method is Bayesian learning and 
particularly naïve Bayes classifier.  This method 
is studied because it has been used in a variety of 
practical linguistic problems. Naturally the aim 
of this work is to analyze which method is more 
convenient given a particular scenario and to 
study how the features behave for both 
approaches. 
 
The predefined named entity types are taken 
from the hierarchy proposed by Magda 
Ševčíková [4].  
 

2. Data Description 
 
The annotated data used for the experiments 
were extracted from the Prague Dependency 

Treebank1 which contains a subset of the Czech 
National corpus. Three different sets of data 
were used: training data, development data and 
test data. Table 1 summarizes the length of each 
dataset. For the training date 6109 samples were 
considered, for the test data 803 samples and for 
the development data 782, which correspond to 
the number of named entities in the data. 
 
Table 1: Datasets length and number of named entities in 
each file 

 
Data Sentences Words Named entities 
Training 1.608 41.710 6.109 
Development 201 4.915 782 
Test 201 5.296 803 

 
The information provided in each data includes 
the lemma, form and morphological tag for each 
word. The information is shown in Table 2.  The 
word form refers to the actual word that is found 
in the text, for example in Table 2 is shown the 
word “Krasnou” which is the Czech word for 
“beautiful” inflated into the fourth case 
(accusative). The lemma is a common 
representation for the set of all the forms that 
have the same meaning. Following the example, 
the lemma for the word form “Krasnou” is 
krásný, which is the word form without 
inflections. It is important to mention that the 
lemma was not considered in this study given 
that its selection or codification is somehow 
dependent of the data provider, for this reason its 
use could be not reproducible in studies using 
data from different sources. 
 
Additionally, datasets provide morphological 
information of the words. The Prague 
Dependency Treebank use positional tags with 
15 fields, which are summarize in Table 3. For 
the present study only three fields were 
considered: part of speech, gender and case. The 
fields 6, 7, 13, 14, 15 are undefined in 99% of 
the data, meanwhile the fields 8, 9, 10 and 12 are 
undefined in more than 90% of the data, thus 
these field were ignored. In addition the second 
field  that correspond to sub part of speech  was 
not considered given that the information 
provided is highly specific and it would difficult 
                                                 
1 The data was provided by the lectures of the course 
Introduction to Machine Learning (2007) 



the reproduction of the experiments performed in 
this work with data from different sources.  
 
It is important to mention that it is not feasible to 
consider  all the information provided by the tag 
given the enormous degrees of freedom that this 
introduce to the hypothesis representation, which 
is around 1010 solely for the morphological tag. 
In particular it was found that when it is 
considered more than 3 fields of the tag, the 
computational resources to process and train the 
models become very expensive. 
 
Additionally, it is convenient to use only three 
fields since a bigger hypothesis representation 
requires more data, thus it is important to keep 
the number of features as small as possible given 
the size of the datasets (see Table 1). 
 
Table 2: Information provided per word by the datasets 

 
Element Description Example 
Word form Word as is found 

in the text 
“Krásnou” 

Lemma Headword or 
form chosen by 
convention to 
represent the 
lexeme. 

krásný 

Morphological 
tag 

Annotated 
morphological 
information of 
the word form 

AAFS4----1A---- 

 
Table 3: Enumeration of the morphological tag elements 

 
Position Description 
1 Part of speech 
2 Sub part of speech 
3 Gender 
4 Number 
5 Case 
6 Possessive gender 
7 Possessive number 
8 Person 
9 Tense  
10 Grade 
11 Negation 
12 Voice 
13 Reserve 1 
14 Reserve 2 
15 Variant 

 
In the hierarchy classification provided in [4] 
there are two different levels of predefined 
named entities type.  Table 4 illustrates the 
classes only considering the first level and Table 
5 extends some of the classes given Table 4 to 
the second level. 
 

Table 4 shows 11 types of named entities. 10 of 
these classes are suggested by Ševčíková 
hierarchy. The class “s” is annotated in the data 
and even if it does not belong to the hierarchy it 
was included in this study given than 7% of the 
named entity corresponds to this class.  
 
Table 5 illustrates some named entity type 
classification considering two levels in the 
hierarchy. It is important to mention that each 
type in the first level can be expanded to more 
than 5 and up to 11 classes. For more details of 
these classifications refer to the reference [4].  
 
