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Today's learning outcomes

After today’s class, you should be able to:

e Describe the main bottlenecks for deploying and scaling up the
Transformer architecture.

e Describe the ideas behind efficient algorithms such as parameter
quantization, (Q)LoRA, linear attention, and mixture of experts.

e Implement a simple retrieval-augmented generation pipeline.

e Use LLM reasoning to achieve better outputs for complex problems.
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Tra n Sfo rm e r: a lgo rith m iC CO m p lEXity image: https://transformer-circuits.pub/2021/framework/index.html

Variables: hidden state dimension (D), sequence length (N), vocabulary (V).
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LLM bottlenecks: Computational throughput

Time complexity: V- D2+ N2-D+ N -V-D

______________

:‘ long context ' happens

N2> D2 ] _onlyonce | i T T e
N 512 128,000+
Computing multi-head attention is the main S oo e
_ . . . v 30,000 100,000+
limitation when scaling to longer input contexts.  ~ ~7" 7T
blocks 8 128+

Solution: Efficient attention, mixture of experts

Typical hyperparameter values
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LLM bottlenecks: Disk space

_____________

Space complexity: V- D + D?

(model parameters &) par o omin o mex
N 512 128,000+
MLPs typically take up majority of model e B .......... .
parameters as they are repeated in each layer, """ v """"" 0000 """" 100,000+
ke the embedding matrix. blOCks ............... é ........... S

Typical hyperparameter values

Solution: Parameter quantization, (Q)LoRA
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__________________________

gets more important with |
| growing input context size

__________________________

Space complexity: N2+ N -D + N -V
(activations =)

For loading a model to GPU memory, we need to
account for both model parameters (- fixed)

and for computed activations (- depend on the

input context size).

Solution: Parameter quantization, (Q)LoRA

par. min max
N 512 128,000+
D 768 4,096+
vV 30,000 100,000+
blocks 8 128+

Typical hyperparameter values



In terms of resource requirements, pre-training > finetuning > inference.

Dataset size:
e Finetuning: up to 100s GB.
e Pre-training: 10T tokens - 50TB.

Memory requirements:
e Inference: 2 bytes per parameter - 14 GB for a 7B model.
e Training: 2 bytes per parameter + 2 bytes per gradient + 12 bytes per optimizer weight

(Adam) - 112 GB for a 7B model.

(Note that we typically want to run inference on consumer hardware.)



Efficient algorithms: overview

Training ~ Training Inference  Inference
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Parameter quantization

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Model parameters are floating point numbers. How do we store them? And can we

store them more efficiently?

e float64 - native Python (typically not used on GPUs)
e float32 - baseline precision

e float16 - half precision

e For inference, float16 typically causes
only little performance degradation.

e For training, float16 can lead to
vanishing gradients -

mixed-precision training.
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Parameter quantization

bfloat16

e Developed by Google Brain
(»“brain float”).

e 16-bit float optimized for
ML models.

e Greater dynamic range
than float16 (>supports
outlier weights) at the cost

of lower precision.
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https://en.wikipedia.org/wiki/Bfloat16 floating-point format

IEEE half-precision 16-bit float

sign exponent (5 bit) fraction (10 bit)
gl T 1 T 1
‘ O(0 |1 (1| 0| 0 [EOEISECGREONECRINOREESEDEDNEQ
15 14 0 9 0
bfloat16
sigln exponent (8 bit) fraction (7 bit)
1 1 1 1

‘0011111000100000

15 14 7 6 0

n


https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

Pa ra m ete r q u a ntizati o n https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Can we go further?

< Bob: Let's use int8! It is an 8-bit numerical format. We'll save twice as much

space compared to float16é.

original

A/weight

higher granularity

lower granularity DD@D@D@D@D@DD@D

quantized
weight
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Parameter quantization

Alice: But we cannot just round the
number, can we? Floats have a huge
dynamic range. How do we squeeze them
into (-127, 127)?

%2 Bob: We don’t. We only use the range
of parameters that we have in our model
weights.

