
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL140 Large Language Models

Efficiency & Advanced Techniques
Quantization, MoE, linear attention, LoRA, RAG, reasoning

Zdeněk Kasner, Michal Novák

After today’s class, you should be able to:

● Describe the main bottlenecks for deploying and scaling up the

Transformer architecture.

● Describe the ideas behind efficient algorithms such as parameter

quantization, (Q)LoRA, linear attention, and mixture of experts.

● Implement a simple retrieval-augmented generation pipeline.

● Use LLM reasoning to achieve better outputs for complex problems.

2

Today’s learning outcomes

NPFL140 - Efficiency & Advanced Techniques

Efficiency

4

Transformer: algorithmic complexity

NPFL140 - LLM Efficiency

Variables: hidden state dimension (D), sequence length (N), vocabulary (V).

image: https://transformer-circuits.pub/2021/framework/index.html

attention matrix 📦

embedding
matrix 📦each token is embedded

queries, keys,
values

projected
values 🧮

each state projected to
logits over the vocabulary

projection matrix 📦 activations 🧮

Q, K, V
matrices 📦

output
logits 🧮

(un)embedding
matrix 📦

embeddings 🧮

📦 = model parameters, 🧮 = computed values

NPFL140 - Efficiency & Advanced Techniques

Time Space

final projection
(unembedding)

N ⋅ V ⋅ D V ⋅ D + V ⋅ N

MLP N ⋅ D² D² + N ⋅ D

multi-head
attention

 N ⋅ D² + N² ⋅ D N² + N ⋅ D + D²

embedding N ⋅ D V ⋅ D + N ⋅ D

https://transformer-circuits.pub/2021/framework/index.html

Time complexity: N ⋅ D² + N² ⋅ D + N ⋅ V ⋅ D

5

LLM bottlenecks: Computational throughput

NPFL140 - LLM Efficiency

par. min max

N 512 128,000+

D 768 4,096+

V 30,000 100,000+

blocks 8 128+

Typical hyperparameter values

long context
N² ≫ D²

happens
only once

Computing multi-head attention is the main

limitation when scaling to longer input contexts.

Solution: Efficient attention, mixture of experts

NPFL140 - Efficiency & Advanced Techniques

Space complexity: V ⋅ D + D²

6

LLM bottlenecks: Disk space

MLPs typically take up majority of model

parameters as they are repeated in each layer,

unlike the embedding matrix.

Solution: Parameter quantization, (Q)LoRA

NPFL140 - LLM Efficiency

stored only
once

par. min max

N 512 128,000+

D 768 4,096+

V 30,000 100,000+

blocks 8 128+

Typical hyperparameter values

(model parameters 📦)

NPFL140 - Efficiency & Advanced Techniques

Space complexity: N² + N ⋅ D + N ⋅ V

7

LLM bottlenecks: Memory

NPFL140 - LLM Efficiency

For loading a model to GPU memory, we need to

account for both model parameters (→fixed)

and for computed activations (→depend on the

input context size).

Solution: Parameter quantization, (Q)LoRA

par. min max

N 512 128,000+

D 768 4,096+

V 30,000 100,000+

blocks 8 128+

Typical hyperparameter values

(activations 🧮)

gets more important with
growing input context size

NPFL140 - Efficiency & Advanced Techniques

8

LLM bottlenecks: Training vs. inference

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

In terms of resource requirements, pre-training ≫ finetuning ≫ inference.

Dataset size:

● Finetuning: up to 100s GB.

● Pre-training: 10T tokens → 50TB.

Memory requirements:

● Inference: 2 bytes per parameter → 14 GB for a 7B model.

● Training: 2 bytes per parameter + 2 bytes per gradient + 12 bytes per optimizer weight

(Adam) → 112 GB for a 7B model.

(Note that we typically want to run inference on consumer hardware.)

9

Efficient algorithms: overview

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

Algorithm What it targets Training
memory

Training
speed

Inference
memory

Inference
speed

Parameter
quantization

Reducing parameter
size - - ✓✓ ✓

Mixture of
Experts (MoE)

Reducing active
parameter count - ✓✓ - ✓

Linear
attention

Faster attention using
linear algebra ✓ ✓ ✓ ✓

FlashAttention Faster attention using
HW optimizations ✓✓ ✓ ✓ ✓✓

(Q)LoRA Efficient model
fine‑tuning ✓ ✓ - -

10

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

Model parameters are floating point numbers. How do we store them? And can we

store them more efficiently?

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

● For inference, float16 typically causes

only little performance degradation.

● For training, float16 can lead to

vanishing gradients →

mixed-precision training.