Table 4: Named entity types for the first level in the 
hierarchy 
 
Class Named entity Example 
a Number of 

addresses 
356 

c Bibliographic 
items 

3.2 

g Geographical 
names 

Prague 

i Institutions Cambridge 
m Media names Gazette 
n Specific number 

usages 
0-0 

o Artifact names Christoslaus 
p Personal names Santiago 
q Quantitative 

expressions 
Fifth  

t Time expressions 2008 
s Abbreviations SPP 
 
Table 5: Some of the named entity types in the hierarchy 
when two levels are considered 
 
Class Named entity Example 
pd Tittles Wolf 
g_ Underspecified Mojunkumech 

i_ Underspecified IHS 
or Directive, norms Listiny 
tf Feast Silvestra 
at Phone numbers 57321068 
 
In the current work only the first level is 
considered for the classification, which means 
that subtypes were merged into their main type. 
This approach is convenient given that many 
subtypes are not frequent in the data, producing a 
negative impact in learning algorithms. In Table 
6 is shown some of the low frequencies named 
entity found in the data. In this table is possible 
to see that many entity types have less than 5 
samples, which makes those types irrelevant to 
any machine learning algorithm. However after 
merging the second level into its first level, we 
obtain a significant better distribution of 
frequencies, as it is shown in Table 7.  



 
Table 6 Named entity frequency without merging (two 
level) for some of the low frequency types 
 

f Type 
1 Pd 
2 g_ 
3 i_ 
3 Or 
3 Tf 
4 At 

 
Table 7 Named entity frequency  considering only the 
main level  
 

f type 
0 n 
0 c 
23 a 
79 m 
297 o 
385 s 
451 i 
731 t 
1133 g 
2632 p 

 
 
Additionally all the words found in the data that 
does not belong to the hierarchy classification 
were ignored. Consequently the following types 
were ignored: segm, text,cap, lower,upper, ?, f 
 
It is important to mention that for some samples 
there are two or more named entity type 
classification. Even if these samples reduce the 
accuracy of the machine learning method 
implemented, they were not ignored because it is 
considered that such situation represents better a 
real world scenario, where sometimes we don’t 
have access to the test data to filter those kind of 
annotations, furthermore it can be relevant for 
specific applications to annotate a single sample 
with two different named entity types.  
 
Also it was found that the percentage of these 
samples represents 12% of the training data and 
16% of the testing data. Given these percentages, 
the elimination of these samples may bias the 
fairness of the experiments. Similarly it was not 
found strong criteria to choose a particular 
annotation for each one of the samples. For this 
reason it is convenient to analyze the methods 
including these samples. 

 
3. Machine learning methods 

 
3.1 Classification Trees 

This method tries to find a set of rules to predict 
a dependent variable Y from n training samples 
Xi, which are called predictors. Each training 
sample has categorical and/or continuous values– 
measurable features for each observation- [5]. 
This prediction is performed building a decision 
tree which approximates the target function.  A 
decision tree represents a set of if-then rules 
based on the feature values of the samples, this 
tree is built from the known data and it is used to 
predict the class for further samples with known 
features but unknown class.  The Figure 1 shows 
an example of a Partitioning tree [6].  

The leaves in the tree represent a partition of the 
space of all possible observations. It is important 
to note that in statistical problems the 
distribution of classes over X can overlap [6], for 
this reason the distribution of the class at each 
node can be represented as a probability 
distribution in which some criteria is used – for 
instance Bayes decision rule- to select the one 
that has the maximum probability or the one that 
minimize the error.  

 
Figure 1: Partition tree example: The leaves show the 
proportion of class #1 over class #2 reached the given 
node [6] 
 
 
The tree is built recursively starting with the root 
containing all the samples of the training data, 



then the algorithm choose the “best” feature to 
split the sample space, in this step all the features 
and its possible values are evaluated over some 
criteria function which measure the “purity” of 
the two children nodes (for binary splitting case 
that is the method used in this work), this 
function measure somehow the quality of the 
distribution in each node [7]. The Gini index was 
used as the splitting criteria [6]: 
  

Equation 1: Gini index 
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The value pik represents a multinomial 
distribution over the classes at the node i.  
 
Once the best possible feature to split the current 
node is found, the algorithm assigns a class to 
the node. This task is done using the following 
formula [7]:  
 
The partition and classification processes are 
done on every node until it has been reached a 
maximum level in the three –established as a 
parameter- or when there is only one observation 
in each new child created [7].  
 
 
Equation 2: Assigning of classes to nodes [7]. c(i|j) is the 
cost of misclassifying i as j, π(i) is the prior probability of 
i (estimated from the training data), Ni is the number of 
class i in the training data and Ni(t) is the number of 
samples with class i in the node. We select class if the 
inequality is satisfied. 
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3.2 Naïve Bayes 
 
This classification method is suitable when each 
instance of the problem can be represented as 
tuples of attributes of the form {a1, a2, a3, …,  an}, 
and the target function evaluated on each 
instance, f(x), can take any value from a finite set 
of values V [8]. 
 
