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I. Introduction 
Coreference resolution is a process of determining whether two expressions in 
natural language refer to the same entity in the world. For example: “Father 
claimed disliking opera-going. He was mainly angry with the style of opera 
singing.” The words “father” and “he” denote the same individual – a father of the 
major hero from the selected book. Both words take part in the process called 
reference, where you can use more different expressions (words, phrases) to 
refer to individuals, subjects or situations of the real world. A natural language 
expression used to perform reference is called a referring expression, and the 
entity that is referred to is called the referent. Thus, father and he are referring 
expressions, and the real-word man is their referent. Two referring expressions 
that are used to refer to the same entity are said to corefer, the relationship 
between them is coreference and these two expressions form a coreferential 
pair. Usually the second expression in a coreference pair (he) is called anaphora, 
the first one (father) is antecedent. 

The knowledge of coreferential pairs is an important part of many applications in 
the natural language processing – e.g. information retrieval, document 
summarization, machine translation. Since the volume of texts is enormous so it 
is practically impossible for human beings to go through them manually. 
Therefore, the need of an automatic procedure which is capable to detect 
coreferential pairs in the text is necessary. There were several experiments 
dealing with the automatic coreference resolution using rule-based approaches 
[5, 6]. However, recently machine learning approaches have become more 
attractive given that such methods overcome many difficulties in rules-based 
approaches, such as: their adaptability and flexibility to different contexts and 
cost of maintenance. 

Thus in this report, two machine learning methods are described and 
experimented in order to solve the coreference resolution problem. The first 
method is Naïve Bayes classifier which has been proven of being successfully 
applied to many natural language processing tasks, i.e text categorization, 
question answering… The second method, Decision Tree, is also a classical 
machine learning approach yet showed very sufficiently. The aim of this work is 
two-folds: first, given the data and set of extracted features, find the best model 
of each method (in the sense of accuracy and f-measure by choosing the 
combination of features and tuning the classifier’s parameters). Second, the 
comparisons between two approaches are implemented using significant tests: 
paired t test with cross-validation and bootstrap. 

II. Data and features description 
Data are extracted from the Prague Dependency TreeBank 2.0 (PDT 2.0) and 
already prepared in the features format. Originally, the PDT 2.0 contains 3168 
news paper annotated at the tectogrammatical level and consists of 49431 
sentences. Coreference was annotated manually in all this data. There are 
45631 coreference links (counting both textual and grammatical ones) [5, 6]. 
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Hence, it should be noted that the data used in this work is just a subset from the 
original data in PDT and from now on, we will only mention about this subset 
data which was used for this experiment work. 
Data is divided into the train and evaluation (test) sets. Each row in data files 
corresponds to one word pair. In case of anaphora and candidate-antecedent, 
the pair is classified as being coreferential, i.e. a positive instance. The data are 
prepared to apply machine learning methods so there are noncoreferential (i.e. 
negative) instances as well (i.e. a pair of anaphora and candidate-non-
antecedent). There is at least one noncoreferential pair for each coreferential pair 
(and vice versa) in the data. There are around 14% coreferential pairs out of all 
pairs in the data. Following is the detailed table of the data size and its proportion 
of coreferential pair: 
 

 No of pairs No of coreferential pair No of non-coreferential pair 
Training set 10001 1342 8659 
Testing set 3009 396 2613 

Total 13010 1738 11272 
Table 1: Coreferential pair proportions in the data. 

There are 55 comma-separated values (features) on each row. The first 54 
values are features which are served for classification purposes. Values and 
names of the features are described in the below table 2. The very first feature is 
a technical one and serves as an indicator of the anaphora. The rest of the 
features are divided into the categorical and continuous type. All possible values 
of the categorical features are also listed in table 2. 

Index Feature Type Values Description 
1 anaph_id - - ID of anaphora. For one 

value of ID there have 
more than one candidate. 

2 cand_gen categorical neut, inher, empty, anim, fem, inan, nr 
3 cand_num categorical inher, sg, empty, pl, nr 
4 anaph_gen categorical neut, inan, anim, fem, nr 
5 anaph_num categorical sg, pl, nr 
6 gen_agree categorical 1, 0 
7 num_agree categorical 1, 0 

Gender, number for 
candidate and anaphora + 
agreement of pair in 
gender and number. 