Alice: The highest weight in my model
can be still larger than 127.

%2 Bob: But it will not be that large. Now
we cah squeeze them!
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Pa ra m ete r q u a ntizati o n https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Alice: | am not convinced. What if some of my weights are outliers? Wouldn’t this
map most of the weights to zero (or near zero)?

Fp32 outlier

|

= Bob: Ahem, right... Let’s just clip the outliers?

i 256
® )
clipped values -5 é
H :v : :'; K
|1 P 'y clipped
min I—d-d-o’-:o-o-b ?'max
127 . 127
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Parameter quantization

Alice: Ok, and how will you pre-compute the range for activations? These are
dynamic.

dynamic values
(“activations”)
1
output input

= W + b

< Bob: Dynamically?

B/\‘L

255

S = S: S:
col!eqt o _ﬁ
statistics Z:round('S'B)_128 Z= s Z=..
B=oms(s-B+2) || B=- | [@=-
quant quant quant
quantize l d( l Z) qu!lz qu.am:
= roun .
quant S + W!‘Z qu.m:
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Pa ram Ete Y q ua ntizati on https://arxiv.org/abs/2310.11453

Alice: | give up. Just go on and quantize your model to 1-bit if it works for you.

< Bob: Can I1? Awesome!

BitNet: Scaling 1-bit Transformers for
Large Language Models

Hongyu Wang* ¥ Shuming Ma*’ LiDong’ Shaohan Huang'
Huaijie Wang® Lingxiao Ma' Fan Yang' Ruiping Wang® Yi Wu® Furu Wei'®
T Microsoft Research ¥ University of Chinese Academy of Sciences ® Tsinghua University
https://aka.ms/General Al
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Pa ra m ete r q u a ntizati o n https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Quantization in practice:

e GPTO
o Quantization method that uses a few extra tricks to go robustly beyond
8-bit quantization (6-bit, 4-bit, 2-bit).
o GGUF
o File format that performs block-wise quantization - enables

offloading parts of the model to CPU.

Models in Ollama are quantized by default to 4-bit.
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https://github.com/ggml-org/ggml/blob/master/docs/gguf.md

Mixture of experts (MoE)

A Visual Guide to Mixture of Experts (MoE)

“Experts” = multiple feed-forward networks in each MLP layer of the Transformer.
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Mixture of experts (MoE)

We can choose a different

expert at each layer...

Input
|
Router
|

Output
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class MoeLayer(nn.Module):

https://arxiv.org/pdf/2401.04088

A Visual Guide to Mixture of Experts (MoE)

...and a different set of

experts for each token.

def _init__(self, experts: List[nn.Module],

super()._init_()
assert len(experts) > 0

self.experts = nn.ModuleList(experts)

selffgate=gate

self.args = moe_args
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Mixture of experts (MoE)

Why it's a good idea?

¢ Individual experts can specialize to solving certain

kinds of problems.

e Faster training for the same number of total

parameters (> we backpropagate only through the

selected experts).

e Faster inference (although we still need to load the

full model into memory).

8x7B - 8 standalone models, approx. equivalent to a 47B

dense model (Not 56B, as other parts of the model than

MLPs are shared.)
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A Visual Guide to Mixture of Experts (MoE)

Sparse Model llllllllllllllllll ; ------------------------
4 experts E_

(each an FFNN) +
P_un_c_tt::at_iqn ___Verbs _ Conjunctions _ Numbers _
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v v v v
not activated not activated not activated activated
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Li n ea r atte nti 0 n https://haileyschoelkopf.github.io/blog/2024/linear-attn/

Let’s revisit the O(N?) attention. Can we do better?