The prediction of the target function for new 
instances is obtaining getting the most probable 
target value Vmax as is described in equation 3 
[8]. 
 
 

Equation 3: Most probable target value for a given 
sample 
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The two probabilities involved in equation 3 are 
calculated assuming that the conditional 
probabilities of the features are independent.  
This assumption leads us to the Naïve Bayes 
classifier which is expressed by equation 4 [8].  
 
Equation 4: Naive Bayes Classifier.  Where ai refers to the 
i-th attribute of the sample and vj denotes the j-th possible 
class value. 
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The probability P(vj) is estimated counting the 
frequency of each possible class in the training 
data., The probability P(ai | vj) is estimated using 
equation 5 [8].  
 
Equation 5: m-estimate of probability 
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In equation 5, n correspond to the total number 
of time that vj appears in the data and nc is the 
number of times of vj in the presence of the 
attribute value ai, p corresponds to a prior 
estimation of the probability of for this case is 
set to 1/k (where k is the number of possible 
values). [8] 
 
 

4. Implementation 
 
Given that both methods can use the same 
problem representation, that is a set of tuples in 
the form xi ( a1, a2, a3, …,  an , ) and classes ci that 
characterized the sample, a matrix representation 
is used to store the attributes values and classes 
calculated from the training and testing data.  
 
In the present work the entire implementation 
was done in R.  The library XML was used to 
extract the data, the library rpart was used to 
perform the classification tree and the library 
e1071 to run naïve Bayes.  
 
The implementation was organized in three 
different R script files: f_engine.R, training.R 
and testing.R, in the following sections is 



described the organization of each file and the 
main R functions used.  
 
 
4.1 Feature extraction ( Script f_engine.R) 
 
First lines of this script define the following 
parameters: 
 

• w1 and w2: Size of the window for the 
morphological features: w1 represents 
the number of words before and w2 the 
number of words after. 

• ww1 and ww2: Size of the window for 
the word length feature 

• www1 and www2 : Size of the window 
for the word class feature 

 
The main function of this script is getFeatures. 
This function constructs the matrix with the 
feature values for each sample of the training or 
test data. For this purpose the function has too 
arguments: the path of the XML file from which 
we will extract the features and the vector with 
the named entity references.  

 
Also this script defines several functions to 
extract the following features: 
 

• Morphological information (Function 
morphoF): This feature is calculated in 
a window of size specified by the 
parameters w1 (number of words 
consider before the name entity) and w2 
(number of words consider after the 
name entity).  In fact for each word is 
generated the three following features: 

 
o POS (1) 
o Gender (3) 
o Case (5) 

  
• Word Classification (Function 

wordClass): This function assigns a 
class to the word in evaluation and its 
context. The size of the window is 
specified by the parameters www1 and 
www2.  The possible classes are listed 
above: 

o L: all letter are lowercase 
o C: starts with capital 
o U: all uppercase 
o N: contains a number 
o A: all numbers 
o Z: other 

• Hyphened (Function wordHyphen):  
This function determines in the word 
contains special characters or if it is 
hyphened. The word is classified in one 
of the following options: 

o H: constains hyphen 
o D: contains dot 
o M: constains $ 
o F: contains ‘/’ 
o P: contains ‘%’ 
o Z: other 

• Word length (Function wordLength): 
This function calculates the length of 
the word and its context. The window 
size is specified by the parameters ww1 
and ww2.  

 
• Ne distance : This feature is calculated 

inside the function getFeatures and 
represent the number of words between 
the word in evaluation and the previous 
two named entities found – the value 
store correspond to the mean of the two 
distances-. 

 
• Position of the word in the sentence and 

length of the sentence are calculated 
inside the main function as well 
(getFeatures) 

 
It is important to mention that numerical features 
were categorized using quintiles, which are 
quantiles with 5 regular intervals, each one 
having the same number of items. The 
motivation of this categorization is to let both 
machine learning methods to create more general 
rules, avoiding some over fitting. For this 
purpose the data was preprocessed in order to 
obtain the correct interval of values for each non 
categorical feature. The function mycut evaluates 
a given number and returns its category 
according to the intervals preprocessed. Each 
category is represented by a letter from the 
following set: {A,B,C,D,E}. 
 