8 cand_coord categorical 1, 0 Is candidate in 
coordination? 

9 app_in_coord categorical 1, 0 1 ONLY IFF anaphora is 
APP, anaphora+candidate 
is within the same clause 
and they have same 
(pre)ancestors CONJ|DISJ 

10 cand_epar_fun categorical MEANS, PRED, TSIN, TTILL, … 
11 cand_epar_sempos categorical advspec_dotdenotspec_dotgradspec_dotnneg, 

advspec_dotdenotspec_dotgradspec_dotneg, 
adjspec_dotquantspec_dotindef, … 

12 anaph_epar_fun categorical MEANS, PRED, TSIN, BEN, … 
13 anaph_epar_sempos categorical advspec_dotdenotspec_dotgradspec_dotneg, 

nspec_dotquantspec_dotdef, 
adjspec_dotdenot, v, … 

14 epar_fun_agree categorical 1, 0 
15 epar_sempos_agree categorical 1, 0 
16 epar_lemma_agree categorical 1, 0 

Some properties of 
candidate and anaphora 
such as: functor,  semanic 
POS,  agreement within 
functors (or semPOS or 
lemmas) 
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17 cand_fun categorical MEANS, TSIN, TTILL, BEN, … 
18 anaph_fun categorical MEANS, BEN, HER, LOC, … 
19 fun_agree categorical 1, 0 
20 cand_afun categorical AtvV, AuxC, Pnom, AdvAtr, … 
21 anaph_afun categorical Pnom, AdvAtr, AtrAtr, ExD, … 
22 afun_agree categorical 1, 0 

Functor (both for 
candidate and anaphora) 
on T- and A-layear + 
agreement 

23 cand_apos categorical A, J, T, N, P, C, D, R, I, empty 
24 anaph_apos categorical R, P, empty 
25 cand_asubpos categorical S, T, N, K, 7, 2, E, … 
26 anaph_asubpos categorical H, S, R, P, empty, V, 5 
27 cand_agen categorical F, X, undef, N, Y, H, Z, M, I, empty 
28 anaph_agen categorical F, undef, N, X, Y, Z, M, I, empty 
29 cand_anum categorical S, D, undef, X, P, empty 
30 anaph_anum categorical S, undef, X, P, empty 
31 cand_acase categorical 6, undef, 3, X, 7, 2, 4, 1, empty, 5 
32 anaph_acase categorical 6, 3, X, 7, 2, 1, 4, empty 
33 cand_apossgen categorical Z, F, M, X, undef, empty 
34 anaph_apossgen categorical F, Z, undef, X, empty 
35 cand_apossnum categorical S, undef, P, empty 
36 anaph_apossnum categorical S, undef, P, empty 
37 cand_apers categorical 3, undef, empty 
38 anaph_apers categorical undef, 3, empty 

Some properties of 
candidate and anaphora 
from a-tag (from 1st to 8th 
tag position) 

39 cand_akt categorical 1, 0 
40 anaph_akt categorical 1, 0 
41 akt_agree categorical 1, 0 

Info about being actants + 
agreement 

42 cand_subj categorical 1, 0 
43 anaph_subj categorical 1, 0 
44 subj_agree categorical 1, 0 

Info about being subject + 
agreement 

45 sent_dist categorical 1, 0 
46 clause_dist continuous  
47 file_deepord_dist continuous  
48 cand_ord continuous  

Order of candidate, the 
closest ones to anaphora 
have 0. 

49 cand_tfa categorical c, f, t 
50 anaph_tfa categorical c, f, t 
51 tfa_agree categorical 1, 0 

Topic-focus + agreement 

52 sibl categorical 1, 0 Are candidate and 
anaphora siblings? 

53 coll categorical 1, 0 Are they within the same 
colocation? 

54 cand_freq categorical 1, 0 Is the frequency of 
candidate more than 1 
(within the whole corpus)? 