● float64 – native Python (typically not used on GPUs)

● float32 – baseline precision

● float16 – half precision

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

11

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

bfloat16

● Developed by Google Brain

(→“brain float”).

● 16-bit float optimized for

ML models.

● Greater dynamic range

than float16 (→supports

outlier weights) at the cost

of lower precision.

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

12

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

Can we go further?

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

👷 Bob: Let’s use int8! It is an 8-bit numerical format. We’ll save twice as much

space compared to float16.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

13

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

󰟾 Alice: But we cannot just round the
number, can we? Floats have a huge
dynamic range. How do we squeeze them
into (-127, 127)?

👷 Bob: We don’t. We only use the range
of parameters that we have in our model
weights.

󰟾 Alice: The highest weight in my model
can be still larger than 127.

👷 Bob: But it will not be that large. Now
we can squeeze them!

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

14

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

󰟾 Alice: I am not convinced. What if some of my weights are outliers? Wouldn’t this
map most of the weights to zero (or near zero)?

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

👷 Bob: Ahem, right... Let’s just clip the outliers?

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

15

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

󰟾 Alice: Ok, and how will you pre-compute the range for activations? These are
dynamic.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

👷 Bob: Dynamically?

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

16

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

󰟾 Alice: I give up. Just go on and quantize your model to 1-bit if it works for you.

https://arxiv.org/abs/2310.11453

👷 Bob: Can I? Awesome!

https://arxiv.org/abs/2310.11453

17

Parameter quantization

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Quantization in practice:

● GPTQ

○ Quantization method that uses a few extra tricks to go robustly beyond

8-bit quantization (6-bit, 4-bit, 2-bit).

● GGUF

○ File format that performs block-wise quantization → enables

offloading parts of the model to CPU.

Models in Ollama are quantized by default to 4-bit.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://arxiv.org/abs/2210.17323
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md

18

Mixture of experts (MoE)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

A Visual Guide to Mixture of Experts (MoE)

“Experts” = multiple feed-forward networks in each MLP layer of the Transformer.

https://substack.com/home/post/p-148217245

19

Mixture of experts (MoE)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2401.04088
A Visual Guide to Mixture of Experts (MoE)

We can choose a different

expert at each layer...

...and a different set of

experts for each token.

https://arxiv.org/pdf/2401.04088
https://substack.com/home/post/p-148217245

20

Mixture of experts (MoE)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

Why it’s a good idea?

● Individual experts can specialize to solving certain

kinds of problems.

● Faster training for the same number of total

parameters (→ we backpropagate only through the

selected experts).

● Faster inference (although we still need to load the

full model into memory).

8x7B → 8 standalone models, approx. equivalent to a 47B

dense model (Not 56B, as other parts of the model than

MLPs are shared.)

A Visual Guide to Mixture of Experts (MoE)

https://substack.com/home/post/p-148217245

Let’s revisit the O(N2) attention. Can we do better?

Let’s zoom in! 🕵

21

Linear attention

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://haileyschoelkopf.github.io/blog/2024/linear-attn/

very expensive way
to measure

similarity between
queries and keys

https://haileyschoelkopf.github.io/blog/2024/linear-attn/

We can use a cheaper way of computing similarity:

This also allows us to re-arrange matrix multiplications:

22

Linear attention

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://haileyschoelkopf.github.io/blog/2024/linear-attn/

Φ = optional dimensionality
mapping, can be also identity

Q ⋅ K ∈
RNxN

K ⋅ V ∈
RDxD

https://haileyschoelkopf.github.io/blog/2024/linear-attn/

23

Linear attention

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://www.reddit.com/r/MachineLearning/comments/10eolfl/d_why_arent_we_all_using_linear_transformers/

The resulting operations are O(N ⋅ D2), which is linear in sequence length.

Wo-hoo! 🎉

https://www.reddit.com/r/MachineLearning/comments/10eolfl/d_why_arent_we_all_using_linear_transformers/

24

FlashAttention

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/abs/2205.14135

Approximations such as linear attention can lead to degraded performance.

Meanwhile, hardware optimizations of the full attention mechanism can go a long way.

https://arxiv.org/abs/2205.14135

25

FlashAttention

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/abs/2205.14135

FlashAttention re-arranges the operations to use

the underlying hardware more efficiently.

It is:

● Fast: 2-3x faster than baselines.

● Memory-efficient: linear in sequence length.

● Exact: uses no approximations.