4.2 Training and testing script 
 
The training and testing script files start 
including the script f_engine.R which contains 
the functions needed to extract and calculate the 
features from the training and test XML files. 
After this line it is necessary to specify three 
different paths: 
 

• path:  path in hard disk for the file 
*.ne.oneword.xml 



• path2:  path in hard disk for the file 
*.m.xml  

• file_= path where the user wants to save 
the table with the features value matrix 
(and its classes for the training case). 

 
Then, the script construct two vectors with the 
classes and references from the 
*.ne.oneword.xml files, these vectors are called 
type and id respectively. In this part of the script 
the methods xmlTreeParse, getNodeSet and 
xmlAttrs are used to access to the XML 
hierarchy, extract the nodes and access the fields 
of the node.  
 
Once we obtain the references of the named 
entities samples – and its classes-, we call the 
function getFeatures which is defined in the file 
f_engine.R. This function construct the matrix 
with the features calculated from the training or 
text data.  
 
The training script defines the function train, 
which receives two parameters: an integer value 
specifying the method that the user wants to use, 
and the matrix with the features and class values 
of the samples – the matrix returned by the 
method getFeatures-. The integer value for the 
current implementation can have only two 
values: 1 for decision trees and 0 for naïve 
Bayes. This function returns in a variable the 
model obtained with the chosen training method. 
 
For decision trees method it was used the 
function rpart -with the method “class”- using 
the following features: 
 

• Morphological tag ( in a window 
defined as: wi-2,wi-1,  wi, wi+1, wi+2)  

• Word class, 
• ne distance 

 
It is important to mention that other features 
were also used in the experiments but the 
features mentioned above produced the best 
results – a further analysis can be found in the 
next section of this document-. 
 
The previous script chooses automatically the 
complexity parameter associated with the 
smallest cross validation error [9].  A further 
analysis concerning cross validation and the 
pruning of the tree will be covered in the results 
section. 
 

The function naiveBayes is used to perform the 
Naïve Bayes method. This function receives two 
arguments: the matrix with the training feature 
values and classes, and the function with the 
attributes to use in the training. The following 
features are specified in the attributes expression 
–which correspond to the best combination of 
features found- 
 

• Word class 
• Word length : with window context of 

size 1: ,wi-1,  wi, wi+1 
• Morphological tag: window of size 1 : 

wi-1,  wi, wi+1 
• Ne distance 

 
Similarly the script test.R defines the function 
test which has three arguments: the kind of 
model to use for the test – Naïve Bayes (0) or 
decision trees (1)-; the model itself – returned by 
the method train- and the matrix with the 
features values, which is generated once the 
test.R script is loaded. The script shows the 
accuracy of the model chosen with the test data 
provided. 
 

5. Experiments and Results 
 
Several experiments were run for both machine 
learning algorithms to understand the behavior of 
the features in each model and evaluate their 
suitability for the two algorithms. Also it was 
explore the convenience of some features applied 
in context using different window sizes. Another 
aim of the experiments was to analyze the 
importance of specialized linguistic information 
as features, case of the morphological tag, which 
let us discern at the same time which simple 
features can lead to decent predictor models.  
 
The different settings of the models explored in 
following sections were tested using the 
development data.  
 
It is important to mention that the baseline of the 
problem studied in this work is 44%, which 
correspond to the frequency in the data of the 
type p. This percentage gives a intuition of the 
difficulty nature of the problem of named entity 
classification. 
 
 

5.1 Classification tree experiments 
 
For the classification tree algorithm, several 
window sizes were set in order to discern the 



most convenient one given the limited amount of 
training data.  
 
The experiments were carried out using the word 
class feature and increasing the size of the 
window steadily for the feature that is being 
studied.  It is important to mention that the 
accuracy for the evaluation data obtained using 
only the feature mentioned was 52.5%, which is 
high considering its simplicity. However this can 
be explained by the fact that the most frequent 
named entities are ps, pf, gc and gu, which 
correspond to 54% of the named entities in the 
data and follow patters discern by the word class 
feature (for instance the words that starts with 
capital letters).  
 
Table 8 summarized the results obtained. The 
first experiment showed that adding the features 
POS, gender and case increase the accuracy by 
17.3%. Furthermore, increasing the size of the 
window of these features showed an 
augmentation in the accuracy of 4.24% 
(considering one word before and one word 
after). This result shows that using 
morphological features lead to significant 
improvements in the accuracy of the model. 
However, it was found that bigger windows 
don’t produce better results. This can be 
explained by the fact that using bigger windows 
implies using bigger training data.  
 