55 KOREF categorical 1, 0 Aimed variable, info about 
coreference/uncoreference 
pair. 

Table 2: Feature descriptions 

 
Following is an example taken from the data which describes two instances: 
noncoreferential and coreferential for the same anaphora: 

tundefcmpr9410undef001undefp10s2a0, fem, sg, fem, sg, 1, 1, 0, 0, PAT, 
v, CNCS, v, 0, 1, 0, PAT, ACT, 0, Obj, empty, 0, N, empty, N, empty, F, 
empty, S, empty, 4, empty, undef, empty, undef, empty, undef, empty, 1, 
1, 1, 0, 1, 0, 1, 1, 11, 3, f, t, 0, 0, 0, 0, 0. 
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tundefcmpr9410undef001undefp10s2a0, fem, sg, fem, sg, 1, 1, 0, 0, 
RSTR, v, CNCS, v, 0, 1, 0, ACT, ACT, 1, Sb, empty, 0, P, empty, 4, 
empty, F, empty, S, empty, 1, empty, undef, empty, undef, empty, undef, 
empty, 1, 1, 1, 1, 1, 1, 1, 1, 15, 4, t, t, 1, 0, 0, 0, 1. 

There are two issues concerning about the data and the algorithms. From the 
above table, one can see that data contains both categorical and continuous 
attributes in which most of them are categorical. This is one reason why Naïve 
Bayes and Decision Tree are chosen as classifiers since they are most suitable 
in handling such attributes. However, another issue raised by the discrete data 
when further analyzing is that some categories have no instances. This means 
that the algorithms would have to be able to handle disjunctions of expressions, 
where each expression consists of conjunctions of attributes. For decision tree, it 
can be easily handled by its nature while with naïve bayes, we should consider 
the smoothing technique (described later) to prevent zero probabilities problem. 

III. Classifiers 

III.1. Decision Tree 
Decision tree is an inductive inference algorithm and which approximates the 
target function. It can also be considered as a set of if-then rules based on the 
features values of the data. The classification is therefore obtained by traversing 
the tree starting from the root node to its leaves. Each node is corresponded to 
an attribute and each edge corresponds to a value of an attribute. A leaf 
determines a classification of an instance and hence the target function is 
discrete. This algorithm is proven robust to the noisy data. Moreover, it does not 
need to contain all the attribute values hence can handle disjunction of 
conjunctions of attributes. 

 

Figure 1: An example of decision tree 
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The basic decision tree algorithm is started by building the root node which 
corresponds to all the training examples. Then following the “top-down” 
procedure, the children are added according to the attributes of the training data. 
There is one key question in the algorithm is that “which attribute is the best 
choice for a given node”. Depending on existing algorithms, several techniques 
are used in which the most popular ones are “Gini impurity” (CART algorithm) 
and “Information Gain” (ID3, C4.5, C5.0). Gini impurity is based on squared 
probabilities of membership for each target category in the node. It reaches its 
minimum (zero) when all cases in the node fall into a single target category. 

Suppose y takes on values in {1, 2, ..., m}, and let f(i, j) = probability of getting 
value j in node i. That is, f(i, j) is the proportion of records assigned to node i for 
which y = j. 

 

Information gain is based on the concept of entropy used in information theory. 

Gain(D,A) = Entropy(D) - ΣvЄValues(A)(|Dv|/|D|)Entropy(Dv) 

where 

D = training data 

Dv = {d Є D; A(d) = v} 

A = attribute 

Values(A) = set of all possible values of attribute A 

Entropy(D) = -Σ pi log2 pi 

Following is an example of using the “Information gain” to decide which attribute 
will be chosen in the next step to build the decision tree [1] 
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Figure 2: Humidity provides greater information gain than Wind, relative to the 
target function. Hence, humidity will be chosen as the next attribute in the tree. 

There are some advantages of using decision tree for classification: 

• Simple to understand and interpret.  

• Requires little data preparation. Other techniques often require data 
normalization, dummy variables need to be created and blank values to be 
removed. 

• Able to handle both numerical and categorical data.  

• Use a white box model. If a given situation is observable in a model the 
explanation for the condition is easily explained by Boolean logic. An 
example of a black box model is an artificial neural network since the 
explanation for the results is excessively complex to be comprehended. 

• Possible to validate a model using statistical tests. That makes it possible 
to account for the reliability of the model. 

• Robust, perform well with large data in a short time. Large amounts of 
data can be analyzed using personal computers in a time short enough to 
enable stakeholders to take decisions based on its analysis. 