It is now commonly implemented in LLM

frameworks.

https://arxiv.org/abs/2205.14135

26

Low-rank adaptation (LoRA)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2106.09685.pdf

󰟾 Alice: Remember the 112 GB of GPU memory I would need to finetune a 7B model?
Where should I get that?

👷 Bob: Buy a new GPU cluster!

󰟾 Alice: ...

👷 Bob: Or use efficient finetuning methods?

Key ideas of LoRA:

● Instead of updating model weights directly, we can keep the Δ (the “diff”) in a

separate matrix.

● The Δ matrix has a low rank → it can be approximated by two smaller matrices.

https://arxiv.org/pdf/2106.09685.pdf

27

Low-rank adaptation (LoRA)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2106.09685.pdf

For inference, LoRA weights are applied to the model → no latency issues.

LoRA weights:
(small, can be

stored as a
separate

“adapter”)

original
LLM (very

large)

https://arxiv.org/pdf/2106.09685.pdf

28

QLoRA: finetuning quantized models

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2305.14314

Can we apply LoRA to quantized models for even higher efficiency?

Yes: QLoRA does that with (1) careful parameter quantization and (2) optimizing

CPU-GPU memory transfers.

https://arxiv.org/pdf/2305.14314

29

LoRA and QLoRA in practice

NPFL140 - LLM Efficiency

All things being equal, full finetuning > LoRA >

QLoRA in terms of model performance.

→ The goal is to make the most out of the memory

you have at your disposal.

Starting points:

● https://huggingface.co/blog/4bit-transformer

s-bitsandbytes

● https://www.kaggle.com/code/neerajmohan/

finetuning-large-language-models-using-qlora

NPFL140 - Efficiency & Advanced Techniques

Method Bits ~ memory
required for
finetuning a

7B model

Full finetuning 32 120GB

Full finetuning 16 60GB

LoRA 16 16GB

QLoRA 8 10GB

QLoRA 4 6GB

QLoRA 2 4GB

https://github.com/hiyouga/LLaMA-Factory?tab
=readme-ov-file#hardware-requirement

https://huggingface.co/blog/4bit-transformers-bitsandbytes
https://huggingface.co/blog/4bit-transformers-bitsandbytes
https://www.kaggle.com/code/neerajmohan/finetuning-large-language-models-using-qlora
https://www.kaggle.com/code/neerajmohan/finetuning-large-language-models-using-qlora
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#hardware-requirement
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#hardware-requirement

Retrieval-Augmented Generation (RAG)

31

Retrieval-Augmented Generation (RAG)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

The knowledge saved in model parameters is lossy and incomplete, and the models tend

to hallucinate when they don’t know the answer. What can we do about it?

Retrieval-augmented generation (RAG):

● Retrieve additional documents

related to user prompt (websites/

files / database entries / code / ...).

● Concatenate the most relevant

documents with the prompt.

● Let the LLM generate the answer.

https://www.promptingguide.ai/research/rag

https://www.promptingguide.ai/research/rag

32

Retrieval-Augmented Generation (RAG)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

https://www.promptingguide.ai/research/rag

Semantic
search in the
knowledge

base based on
the prompt

The most
relevant

documents
appended to
the prompt

The model can
use the extra

information on
the input for

generating the
answer.

1

2

3

https://www.promptingguide.ai/research/rag

33

Retrieval-Augmented Generation (RAG)

NPFL140 - LLM EfficiencyNPFL140 - Efficiency & Advanced Techniques

Pros:

● Allows searching private knowledge bases.

● Can reduce the amount of hallucinated facts.

● Makes use of long input context windows.

Cons:

● The model tries to account for all the

documents, even the irrelevant ones → the

answer may be worse than without RAG.

● Can give a false sense of “groundedness”.

https://arxiv.org/abs/2312.10997

https://arxiv.org/abs/2312.10997

Reasoning

Wei et al., (2022): “The models struggle with math problems. What if we showed them how

to do intermediate reasoning steps?”

35

Chain-of-thought Prompting

NPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2201.11903

https://arxiv.org/pdf/2201.11903
https://arxiv.org/pdf/2201.11903

Kojima et al (2022): “Finding good examples of intermediate reasoning steps can be tricky.

Do we need to do that at all?”

36

Chain-of-thought Prompting

NPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2205.11916

https://arxiv.org/pdf/2205.11916
https://arxiv.org/pdf/2205.11916

Chain-of-thought prompting:

● ...is nowadays a standard prompting

method.

● ...generally increases performance on

problems requiring multi-step reasoning.

● ...does not require more than appending (a

variant of) “Think step-by-step” to the

prompt.

