
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL140 Large Language Models

LLM Training
http://ufal.cz/courses/npf140

Ondřej Dušek

17.3.2025

http://ufal.cz/npf140

Training a neural language model the basic way

• Reproduce sentences from data
• replicate exact word at each position

• always only one next word, not the whole text in one

• Fully trained from data
• initialize model with random parameters

• input example: didn’t hit the right word → update parameters

• Very low level, no concept of sentence / text / aim

2

cheap
pricey
in the expensive price range

expensive

Blue Spice is

Blue Spice is expensivereference: LM

NPFL140 L5 2025

Training Transformers

3

in parallel: feed in training data & try to predict 1 next token at each position, incur loss

embeddings (~100s of numbers)

layers – Transformer blocks:
attention & fully connected

positional encoding

0.4 -0.3 2.1 -0.2

-1.1 0.8 -0.9 4.3

0.0 2.7 -0.6 -3.0

…

m
u

lt
ip

le
 (6

-1
00

)
la

ye
rs

numbered
subwords

NPFL140 L5 2025

Gradient Descent

• any neural net (supervised) training– gradient descent methods
• minimizing a cost/loss function

(notion of error – given a model output, how far off are we?)

• calculus: derivative = steepness/slope

• backpropagation: derivatives of all parameters w. r. t. cost (compound function)

• follow the slope to find the minimum – derivative gives the direction

• learning rate = how fast we go (needs to be tuned)

• gradient averaged over mini-batches
• random bunches of a few training instances

• not as erratic as using just 1 instance,
not as slow as computing over whole data

• stochastic gradient descent

NPFL140 L5 2025 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

max(0, 1 − ො𝑦 ⋅ 𝑦)

𝑦 − ො𝑦

lo
ss

Cost/Loss Functions

• differ based on what we’re trying to predict

• default: logistic / log loss (“cross entropy”)
• for any classification / softmax – including word prediction in LMs

• classes from the whole dictionary

• correct class has <100% prob. → loss is >0

• pretty stupid for sequences, but works
• sequence shifted by 1 ⇒ everything wrong

• other options:
• squared error loss – for regression (floats)

• hinge loss – binary classification (SVMs), ranking

• many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-
tensorflow-9f60be9d09f9 , https://en.wikipedia.org/wiki/Hinge_loss

𝑐=1

𝐶

𝑦𝑐 ⋅ log(ෝ𝑦𝑐)

pred. prob. when true label=1

lo
ss

lo
ss 𝑦 − ො𝑦 2

𝑦 − ො𝑦

Blue Spice is expensivereference:

cheap
pricey
in the expensive price range

expensiveprediction:

logistic

squared error hinge

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

• LR: most important parameter in (stochastic) gradient descent

• tricky to tune:
• too high LR = may not find optimum

• too low LR = may take forever

• Learning rate decay: start high, lower LR gradually
• make bigger steps (to speed learning)

• slow down when you’re almost there (to avoid overshooting)

• linear, stepwise, exponential, reduce-on-plateau…

• Momentum: moving average of gradients
• make learning less erratic

• 𝑚 = 𝛽 ⋅ 𝑚 + (1 − 𝛽) ⋅ Δ, update by 𝑚 instead of Δ

Learning Rate & Momentum

6

http://cs231n.github.io/neural-networks-3/

base SGD
momentum

https://ruder.io/optimizing-gradient-descent/ NPFL140 L5 2025

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Optimizers

• Better LR management
• change LR based on gradients, less sensitive to settings

• AdaGrad – all history
• remember sum of total gradients squared: σ𝑡 Δ𝑡

2

• divide LR by σ Δ𝑡
2

• variants: Adadelta, RMSProp – slower LR drop

• Adam – per-parameter momentum
• moving averages for Δ & Δ2:

 𝑚 = 𝛽1 ⋅ 𝑚 + 1 − 𝛽1 Δ, 𝑣 = 𝛽2 ⋅ 𝑣 + 1 − 𝛽2 Δ2

• use 𝑚 instead of Δ, divide LR by 𝑣

• often used as default nowadays

• variant: AdamW – better regularization
• not much difference though

7

http://kaeken.hatenablog.com/entry/2016/11/10/203151

https://ruder.io/optimizing-gradient-descent/

(Kingma & Ba, 2015)
https://arxiv.org/abs/1412.6980

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD
momentum
AdaGrad
RMSProp
Adam

local minimumglobal minimum

(Loshchilov & Hutter, 2019)
https://arxiv.org/abs/1711.05101

NPFL140 L5 2025

http://kaeken.hatenablog.com/entry/2016/11/10/203151
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://arxiv.org/abs/1711.05101

Schedulers

• more fiddling with LR – warm-ups
• start learning slowly, then increase LR, then reduce again

• may be repeated (warm restarts),
with lowered maximum LR
• allow to diverge slightly – work around local minima