Attention(Q, K, V) = Softmax (QK™)V

| very expensive way !
to measure

similarity between

. Aueries and keys
Softmax (QK")V [exp(QKT)]/
Zz_{eXP(QKT)

Let’'s zoom in! €
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Li n ea r atte nti 0 n https://haileyschoelkopf.github.io/blog/2024/linear-attn/

We can use a cheaper way of computing similarity:

sim(Q, K)
ZiL:I Sim(Q) Kz)

 ®-= optional dimensionality
mapping, can be also identity

This also allows us to re-arrange matrix multiplications:

" a-ke | Le@ox)" | & 6(Q)[¢(K) V) Kve

RWY 1 L (Q)(K)T QL e(k)T L R

________________
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Linear attention https://www.reddit.com/r/MachinelLearning/comments/10eolfl/d why arent we all using linear transformers/

The resulting operations are O(N - D?), which is linear in sequence length.

Wo-hoo! €7

WAIT A MINUTE...

makeameme.org
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r/MachineLearning - 2 yr. ago
currentscurrents £ Top 1% Poster

[D] Why aren't we all using linear transformers?

There's a bunch of them - Linformer, Longformer, Performer, Nystromformer, Big Bird, etc
etc. Plus a bunch more that have similar goals but don't necessarily aim for linear
complexity, like memory-augmented transformers.

As far as | know, none of them have really seen much use. Even for image problems, which
have very long input sizes, people are using regular transformers with tokenization
schemes.

e Am | wrong? Are they actually good, or are at least some of them better than regular
transformers?

« If not, what's wrong with them? Do they have lower accuracy? Are they slower to
train?

23
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Fl as h Atte nti on https://arxiv.org/abs /220514135

Approximations such as linear attention can lead to degraded performance.

Meanwhile, hardware optimizations of the full attention mechanism can go a long way.

Outer Loop
Attention on GPT-2
V-NXd - ;|Matmul
Dropout
5 o ?1 0 1
| Copy g i
§ Compute Block | % s Softmax
5 on SRAM N E | E <
£ : 5 § [ i Fused
i B Kernel
[}
| ©
| 0

Output to HBM

sm(QK)V: Nxd PyTorch FlashAttention

Inner Loop

FlashAttention
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FlashAttention
FlashAttention re-arranges the operations to use
the underlying hardware more efficiently.
It is:

e Fast: 2-3x faster than baselines.
e Memory-efficient: linear in sequence length.

e Exact: uses no approximations.

It is now commonly implemented in LLM

frameworks.
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https://arxiv.org/abs/220514135

S\ SRAM:19TB/s (20 MB)

HBM: 1.5TB/s (40 GB)

QUIETYISINA DRAM: 12.3GB/s
' (CPUDRAM) Y (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size
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https://arxiv.org/pdf/2106.09685.pdf

@: Alice: Remember the 112 GB of GPU memory | would need to finetune a 7B model?
Where should | get that?

< Bob: Buy a new GPU cluster!
®: Alice: ...

& Bob: Or use efficient finetuning methods?

Key ideas of LoRA:

e Instead of updating model weights directly, we can keep the A (the “diff”) in a
separate matrix.

e The A matrix has a low rank - it can be approximated by two smaller matrices.

26


https://arxiv.org/pdf/2106.09685.pdf

Low-rank adaptation (LoRA)

original |
LLM (very r~—
large)

Pretrained
Weights

/= ]RdXd

—

https://arxiv.or

____________________

LoRA weights:
(small, can be |
stored as a
separate
“adapter”)

df/2106.09685.pdf

For inference, LORA weights are applied to the model = no latency issues.

NPFL140 - Efficiency & Advanced Techniques
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QLoRA: finetuning quantized models

Can we apply LoRA to quantized models for even higher efficiency?

https://arxiv.org/pdf/230514314

Yes: QLoORA does that with (1) careful parameter quantization and (2) optimizing

CPU-GPU memory transfers.

Optimizer
State
(32 bit)

Adapters
(16 bit)

Base
Model

Full Finetuning
(No Adapters)

_
| |

LoRA

it t 1]

16-bit Transformer
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LoRA and QLoRA in practice

All things being equal, full finetuning > LoRA >

QLoRA in terms of model performance.