III.2. Naïve Bayes 
Naïve Bayes is also an inductive inference algorithm and suitable when each 
instance x is represented as a conjunction of attribute values and the target 
function f(x) can take any value from a finite set V. A set of training examples 
along with the target function are provided and a new instance is presented by a 
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tuple of attribute values <a1, a2,.., an>. The learner is then asked to classify this 
new instance. 

For the Bayesian approach, it will assign the new instance to the most probable 
target value, vMAP as following: 

1 2arg max ( | , ,.., )
j

MAP j n
v V

v P v a a a
∈

=
 

By using Bayes theorem, we can rewrite this as: 

1 2

1 2

( , ,.., | ) ( )
arg max

( , ,.., )j

n j j
MAP

v V n

P a a a v P v
v

P a a a∈
=

 

1 2arg max ( , ,.., | ) ( )
j

MAP n j j
v V

v P a a a v P v
∈

=
 

It is easy to estimate P(vj) simply by counting the frequency of vj occurs in the 
training data. However, estimating P(a1, a2,.., an) in this fashion is not feasible 
unless having the very large set of training data. 

Therefore, the Naïve Bayes classifier deals with this problem by simply assuming 
that the attribute values are conditionally independent given the target value. In 
other words, the assumption is that, the probability of observing the conjunction 
<a1, a2,.., an> is just the product of the probabilities of the individual attributes: 
P(a1, a2,.., an) = ∏ P(ai|vj). Substituting this into the above equation, we have 
the Naïve Bayes classifer: 

arg max ( ) ( | )
j

NB j i j
iv V

v P v P a v
∈

= ∏
 

The probabilities in the Naïve Bayes model could be also easily estimated by 
counting the frequency (log likelihood) as mentioned above. However, this may 
raise two difficulties. First, it produces a biased underestimate of the probability. 
Second, when this probability estimate is zero, this will dominate the whole 
model even for some non-zero probabilities in the future. To overcome this 
problem, we can adopt a Bayesian approach to estimating the probability, using 
m-estimate (Laplace) as follows: 

cn mp
n m
+
+  

where n correspond to the total number of time that vj appears in the data and nc 
is the number of times of vj in the presence of the attribute value ai, p 
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corresponds to a prior estimation of the probability 1/k (where k is the number of 
possible values) [1]. 

There are some advantages of using Naïve Bayes classifer: 

• The Naive Bayes algorithm affords fast, highly scalable model building 
and scoring.  

• It scales linearly with the number of predictors and rows. 

• It requires a small amount of training data to estimate the parameters 
(means and variances of the variables) necessary for classification. 
Because independent variables are assumed, only the variances of the 
variables for each class need to be determined and not the entire 
covariance matrix. 

• Naive Bayes can be used for both binary and multiclass classification 
problems. 

IV. Implementation 
The entire implementation was done in R since it has a powerful support for data 
manipulation, fast development and predefined libraries. There are two libraries 
were used for the experiments: rpart (decision tree) and e1071 (naïve bayes). 

For clarity, the source scripts was implemented and organized based on the main 
tasks and process of the problem. The following table presents the organization 
of the implementation script files and their brief descriptions. 

Script R file Description 

data_preparation.R Load the data from “etest.csv” and “train.csv” files. 
Also tranform the attributes into continuous/categorical 
according to “all.names” file. 

decision_tree.R Provide a function to train the loaded training data and 
classify the loaded testing data using rpart library.  

naïve_bayes.R Provide a function to train the loaded training data and 
classify the loaded testing data using e1071 library. 

feature_selection.R Test the combinations of features to find the “best” 
one. Two strategies are used: accumulated and 
individually. 

parameter_tuning.R With the found best features, test each classifier model 
with different parameters (i.e laplace for naïve bayes 
and complexity for decision tree) in order to find the 
optimal parameter.  
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hypothesis_testing.R With the above best models, compare their 
performances by using hypothesis testing. Two 
strategies are used: confidence interval using cross-
validation and confidence interval using bootstrap. 

demo.R A script file contains some demos how to run the 
experiments 

Table 3: Organization and descriptions of script files 

Since the source scripts are rather long, the detailed information of each script 
will not be mentioned here. For further details of the algorithms and ideas, one 
should refer to the actual script files by following the source code and comments. 