The same experiment was carried out to find the 
most suitable size window for the features length 
of word and hyphen classification. However 
these attempts did not produce better results. 
This result is understandable since there are not 
many samples with the special characters that are 
matched with the feature hyphen. Also there is 
not a clear trend in the word size according its ne 
type, for this reason this feature does not provide 
information to the method. 
 
After, the tree was trained using all the features 
describe in section 4.1 – with windows of size 2 
for context features-. This experiment is useful 
because classification tree learning involves well 
defined criteria to select the best attributes at 
each step, then the method is able to discard 
irrelevant features leading to the best 
combination of them.  The tree obtained using 
this approach is shown in Figure 2. The method 
was training using the features: Morphological 
tag (with window size = 2), word class, ne 
distance, hyphen class, length of the sentence, 
length of the word, position in the sentence. The 

accuracy obtained was 74.55%.  However Figure 
2 shows that only the features gender, case and 
POS (for wi); gender and POS for wi-1; gender 
for wi+1, word class and ne distance were used. 
 
A better understanding of the learning algorithm 
behavior can be obtained through the confusion 
matrix of the prediction. Table 9 illustrates three 
different confusion matrices: Table 9.1 shows the 
confusion matrix for the prediction using only 
the word class feature, Table 9.2 shows the 
confusion matrix for the prediction using the 
word class feature and POS, and the last table 
shows the matrix for the best combination of 
features found (which are enumerated above). 
These matrices were chosen given the significant 
accuracy increase obtained by the different 
predictions as can be seen from Table 8.  Also, 
this selection eases the analysis of the features 
impact and its behavior.  
 
Table 9.1 shows that types t and p are discerned 
correctly by the learning algorithm when only 
the feature word classification is used. However 
it misclassifies the types g,s,i and o since they 
are classify as p. These results follow the nature 
of the word classification feature which detects 
numbers (classifying type t). Nonetheless, it is 
not able to distinguish between the types g,s,i 
and p because the patters considered for this 
feature are the same for the name of people, 
places and institutions.   
 
Table 9.2 illustrates how the accuracy increase is 
obtained when morphological features are added.  
 
Morphological information let the decision tree 
to classify quite well the type s and discern 
partially between the types q and p. A better 
classification of these types leads to a 
considerable accuracy increase (in this case 
18.7%) given their high frequency in the data 
(types p,q and s sum up around the 70% of the 
training data). However types m,o,i are still 
misclassified  
 
Table 9.3 shows that if we consider 
morphological information in context (using a 
window of size two) and the named entity 
feature, type p and q are better discerned. 
Nonetheless this table also shows that around 
7.07% of the names with type p and q are still 
misclassified. Similarly the algorithm remains 
unable to recognize types m,o and performs 
poorly classifying i. However special emphasis 
should be stress in the design of features for the 



recognition of name entity types p and q because 
these two are the most frequent in the data and 
slight improvements in its detection represents 
high increase in the accuracy of the entire 
prediction. 
 
Additionally, it was examined the cross entropy 
errors results, which are shown in Figure 3. This 
graph is useful to decide where to prune the tree 
since it relates the relative error with the size of 
the tree. For our particular case it turns out that 
cutting the tree at 9 (the size is given in number 
of nodes) it is obtained a equivalent tree in terms 
of relative error but a more general one giving 
that smaller trees represent more general models 
that may behave better in future test data, or in 
other words the prune of the tree helps to reduce 
the overfitting. The tree can be pruned using the 
R method   prune(model, cp,..), where model is 
the trained tree and cp is the complexity 
parameter to cut the tree. The complexity 
parameter with the smallest cross-validation 
error is assigned –according Figure 3 the value 
0.013 is chosen, which means that the tree was 
cut at size 9. This can be done with the following 
script [9]: 
 
cp= 
mode$cptable[which.min(mode$cptable[,"xerror"]),"CP"] 
 
The accuracy obtained when the tree is pruned 
was 73.27%. Table 9.4 shows the resulting 
confusion matrix after pruning the tree. The 
pruning of the tree decreases slightly the 
accuracy of the prediction of the type p and i.  
However the pruned model seems to predict 
more accurately type s. It is interesting to note 
that most of the changes occur because the 
model stop attempting to classify the instances as 
type i since the corresponding row has only 0 
values. This suggests that the prune process cut 
some of the rules where the type i was 
considered.  
 