- The goal is to make the most out of the memory

you have at your disposal.
Starting points:

e https://huggingface.co/blog/4bit-transformer

s-bitsandbytes

e https://www.kaggle.com/code/neerajmohan/

finetuning-large-language-models-using-glora

NPFL140 - Efficiency & Advanced Techniques

required for
finetuninga
7B model

Full finetuning 32 120GB
Fuuﬁnetunmg16 ..................... 50(33
|_0RA ............................. 1 6 ................. 1663
QLORA ........................... 3 ..................... 10(.;3
QLORA ........................... 4 ....................... 6G|3 L
QLORA .......................... 2 .................... 4GB

https://github.com/hivouga/LLaMA-Factory?tab
=readme-ov-filethardware-requirement

29


https://huggingface.co/blog/4bit-transformers-bitsandbytes
https://huggingface.co/blog/4bit-transformers-bitsandbytes
https://www.kaggle.com/code/neerajmohan/finetuning-large-language-models-using-qlora
https://www.kaggle.com/code/neerajmohan/finetuning-large-language-models-using-qlora
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#hardware-requirement
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#hardware-requirement

Retrieval-Augmented Generation (RAG)




Retrieval-Augmented Generation (RAG)

The knowledge saved in model parameters is lossy and incomplete, and the models tend

https://www.promptingguide.ai/research/rag

to hallucinate when they don’t know the answer. What can we do about it?

Retrieval-augmented generation (RAG):

e Retrieve additional documents
related to user prompt (websites/
files / database entries / code / ...).

e (Concatenate the most relevant
documents with the prompt.

e Letthe LLM generate the answer.

NPFL140 - Efficiency & Advanced Techniques

Prompt

Document store

Retrieval Augmented Generation

; Generator ;
(Language Model)

»
»

Iy —

Retrieved Documents

Response
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https://www.promptingguide.ai/research/ra

Retrieval-Augmented Generation (RAG)

0 - Efficiency & Advanced Techniques
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Retrieval'Augmented Generation (RAG) https://arxiv.org/abs /231210997

Pros:

e Allows searching private knowledge bases. /> The RAG Paradigm

e Can reduce the amount of hallucinated facts.

sanric B Advanced RAG

e Makes use of long input context windows.

S Techniques for Better RAG \

Chunk Optimization ( Iterative Retrieval J (Relrlever Fine-luning)

(Query Transforma“on) ( Recursive Retrieval ) (Generator Flne-tuning)

Context Selection ( Adaptive Retrieval J( Dual Fine-tuning )

Cons:

e The model tries to account for all the

I
|
I
|
I
|
|
I
I
1
|
|
|
I
I
I
|
I
|
|
1
|
|
I
|

documents, even the irrelevant ones - the »Key Issues of RAG
answer may be worse than without RAG. What to e B
e Can give a false sense of “groundedness”. Soas v

NPFL140 - Efficiency & Advanced Techniques
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Chain'Of'thought Prompting https://arxiv.org/pdf/220111903

Wei et al., (2022): “The models struggle with math problems. What if we showed them how

to do intermediate reasoning steps?”

Standard Prompting Chain-of-Thought Prompting [0 Standard prompting
™\ \ Equation only
Q: Rpger has 5 tennis balls. He byys 2 more cans of Q: Roger has 5 tennis balls. He byys 2 more cans of Variable compute only
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many E} s
tennis balls does he have now? tennis balls does he have now? Reasoning after answer

B Chain-of-thought prompting

A: The answer is 11. A: 2z
The answer is 11. e
Q: The cafeteria had 23 apples. If they used 20 to < 60 -
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to QL
do they have? make lunch and bought 6 more, how many apples ]
/| do they have? o 40+t
g J =
=]
w
N 20 - N
A 0 0 NA[:
A: The answer is 27. x = S N é :
%) %18
The &) 0

answeris 9.

LaMDA PaLM
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Chain-of-thought Prompting

https://arxiv.org/pdf/2205.11916

Kojima et al (2022): “Finding good examples of intermediate reasoning steps can be tricRy.