V. Experiments and results 
A number of experiments were conducted for both algorithms in order to find the 
best set of features, best parameter for each model and also to test the 
significance of their performances. The next sections will describe and analyze 
the experiments and results in more details. 

V.1. Feature selection 
The objective of feature selection is to reduce the number of features used to 
characterize a dataset so as to improve an algorithm’s performance on a given 
task [7]. Besides, feature selection is necessary because of [3]: 

• Alleviating the effect of the curse of dimensionality. 

• Enhancing generalization capability. 

• Speeding up learning process. 

• Improving model interpretability. It also helps people to acquire better 
understanding about their data by telling them which are the important 
features and how they are related with each other. 

In general, feature selection algorithms have three components [7]: 

• Search algorithm: It searches the space of feature subsets, which has the 
size of 2d where d is the number of features. 

• Evaluation function: Its input is a subset of features and output a numeric 
evaluation. The search’s algorithm goal is to maximize this function. 

• Classifier: It is the target algorithm that uses the final subset of features 
(i.e., those found by the search algorithm to have the highest evaluation). 
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Figure 3: Common control strategies for feature selection approaches 

Typically, the components interact in one of the two ways described in figure 3. 
Either the search and evaluation algorithms locate the set of features before the 
classifier is consulted (filter control strategy), or the classifier itself the evaluation 
function (wrapper control strategy). John, Kohavi and Pfleger (1994) argued that 
the wrapper strategy is superior because it avoids the problem of using an 
evaluation function whose bias differ from the classifier [7]. 

Following Doak (1992), there are three types of search algorithms: exponential, 
sequential and randomized. Exponential algorithms have exponential complexity 
in number of features. Sequential searches have polynomial complexity; they add 
or remove features by using hill climbing search strategy. Randomized 
algorithms have genetic search methods. By the sake of complexity and well 
performance proven, this work will concentrate only to sequential search. 

The most common sequential search algorithms are Forward Sequential Search 
(FSS) and Backward Sequential Search (BSS). FSS begins with zero attribute, 
evaluates all feature subsets with only one feature, and selects the one with the 
best output of evaluation function. It then adds to this subset the feature that 
yields the best output of evaluation function for subsets of the next larger size. 
And this procedure is repeated until no improvement is obtained or there are no 
features left (the output of FSS is the original set of features). Conversely, BSS 
starts with all the features and repeatedly remove the feature that maximal 
increase the performance when removed.  

For the experiments of this work, the combination of FSS algorithm with wrapper 
control strategy was chosen as the implementation of feature selection. In 
particular, the feature selection algorithm begins with zero attribute; evaluate all 
one-feature subsets, then selects the one with the best f-measure tested by the 
classifier. In the next step, it again adds to this subset the feature that the 
classifier when testing the combination of the previous step subset and this 
feature will output the best f-measure. This cycle is repeated until no 
improvement is found or no features left. The detail of the algorithm is described 
in the below figure: 
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# Feature selection algorithm 

 

S = {}; # Set of the best output features 

max_fmeasure = 0; # best f-measure for each iteration step 

step = 0 

 

# iteratively adding features, stop only no features left or no 
improvement found 

while (step < number_of_features)  

 F = {} # set of output f-measures by classifier 

 for (each feature f which has not been chosen) 

  f_measure = classifier(S U f) 

  F = F U {f_measure} 

 

 # if there is no improvement, stop and output the result 

 if (max(F) <= max_fmeasure) break 

 

 # otherwise, adjoin this new feature 

 S = S U {feature with max(F)} 

 max_fmeasure = max(F) 

 

 step = step + 1 

return S 

Figure 4: Feature selection algorithm 

The output of the algorithm is the set of 15 features which are: gen_agree (6), 
cand_fun (17), cand_asubpos (25), num_agree (7), clause_dist (46), 
file_deepord_dist (47), sibl (52), coll (53), anaph_gen (4), anaph_akt (40), 
anaph_tfa (50), subj_agree (44), afun_agree (22), cand_epar_sempos (11), 
cand_freq (54). The best performance is achieved by Naïve Bayes classifier with 
f-measure of 71%.  