 
Table 8: Results obtained by the Classification tree 
method. Word C stands for word classification feature 
and tag(n) for morphological information (case, POS, 
gender) applied if a window of size n 
 

Features Accuracy 
 

Word C 52.5% 
Word C, tag 69.8% 
Word C, tag(1) 74.04% 
Word C, tag(2) 74.55% 
Word C, tag(3) 74.55% 

Table 9: Confusion matrices for the prediction of the 
decision tree: 4.1 Matrix when word classification 
attribute is used; Table 4.2 Matrix when morphological 
information is added; Table 4.3: Matrix for the best 
combination of features; Table 4.4: Matrix for the best 
combination of features after the tree is pruned. Bold 
values show the changes. Note:  Columns represents the 
predicted values and rows the real values.  
 
9.1) 

T\P a g i m o p s t 

a 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 0 0 0 

i 0 0 0 0 0 0 0 0 

m 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 

p 0 178 72 8 54 334 38 7 

s 0 2 1 1 0 0 4 0 

t 6 0 0 0 4 0 0 73 
 
9.2) 

T\P a g i m o p s t 

a 0 0 0 0 0 0 0 0 

g 0 166 41 5 19 58 1 6 

i 0 0 0 0 0 0 0 0 

m 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 

p 0 4 10 1 7 265 3 1 

s 0 10 22 3 29 11 38 0 

t 6 0 0 0 3 0 0 73 

 
9.3) 

T\P a g i m o p s t 

a 0 0 0 0 0 0 0 0 

g 0 149 36 5 5 18 2 6 

i 0 2 11 3 13 5 7 0 

m 0 0 0 0 0 0 0 0 

o 0 7 0 1 16 2 0 0 

p 0 14 15 0 5 303 2 1 

s 0 8 11 0 16 6 31 0 

t 6 0 0 0 3 0 0 73 

 
9.4) 

T\P a g i m o p s t 

a 0 0 0 0 0 0 0 0 

g 0 149 36 5 5 24 2 6 

i 0 0 0 0 0 0 0 0 

m 0 0 0 0 0 0 0 0 

o 0 7 0 1 16 2 0 0 

p 0 14 15 0 5 297 2 1 

s 0 10 22 3 29 11 38 0 

t 6 0 0 0 3 0 0 73 



 

 
 
Figure 2: Decision tree obtained: In the tree is shown that 
only the features V8(Gender wi), V16 (word class), V9 
(Case wi),  V6( POS wi-1) , V17( ne distance), V5 (Gender 
wi-1), V11(Gender wi+1) were used. 
 

 
Figure 3: Cross validation error 

 
5.2 Naïve Bayes experiments 
 

The approach followed to study the Naïve Bayes 
method was to run a series of experiments were 
each feature was tested independently to see its 
impact in the model, similarly the test were done 
in first place on the development data.  
 
Additionally several experiments were run in 
order to find the most suitable windows size for 
the training data.  The results are summarized in 
Table 10. These results are for training the 

method with the feature specified in the table 
plus the word class and ne distance features.  
 
Given these results, it is possible to state that the 
features hyphened classification don’t provides a 
significant improvement in the accuracy, which 
is consistent with the result found for 
classification trees. 
 
Additionally, the results of the Table 10 show 
that the features that improves the accuracy for 
Naïve Bayes are word length, length of the 
sentence, case, gender, POS, and word 
classification The best results were obtained 
using windows size of one (for word length and 
morphological information) and two for word 
classification. Note that previously the feature 
word length was not considered by the 
classification tree method and for this method 
represents a 5.68% increase of accuracy. 
 
Further experiments were carried out to combine 
the features that represented improvements in the 
accuracy (from the analysis done in Table 10). 
These experiments shown that the best 
combination of features for this method is: word 
classification (applied in window of size 2), 
morphological information and word length, 
both applied in window of size 1. The accuracy 
obtained applying these features was 74.8% (on 
development data). The features chosen are 
similar to the ones found for the classification 
tree algorithm; however for Naïve Bayes the 
sizes of the windows were different and the 
feature word length becomes important in the 
model.  
 
Additionally, an important difference is the 
higher accuracy obtained without considering 
morphological information, which is 65.7% 
(with the features word length, word class and 
length of the sentence) against 52.5% obtained 
by the previous method. 
 
In addition, it was found that adding several of 
the features that increase the accuracy not 
necessarily lead to better results, contrary to 
classification trees where the agglomeration of 
features did not decrease the accuracy. This can 
be explained by the fact that the estimated 
probabilities for some features can be very low, 
result that is propagated in equation 4 creating 
some biased in the sense that the probability will 
be underestimated. This case was not present in 
decision trees, where not relevant features are 
ignored by the method. 