Do we need to do that at all?”

WHAT I WETO

%
WE GAN'JUST TELL THE MODEL
“LET'S THINK STEP BY STEP:),

NPFL140 - Efficiency & Advanced Techniques

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls.
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Chain-of-thought Prompting
Chain-of-thought prompting:

e ..is nowadays a standard prompting
method.
e ..generally increases performance on

problems requiring multi-step reasoning.

e ..does not require more than appending (a

variant of) “Think step-by-step” to the
prompt.

NPFL140 - Efficiency & Advanced Techniques
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image source
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https://machine-learning-made-simple.medium.com/why-step-by-step-prompting-works-in-language-models-4cf5858f8270

Ch ai n 'Of-th 0 ught Pro m pti ng https://arxiv.org/abs/2309.15402

Why does it work?

Prompt: “How many of the first 6 digits of e are >57”

e The “emergent” ability can be learned from Chain of thought LM Continuations

pretraining on code data (Ma et al., 2024; Puerto et 18,81 B S R

a l., 2024). Filler tokens « 3 digits”

------
® TR

e The model may be just using extended inference || gii o,

Q5 55 5855

time to perform more computation (Pfau et al., mmea .
2024). I E . El I “7 digits are greater than 5”
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Test-time scaling

CoT prompting has shown a new path: test-time scaling.

The simplest example of

test-time scaling:

1. Generate multiple
CoT paths for the
given problem.

2. Use majority voting
to select the final

answer.
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Chain-of-thought
prompting

Self-consistency

ﬁ): If there are 3 cars in the parking \

lot and 2 more cars arrive, how many
cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 +2=5cars. The answer is 5.

Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?

Greedy dec

https://arxiv.org/pdf/2203.11171

ode

Language

& ¥,

model

Language
model

This means she uses 3 + 4 =

The answer is $14.

She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

7 eggs every day.

Sample a diverse set of
reasoning paths

The answer is $14.

Marginalize out reasoning paths
to aggregate final answers

She has 16 - 3 - 4 =9 eggs
left. So she makes $2 * 9 =
$18 per day.

| The answer is $18.
1

J

remainder for $2 * (16 - 4 - 3)
= $26 per day.

i
This means she she sells the
| The answer is $26.

9

She eats 3 for breakfast, so

she bakes muffins, so she
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 = $18.

I The answer is $18.
|

Y
1 D)
she has 16 - 3 = 13 left. Then |

The answer is $18. ’
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TeSt'time Scaling https://arxiv.org/pdf/2408.03314

More advanced extensions involve tree-like search techniques and a verifying the

solution with a verifier model (e.g., code interpreter).

LLM generated multiple Uses an additional process-based v

responses, and a verifier model reward model at each (token) %Z%se?s?rr:iﬁsti tt))?asaen? er:’r?:IE but

selects the best one generation step includes a rollback step
Best-of-N Beam Search Lookahead Search

Continue Search from
the top-N options

(=
' @

s N N N

Select the best final answer using the verifier Select the best final answer using the verifier R S G s @it sisa seian e B et Wl

Key: ( -
1 .
1 1= Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier [ J = Rejected by verifier

A
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Large Reasoning Models (LRMs)

Goal: instilling the reasoning process into
the behavior of the LLM.

- The model is trained on reasoning

traces.

The traces include problem decomposition,

intermediate steps, and back-tracking.

Where to get the reasoning traces?
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The Illustrated DeepSeek-R1

Thinking

Answer

Examples of LRMs:

e OpenAl o1, 03, 04
e DeepSeek-R1

e Gemini2.5

e Claude 3.7 Thinking
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https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1

Training techniques for LRMs
Option #1: Pure reasoning-oriented RL

1.  Get a base LLM (no instruction tuning).

2.  Runthe model on datasets for code
generation and math problem solving.

3. Perform RL training with rewards for accuracy

(using a verifier) and format (rule-based).

e Natural emergence of test-time computation.
e Early unstable cold-start phase.

e Missing general capabilities.