Accuracy Precision Recall F-Measure Confusion matrix 
predict  1 0 

1 298 98 0.918 0.67 0.75 0.707 
real 0 148 2465

Table 4: The best result achieved by 15 features and Naïve Bayes classifier 
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In order to justify the performance of the algorithm, two baseline metrics were 
also implemented. The first metric is the performance score of using all 54 
features. For the second metric, 15 features are chosen randomly from the 54 
features and repeated with replacement 100 times, and then the set with the 
highest f-measure was chosen to compute as the second baseline score. The 
comparisons are given in the below table: 

 Accuracy Precision Recall F-Measure
Naïve Bayes - all features 0.846 0.45 0.72 0.552 
Naïve Bayes - random features 0.896 0.59 0.69 0.635 
Naïve Bayes - best 15 features 0.918 0.67 0.75 0.707 
Decision Tree - all features 0.834 0.41 0.60 0.49 
Decision Tree – random features 0.898 0.61 0.63 0.618 
Decision Tree – best 15 features 0.916 0.72 0.60 0.652 

Table 5: Performance comparisons of using different feature sets 

From the table, we can see that the result of 15 features achieved by the feature 
selection algorithm outperforms the others and hence proves the efficiency of the 
algorithm. Interestingly, the results from random features showed that random 
features work much better than using all the features. With larger number of 
sample times (currently 100), its performance would not only overcome the best 
current 15 features but also converge to the optimal set of features. 

V.2. Parameter tuning 
Apparently, features play an important role in affecting the performance of 
classifiers. However, parameters of each method can also influence these 
measures. Hence, the aim of the experiments in this section is to find the best 
parameter for each method and verify how much impact of the parameter on the 
models. In particular, for decision tree, one useful parameter is pruning which is 
defined by prune function in R. For Naïve Bayes, one is laplace threshold. To run 
the experiments, a set of plausible parameters will be tested for each model and 
finally, the one which gives the best performance will be chosen. Followings are 
the details of the experiments. 

Complexity (cp) F-Measure

0.05 0.644 

0.02 0.644 

0.01 0.651 

0.005 0.654 

0.002 0.633 

0.001 0.634 

0.0001 0.646 

Table 6: Performances of decision tree with different complexity parameters 
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Laplace F-Measure

0 0.708 

10 0.674 

20 0.664 

30 0.614 

40 0.536 

50 0.464 

60 0.394 

70 0.360 

80 0.331 

Table 7: Performance of naïve bayes with different laplace parameters 

From the above tables, the complexity for decision tree is chosen with the value 
of 0.005 and laplace for naïve bayes is 0. Followings are the confusion matrices 
of the best found models so far using test set. 

Accuracy Precision Recall F-Measure Confusion matrix 
predict  1 0 

1 298 98 0.918 0.67 0.75 0.707 
real 0 148 2465

Table 8: Naïve Bayes performance using best 15 features and laplace parameter 
0 

Accuracy Precision Recall F-Measure Confusion matrix 
predict  1 0 

1 273 123 0.904 0.62 0.69 0.654 
real 0 165 2448

Table 9: decision tree performance using best 15 features and complexity 
parameter 0.005 

It should be noted that decision tree is not only useful in classifying, but it also 
offers a graphical of the classification. This functionality of decision tree is 
extremely helpful when analyzing the data, and also offers a tool to see which 
features are proven to be most important for classification. For example, the 
below figure shows the representation of the decision tree model using the best 
15 features, complexity cp = 0.005 and it could be clearly seen that the most 
useful attributes are: gen_agree, cand_fun and num_agree. 
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Figure 5: graphical representation of decision tree using 15 features and 
complexity parameter cp = 0.005 

V.3. Performance comparisons 
So far, the best model and parameter for each method were assumed. However, 
in order to compare the performances of the two methods, those information are 
not enough and reliable. There are two experiment methods implemented so that 
the confidence intervals of f-measure for each model will be defined. Hence it will 
provide a better measure to determine which algorithm outperforms the other. 