 
 
Table 11 summarizes the results of these 
experiments. From this table we can see that 
when the features word class, morphological tag 
and length of the sentence are combined the 
performance of the system decrease, even if the 
features increase the accuracy of the system 
when are tested independently.  
 
Also a confusion matrix was built for the best 
combination of features found for this method; 
the results are shown in Table 12. From this table 
it is possible to state that the name entities types 
classified correctly are very similar to the ones 
classified for the classification trees method 
(g,p,s,t). However the system confuses more 
often the type p and q which are very frequent in 
the data and consequently have a bigger impact 
in the performance of the algorithm. It is also 
interesting to note that this algorithm discern the 
name entity type o (Artifact names) which is 
highly misclassified by the classification trees 
algorithm.  Even if words with this name entity 
type only represent 5% of the training data, it 
would be more convenient to use Bayesian 
learning when the detection of Artifact names is 
more relevant or are more important in a specific 
application.  
 
It is important to mention that several of the 
experiments described so far were repeated 
including Lagrange smoothing but it was not 
found better results. 
 
  5.3 Algorithms comparison  
 
Finally, a paired test [8] was performed on both 
algorithms in order to compare their performance 
and be able to determine the confidence interval 
in which one algorithm outperforms the other. 
For this purpose the training data was divided 
into 10 disjoint subsets of 570 elements each 
one.  
 
The parameter to be estimated is the expected 
error difference of both algorithms on a data 
sample which is subscript to the instance 
distribution. The estimators are shown in 
equation 6 [8]: 
 
 
 
 
 

Equation 6: Paired t estimators 
 

∑

∑

=

=

−=

=

k

i
i

k

i
i

k
s

k

1

2

1

)(1

1

δδ

δδ
 

 
And the interval is calculated using equation 7.  

 
Equation 7: Paired t estimators 

δδ st kN 1, −±  

Each value δi in equation 6 correspond to the 
error difference of the two algorithms when  the 
training data provided correspond to the union of 
k-1 subsets and the test data is the i-th set. The 
results obtained for a confidence level of 95% 
were:   0.039 ± 0.029. This means that the error 
of Naïve Bayes is bigger than the error of 
decision trees between 1% and 6.8% given 95% 
as confidence level.   
 
Additionally, a bootstrap algorithm was 
performed. For this purpose it was trained a 
model for each algorithm choosing the best 
combination of features found. Then each model 
was tested using 1000 subsets of the evaluation 
data. Each subset was of size 100 and it was built 
randomly from the evaluation data.  
 
Two different measures were taken. First, the 
error measure for each one of the 1000 
experiments was store in a vector. After this 
vector was sorted in order to obtain the elements 
25th and 975th of the vector which correspond to 
the interval with confidence level 95%.  For the 
classification tree model the interval obtained 
using the method was: [12%, 32%]. For Naïve 
Bayes the interval was: [16%, 42%]. 
 
Also it was calculated the interval using equation 
7. The estimator applied were the mean of the 
vector containing the errors and the standard 
deviation. The results for both methods are 
summarized in Table 13. 
 

6. Conclusions 
 
The best results were obtained using similar 
features in both methods. For classification trees 
the best combination of features was: 
morphological tag considered in a window of 
size 2, name entity distance and word 



classification. The features that provide the best 
results for the Naïve Bayes method are word 
classification (applied in window of size 2), 
morphological information and word length, 
both applied in window of size 1. The accuracy 
obtained by the decision tree using the evaluation 
data was 78.49% and for Naïve Bayes 74.7% 
  
Nonetheless, classification trees tend to be more 
convenient for the ne type classification with the 
features considered, since it was obtained better 
accuracy results. More precisely, the paired test 
performed to compare both algorithms showed 
that with a 95% confidence level, decision trees 
outperform Naïve Bayes by a value between 1% 
and 6.8%. However the bootstrap method shows 
that even if the classification has a smaller and 
lower error interval, not always it can 
outperforms Naïve Bayes, since the intervals 
overlap.  
 
Additionally it is handier to evaluate the impact 
of potential features in classification trees since 
the method employs a measure to quantify “how 
good” is a feature to split the hypothesis space, 
contrary to Naïve Bayes in which features with 
low probability can bias the class estimation, 
making more difficult the analysis.  
 
However, promising results were obtaining with 
Naïve Bayes when morphological features were 
ignored. This result is interesting in the sense 
that in some real applications it is possible to do 
not have access to such kind of information. 
 