Use to make DeepSeek-R1-Zero.
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https://arxiv.org/abs /250112948

Large-scale Reasoning-Oriented
Reinforcement Learning

DeepSeek-v3-Base DeepSeek-R1-Zero
Training step 1

Solution score (reward)

Training prompt

Write python code that takes a here’s a joke about frogs. Low
list of numbers, returns them in a Model checkpoint

oo e s || e Ceeioing

Update the model so its less likely to output low paparicls High
score solutions like these and more likely to
output high-score solutions in response to such
a prompt

DeepSeek-R1-Zero AIME accuracy during training

A P
2TAA /\NW
\V.YA.

—e— rl-zero-pass@l
—e— rl-zero-cons@16
-=- 01-0912-pass@1
-== 01-0912-cons@64

0 2000 4000 6000 8000
Steps


https://arxiv.org/abs/2501.12948

Training techniques for LRMs

Option #2. Supervised fine-tuning (SFT), followed by RL.
1.

Get a pure RL-tuned LRM, generate outputs A

and post-process them by human annotators.

Fine-tune an instruction-tuned LLM on A -
generate outputs B.

- addressing unstable cold start.

Fine-tune a base LLM on a mixture of B and
non-reasoning training data.

- addressing missing general capabilities

Continue training with reasoning-oriented as

well as human preference RL.

The process was used to make DeepSeek-R1 (671B

parameters); likely also used in OpenAl-o1.
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RL with accuracy

from Sebastian Rashka's “Understanding Reasoning LLMs"

D

eepSeek-V3 (671B)

& format rewards

Train with “cold start” data

SFT
DeepSeek-R1-Zero (“cold start”)
data

RL with accuracy, format,
and consistency rewards | SFT SFT
” (CoT) (knowledge)
data data

RL with rule-based
verification (math, code)
and human preference

DeepSeek-R1

@

ma 3 & Qwen 2.5

1
(

DeepSeek-R1-Distill-Qwen (1.5B - 32B) J

DeepSeek-R1-Distill-Llama (8B & 70B) ]
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Trai n i ng teCh n iq u es fo r LRMS from Sebastian Rashka’s “Understanding Reasoning LLMs"

Option #3: Pure supervised fine-tuning.

e Fine-tuning a small base LLM (e.g., Llama or Qwen T
DeepSeek-V3 (671B)
models) on the combination of reasoning and i sty
non-reasoning outputs. i peved i "3?“’
e Cheaper to run but still expensive to train (800k .
Train with “cold start” data
. =
SFT samples) s —U e [
A 0 (knowledge)
, data data
e NovaSky's Sky-T1 used only 17k SFT samples
. RL _\A_lith 'rule—based
($450) to perform on par with o1 o) o e |
° =
DeepSee -R1
Used to make smaller (“distilled”) DeepSeek models.
?DeepSeek—Fﬁ—DistiII—Qwen (1.5B - 32B)J
[ DeepSeek-R1-Distill-Llama (8B & 70B) ]
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https://novasky-ai.github.io/posts/sky-t1/
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

Efficiency & Advanced Techniques

e LLMs can be implemented more efficiently:

o Lower memory footprint: parameter quantization, (Q)LoRA

o Faster inference: MoE, linear attention, FlashAttention

e Post-training performance of LLMs can improved at test time:

o  RAG for extending the model knowledge

o  CoT and reasoning for tackling complex problems

https://ufal.cz/courses/np£f1140
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Additional links

® Mixture of Experts Explained - HuggingFace blogpost

e Understanding Reasoning LLMs - blogpost.

e awesome-ol - list of resources related to OpenAl O1.

e Scaling Test-time Compute - HuggingFace blogpost.

NPFL140 - Efficiency & Advanced Techniques
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https://huggingface.co/blog/moe
https://sebastianraschka.com/blog/2025/understanding-reasoning-llms.html
https://github.com/srush/awesome-o1
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