• multiple options:
• cyclical (=warm restarts) – linear, cosine annealing

• one cycle – same, just don’t restart

• Noam scheduler – linear warm-up, decay by steps

• combine with base SGD or Adam/Adadelta etc.
• momentum updated inversely to LR

• may have less effect with optimizers
• trade-off: speed vs. sensitivity to parameter settings

8NPFL140 L5 2025

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F

cyclical scheduler (warm restarts)

LR momentum

one cycle with cosine annealing

https://nn.labml.ai/optimizers/noam.html
Noam scheduler with different parameters

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html

When to stop training

• generally, when cost stops going down
• despite all the LR fiddling

• problem: overfitting
• cost low on training set, high on validation set

• network essentially memorized the training set

• → check on validation set after each epoch
(pass through data)

• stop when cost goes up on validation set

• regularization (e.g. dropout) helps delay overfitting

• bias-variance trade-off:
• smaller models may underfit (high bias, low variance = not flexible enough)

• larger models likely to overfit (too flexible, memorize data)

• XXL models: overfit soo much they actually interpolate data → good (?)
• “grokking”: model overfits → long nothing → starts generalizing

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

(Dar et al., 2021) https://arxiv.org/abs/2109.02355
(Power et al., 2022) http://arxiv.org/abs/2201.02177

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/
https://arxiv.org/abs/2109.02355
http://arxiv.org/abs/2201.02177

Self-supervised training

• train supervised, but don’t provide labels
• use naturally occurring labels

• create labels automatically somehow
• corrupt data & learn to fix them

• learn from rule-based annotation (not ideal!)

• use specific tasks that don’t require manual labels

• good to train on huge amounts of data
• language modelling

• next-word prediction (~ most LLMs)

• MLM – masked word prediction (~ encoder LMs, e.g. BERT)

• good to pretrain a LM self-supervised
before you finetune it fully supervised (on your own task-specific data)

10NPFL140 L5 2025 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

http://jalammar.github.io/illustrated-bert/

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/

Pretraining & Finetuning: Pretrained LMs

• 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)

2. Fine-tune for your own task on your smaller data (supervised)

• ~ pretrained “contextual embeddings” (“better word2vec”, typically Transformer)

• Model capability is all about the data
• the larger model, the more you need (“Chinchilla scaling laws”)

• anyway the more, the better
https://twitter.com/Thom_Wolf/status/1766783830839406596

https://lifearchitect.ai/chinchilla/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

https://twitter.com/Thom_Wolf/status/1766783830839406596
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Pretrained (Large) Language Models (PLMs/LLMs)

• BERT/RoBERTa/ModernBERT: Transformer encoder
• trained by masked language modeling, good for classification

• GPT-2, most LLMs(GPT-3/4,Llama,Mistral,Gemma, Phi, Qwen…): decoder
• trained by next-word prediction (=language modeling), good for generation / prompting

• BART, T5 – encoder-decoder (many training tasks, good for generation)

• multilingual: XLM-RoBERTa, mBART, mT5, Aya

• many models released plug-and-play
• !! others (GPT-3/3.5/4, Claude… closed & API-only)

• PLM vs. LLM distinction a bit vague
• generally >1B, but more on behavior

• PLMs: ready to finetune

• LLMs: ready to prompt (→ →)

NPFL099 L4 2024

https://huggingface.co/
https://ollama.com/

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

(controversial! see discussion) https://x.com/yoavgo/status/1828383882317549765

https://huggingface.co/
https://ollama.com/
http://arxiv.org/abs/2303.18223
https://x.com/yoavgo/status/1828383882317549765

Parameter-efficient Finetuning

• Finetuning large models: don’t update all parameters
• less memory-hungry (fewer gradients/momentums etc.)

• trains faster

• less prone to overfitting (~ regularization)

• Add few parameters & only update these
• Adapters – small feed-forward networks after/on top of each layer

• Soft prompts – tune a few special embeddings & use them on input

• LoRA (low-rank adaptation):
• 2 decomposition matrixes 𝐴, 𝐵 (parallel to each layer)

• update = multiplication 𝐴𝐵

• 2 × 𝑟 × 𝑑 is much smaller than full weights (𝑑2)

• update is added to original weights on the fly

• QLoRA – LoRA + quantized 4/8-bit computation
• to fit large models onto a small GPU

13(Dettmers et al., 2023) http://arxiv.org/abs/2305.14314

(Hu et al., 2021) http://arxiv.org/abs/2106.09685

(Lialin et al., 2023)
http://arxiv.org/abs/2303.15647
(Sabry & Belz, 2023)
http://arxiv.org/abs/2304.12410

𝑟 ≪ 𝑑

(Lester et al., 2021) https://aclanthology.org/2021.emnlp-main.243

(Houlsby et al., 2019) http://proceedings.mlr.press/v97/houlsby19a.html

http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2304.12410
https://aclanthology.org/2021.emnlp-main.243
http://proceedings.mlr.press/v97/houlsby19a.html