Furthermore, the accuracy obtained by both 
methods can be improved merging some of the 
named entity types. The classification tree 
generated shows that no rules were generated for 
the types a, m and f, which occurs given its low 
frequency in the data. However, this merging can 
be conditioned to the situation in which the 
system is implemented. Similarly, ignoring the 
double annotations for some of the samples in 
the training data can produce better results. 
Nonetheless ignoring these samples or some of 
their annotations may be dependent the context 
of the language application as well. 
 
 
 
 
 
 
 
 

 
Table 10: Naïve Bayes accuracy results: s_length refers to 
length of the sentence, w_position to word position in the 
sentence, w_length to the length of the word, tag to the 
gender, case and POS of the word, class to the word class 
feature. Parenthesis state the size of the window used. 
 

Features Accuracy 

Word Class 52.50% 

S_length 57.80% 

w_position 58.00% 

w_length 55.11% 

w_length(1) 58.56% 

w_length(2) 58.18% 

w_length(3) 58.18% 

Hyphen 52.55% 

tag 71.09% 

tag(1) 72.25% 

tag(2) 71.86% 

class(1) 55.11% 

class(2) 55.37% 

 
Table 11: Naïve Bayes accuracy results: s_length refers to 
length of the sentence, w_position 
 

Features Accuracy 

class(2),w_length(1) 64.32% 
class(2),w_length(1),tag(1) 74.8% 
class(2),tag(1) 73.4% 
class(2),Ne,tag(1) 72.89% 
class(2),wlength(1),s_length 65,72% 
class(2),tag(1), s_length 72,63% 
class(2),tag(1), 
wlength(1),S_length 74,29% 
tag(1), wlength(1),S_length 73.65% 

 
 
Table 12: Naïve Bayes:  confusion matrix for the best 
combinations of features found (using development data): 
Note:  Columns represents the predicted values and rows 
the real values. 
 

 T\P a g i m o p s t 
a 2 0 0 0 0 0 0 0 
g 0 124 24 2 0 13 0 6 
i 0 16 13 3 1 13 1 0 
m 0 1 1 0 0 1 1 0 
o 0 6 0 1 36 6 1 1 
p 0 26 16 0 8 299 1 0 
s 0 7 19 3 13 1 38 0 
t 4 0 0 0 0 1 0 73 

 



Table 13: Bootstrap analysis:  Results of the bootstrap 
algorithm on both algorithms. The confident interval of 
the error has a confidence of 95%. 
 

 Mean Standard 
deviation  

Interval 

C. Trees 24,9% 3.79% [17.3%, 32.4%] 
Naïve Bayes 31.9% 5.3% [21.4, 42.3%] 

 
 
Table 14: Confusion matrices using evaluation data on 
both methods. Table 14.1 shows the confusion matrix for 
the classification tree model. Table 14.2 shows the 
confusion matrix for Naïve Bayes. Note:  Columns 
represents the predicted values and rows the real values. 
 
14.1) 
 

 T\P g i m o p s t 
g 125 27 1 4 18 1 4 
I 6 11 5 13 3 5 0 
m 0 0 0 0 0 0 0 
o 5 3 0 7 0 0 0 
p 10 4 0 9 327 0 3 
s 4 8 7 8 4 43 0 
T 0 0 0 5 0 0 88 

 
14.2) 

 T\P g i m o p s t 
g 101 22 1 4 25 1 4 
i 27 5 0 3 8 0 0 
m 0 1 1 1 0 1 0 
o 5 4 0 22 10 1 2 
p 11 5 0 5 306 0 3 
s 6 16 11 11 3 46 0 
t 0 0 0 0 0 0 86 

 
 
According the confusion matrices, the features 
showed similar behavior in both learning 
algorithms since it is possible to discern between 
the classes p,q,t and s. However it is important to 
state that there is still significant place for 
improvement if the distinction of these classes, 
particularly future work should focus in the 
design of features able to classify the name 
entities that belong to the types p and q because 
these are the types that have the biggest impact 
in the accuracy given it is high frequency in the 
data.  Also new features are needed to classify 
the name entity types m and i which are almost 
always misclassified by the methods explored. 
 
Interestingly, Naïve Bayes was able to classify 
instances that belong to the type o contrary to 
Decision trees. This suggests that it would be 
more convenient to apply this method in 

scenarios where this entity type is more 
common. 
 
Finally, the experiments performed in both 
methods show that simple features as the nature 
of the word characters – if it is capital, 
numerical, etc – provide significant information 
to the classifier. Additionally, morphological 
information represents an important source of 
information to improve the quality of the models 
and more if it is analyzed in the context of the 
words evaluated. However the size of the 
window seems to be conditioned to the size of 
the data.  Training and test with bigger data 
would be helpful for future work. 
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