37

Chain-of-thought Prompting

NPFL140 - Efficiency & Advanced Techniques

image source

https://machine-learning-made-simple.medium.com/why-step-by-step-prompting-works-in-language-models-4cf5858f8270

38

Chain-of-thought Prompting

NPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/abs/2309.15402

Why does it work?

● The “emergent” ability can be learned from

pretraining on code data (Ma et al., 2024; Puerto et

al., 2024).

● The model may be just using extended inference

time to perform more computation (Pfau et al.,

2024).

https://arxiv.org/abs/2309.15402
https://openreview.net/pdf?id=KIPJKST4gw
https://aclanthology.org/2024.emnlp-main.629.pdf
https://aclanthology.org/2024.emnlp-main.629.pdf
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG

39

Test-time scaling

CoT prompting has shown a new path: test-time scaling.

https://arxiv.org/pdf/2203.11171

NPFL140 - Efficiency & Advanced Techniques

The simplest example of

test-time scaling:

1. Generate multiple

CoT paths for the

given problem.

2. Use majority voting

to select the final

answer.

https://arxiv.org/pdf/2203.11171

40

Test-time scaling

More advanced extensions involve tree-like search techniques and a verifying the

solution with a verifier model (e.g., code interpreter).

https://arxiv.org/pdf/2408.03314

NPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/pdf/2408.03314

41

Large Reasoning Models (LRMs)

NPFL140 - Efficiency & Advanced Techniques

Goal: instilling the reasoning process into

the behavior of the LLM.

→ The model is trained on reasoning

traces.

The traces include problem decomposition,

intermediate steps, and back-tracking.

Where to get the reasoning traces?

The Illustrated DeepSeek-R1

Examples of LRMs:

● OpenA1 o1, o3, o4

● DeepSeek-R1

● Gemini 2.5

● Claude 3.7 Thinking

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1

Option #1: Pure reasoning-oriented RL

1. Get a base LLM (no instruction tuning).

2. Run the model on datasets for code

generation and math problem solving.

3. Perform RL training with rewards for accuracy

(using a verifier) and format (rule-based).

● Natural emergence of test-time computation.

● Early unstable cold-start phase.

● Missing general capabilities.

Use to make DeepSeek-R1-Zero.

42

Training techniques for LRMs

NPFL140 - Efficiency & Advanced Techniques

https://arxiv.org/abs/2501.12948

https://arxiv.org/abs/2501.12948

43

Training techniques for LRMs
Option #2. Supervised fine-tuning (SFT), followed by RL.

from Sebastian Rashka’s “Understanding Reasoning LLMs”

1. Get a pure RL-tuned LRM, generate outputs A

and post-process them by human annotators.

2. Fine-tune an instruction-tuned LLM on A →

generate outputs B.
- addressing unstable cold start.

3. Fine-tune a base LLM on a mixture of B and

non-reasoning training data.
- addressing missing general capabilities

4. Continue training with reasoning-oriented as

well as human preference RL.

The process was used to make DeepSeek-R1 (671B

parameters); likely also used in OpenAI-o1.
NPFL140 - Efficiency & Advanced Techniques

https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

44

Training techniques for LRMs
Option #3: Pure supervised fine-tuning.

● Fine-tuning a small base LLM (e.g., Llama or Qwen

models) on the combination of reasoning and

non-reasoning outputs.

● Cheaper to run but still expensive to train (800k

SFT samples)

● NovaSky’s Sky-T1 used only 17k SFT samples

($450) to perform on par with o1

Used to make smaller (“distilled”) DeepSeek models.

NPFL140 - Efficiency & Advanced Techniques

from Sebastian Rashka’s “Understanding Reasoning LLMs”

https://novasky-ai.github.io/posts/sky-t1/
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

● LLMs can be implemented more efficiently:
○ Lower memory footprint: parameter quantization, (Q)LoRA

○ Faster inference: MoE, linear attention, FlashAttention

● Post-training performance of LLMs can improved at test time:
○ RAG for extending the model knowledge

○ CoT and reasoning for tackling complex problems

45

Efficiency & Advanced Techniques

NPFL140 Large Language Models

https://ufal.cz/courses/npfl140

46

Additional links

● Mixture of Experts Explained - HuggingFace blogpost

● Understanding Reasoning LLMs - blogpost.

● awesome-o1 - list of resources related to OpenAI O1.

● Scaling Test-time Compute - HuggingFace blogpost.

NPFL140 - Efficiency & Advanced Techniques

https://huggingface.co/blog/moe
https://sebastianraschka.com/blog/2025/understanding-reasoning-llms.html
https://github.com/srush/awesome-o1
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