LLMs: Prompting = In-context Learning

• No model finetuning, just show a few examples in the input (=prompt)

• pretrained LMs can do various tasks,
given the right prompt
• they’ve seen many tasks in training data

• only works with the larger LMs (>1B)

• adjusting prompts often helps
• “prompt engineering”

• zero-shot (no examples) vs. few-shot

• chain-of-thought prompting:
“let’s think step by step”

• adding / rephrasing instructions
(see → →)

14NPFL099 L4 2024

http://ai.stanford.edu/blog/understanding-incontext/

(Liu et al., 2023) https://arxiv.org/abs/2107.13586

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

http://ai.stanford.edu/blog/understanding-incontext/
https://arxiv.org/abs/2107.13586
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

Instruction Tuning

• Finetune for use with prompting
• “in-domain” for what it’s used later

• Use instructions (task description) + solution in prompts
• Many different tasks, specific datasets available

• Some LLMs released as base (“foundation”) & instruction-tuned versions

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://arxiv.org/abs/2109.01652

Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence ~ whole generated text

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for text generation too

• state = generation so far (prefix)

• action = one generation output (subword)

• defining rewards is an issue (→→)

• Training: maximizing long-term reward
• optimizing policy = way of choosing actions, i.e. predicting tokens

16

(Sutton & Barto, 2018)

your model

some definition
of rewards

RL from Human/AI Feedback (RLHF/RLAIF)

• RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions

2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)

3) learn a reward model (some kind of other LM: instruction + solution → score)

4) use rating model’s score as reward in RL

• main point: reward is global (not token-by-token)

17

(Ouyang et al., 2022)
http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt

https://huggingface.co/blog/rlhf

1)

2)

3)

4)

http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf

Direct Preference Optimization

• Trying to do the same thing, but without RL, with supervised learning

• Special loss function to check pairwise text preference
• increases probability of preferred response

• includes weighting w.r.t. reference model

18NPFL140 L5 2025

(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

𝑦𝑤 preferred

𝑦𝑙 dispreferred

optimized model

http://arxiv.org/abs/2305.18290

Scaling Test-time Compute – Reasoning Models

• Glorified chain-of-thought
• make chains very long

• train models with intermediate rewards (process reward models)

• The longer you compute, the better
• can be tree search (over intermediate steps, with backtrack), but linear seems OK

• budget-forcing: inserting “Wait” / force-terminating

• RL again (GRPO: sample a lot, baseline = average, upvote better-than-average)

19NPFL140 L5 2025

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
(Muennighoff et al., 2025) http://arxiv.org/abs/2501.19393

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
http://arxiv.org/abs/2501.19393

Synthetic Data

• Generate stuff via base model, train on the result
• like what we did with RLHF/DPO, but for standard training – earlier & more

• Useful for
• detailed annotation (like process rewards)

• cleaner data

• generally more data

• better-aligned data (rewrite as problem-solution pairs, flip problem direction…)

• target modality data (text → audio)

• Needs careful filtering
• iterative refinement – model evaluates itself

• synthetic code: validate via execution

20NPFL140 L5 2025

(Abdin et al., 2024) http://arxiv.org/abs/2412.08905
(Defossez et al., 2024) https://arxiv.org/abs/2410.00037

http://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2410.00037

Thanks

Contacts:

 Ondřej Dušek
 odusek@ufal.mff.cuni.cz
 https://tuetschek.github.io
 @tuetschek

Supported by: European Research Council (ERC StG No. 101039303 NG-NLG)
Using LINDAT/CLARIAH-CZ Research Infrastructure resources (Czech Ministry of Education, Youth and Sports project No. LM2018101).

mailto:odusek@ufal.mff.cuni.cz
https://tuetschek.github.io/

	Slide 1: NPFL140 Large Language Models LLM Training
	Slide 2: Training a neural language model the basic way
	Slide 3: Training Transformers
	Slide 4: Gradient Descent
	Slide 5: Cost/Loss Functions
	Slide 6: Learning Rate & Momentum
	Slide 7: Optimizers
	Slide 8: Schedulers
	Slide 9: When to stop training
	Slide 10: Self-supervised training
	Slide 11: Pretraining & Finetuning: Pretrained LMs
	Slide 12: Pretrained (Large) Language Models (PLMs/LLMs)
	Slide 13: Parameter-efficient Finetuning
	Slide 14: LLMs: Prompting = In-context Learning
	Slide 15: Instruction Tuning
	Slide 16: Reinforcement Learning
	Slide 17: RL from Human/AI Feedback (RLHF/RLAIF)
	Slide 18: Direct Preference Optimization
	Slide 19: Scaling Test-time Compute – Reasoning Models
	Slide 20: Synthetic Data
	Slide 21: Thanks