V.3.1. Paired test using cross-validation 
In this experiment, the training data is repeatedly partitioned into disjoint training 
and test sets and to take the mean of the test set f-measures for comparison and 
finding the confidence interval. The procedure first partitions the training data into 
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k disjoint subsets of equal size, where the size is at least 30. It then train trains 
and tests the learning algorithm k times, using each of the k subset in turn as the 
test set, and using all the remaining data as the training set. In this way, the 
learning algorithms are tested on k independent test sets, and the mean 
difference in f-measure is returned as an estimate of the difference between the 
two learning algorithms. 

1

1 k

ik
δ δ= ∑

 

where б indicates the difference in f-measure between two algorithms 

The approximate N% confidence interval for estimating the difference is then 
given by: 

, 1N kt sδδ −±
 

where 

 

2

1

1 ( )
( 1)

k

is
k kδ δ δ= −

− ∑
 

For the experiments, k is set to 10 and significant level is chosen 95%. The 
experiment results are described in the below table: 

CI of Naïve Bayes f-measure (0.657, 0.692) 

CI of decision tree f-measure (0.635, 0.676)  

CI of the difference f-measure of two methods (-0.02, -0.01) 

Table 10: Confidence intervals of two algorithms using paired test. 

From the table, one can see that at 95% of confidence, there is a significant 
difference of f-measure between two algorithms and hence it showed that Naïve 
Bayes classifier outperforms decision tree in classification task. 

V.3.2. Bootstrap test 
In this experiment, the two models are firstly trained using the training set. Then, 
each model was tested using 1000 subsets of size 500 which are taken randomly 
with replacement from the test set. The output results of the differences in 
accuracies/f-measures are stored in a vector. Finally, the vector is sorted and the 
elements 25th and 975th are obtained as the confidence interval with confidence 
level of 95%. The output results are in the below table: 
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CI of Naïve Bayes f-measure (0.476, 0.880) 

CI of decision tree f-measure (0.416, 0.838)  

CI of the difference f-measure of two methods (-0.2, 0.07) 

Table 11 Confidence intervals of two algorithms using bootstrap test. 

In contrast with the paired-test result, there was no statistical significance in the 
difference of f-measure between two methods since the interval includes the 
value 0. It means their performances are considered equal. The results also 
shows that the width of confidence interval of each method is much wider 
compared to one using paired test. This could be explained by the small 
proportion of coreferential pairs in the test set (396 coreferential pairs out of 
3009) so that it is more likely to sample a set with very few coreferential pairs and 
for each wrong/correct pair classified, the performance of classifier will have very 
big impact. 

V.4. Conclusion 
In summary, the work has dealt with the following main tasks: 

• Solve the problem of coreference resolution using two machine learning 
classifers: naïve bayes and decision tree. 

• Find the “best” combination of features out of 54 original features. 

• Obtain the best parameter for each model. For decision tree, represent the 
graphical tree in order to find the most useful attributes. 

• Compare the performance of the two algorithms. 

The experiment results have shown that, the two algorithms were successful 
applied and well performed. The 15 output combination features helped boost up 
remarkably the performances of algorithms. For Naïve Bayes, the highest f-
measure is 71%, paired-test confidence interval of (0.657, 0.692) and bootstrap 
confidence interval of (0.476, 0.880). For decision tree, the highest f-measure is 
65%, paired-test confidence interval of (0.635, 0.676) and bootstrap confidence 
interval of (0.416, 0.838). However, we cannot conclude that this is the best set 
of features and though there may need more experiments or different algorithms 
to improve the result. It can also be seen that, the role of parameters for each 
model did not help much in improving the performance.  

For comparison between two algorithms, the results showed that Naïve Bayes 
performs better than decision tree in the coreference resolution classification 
task. Though in bootstrap test, it is concluded that there is no difference between 
two methods, but by the results of paired test in addition with looking at the 
confidence intervals of both method, this claim could be easily seen. However, 
because the difference is rather small and also the experiments are only tested 
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by one set of features, it is hard to conclude naïve bayes outperforms decision 
tree for this task in general. For more reliable conclusion, I believe there should 
have more experiments with different set of features as well as with bigger data. 

In future, other interesting tasks could be experiment with other algorithms, such 
as k nearest neighbors or support vector machines, in order to find the best 
algorithm suitable for the problem. The more experiments with feature 
combination should also need to be conducted to improve the result. 
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