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Training a neural language model the basic way

* Reproduce sentences from data
* replicate exact word at each position
 always only one next word, not the whole text in one

* Fully trained from data
* initialize model with random parameters
* input example: didn’t hit the right word > update parameters

—» expensive
cheap

Blue SpTice iTs pricey :
in the expensive price range

reference: Blue Spice is expensive —

* Very low level, no concept of sentence / text / aim
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Training Transformers

in parallel: feed in training data & try to predict 1 next token at each position, incur loss
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Gradient Descent

* any neural net (supervised) training- gradient descent methods

* minimizing a cost/loss function
(notion of error — given a model output, how far off are we?)

* calculus: derivative = steepness/slope

* backpropagation: derivatives of all parameters w. r. t. cost (compound function)
* follow the slope to find the minimum - derivative gives the direction

* learning rate = how fast we go (needs to be tuned)

» gradient averaged over mini-batches
* random bunches of a few training instances

* not as erratic as using just 1 instance,
not as slow as computing over whole data

 stochastic gradient descent

3(60,8,) o

NPFL140 L5 2025 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
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Cost/Loss Functions

loss
~ W =] — [ w ¥ w

» differ based on what we’re trying to predict

 default: logistic [ log loss (“cross entropy”) tww w @ e W
. . . . . . . pred. prob. when true label=1
» for any classification / softmax - including word prediction in LMs logistic
* classes from the whole dictionary
* correct class has <100% prob. » loss is >0 reference:  Blue Spice is expensive
* pretty stupid for sequences, but works ——— prediction: expensive
» sequence shifted by 1 = everything wron cheap
q y ything wrong pricey
e other OptiO ns: in the expensive price range
* squared error loss - for regression (floats)
* hinge loss - blnary classification (SVMs), ranking squared error hinge
* many others, variants max(0,1 — 9 - y)
g o v —-9?

loss

o4

0z
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with- B P PP PP )
tensorflow-9f60be9d09f9 , https://en.wikipedia.org/wiki/Hinge loss Yy =9 oo _Gsyﬁy

>
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Learning Rate & Momentum

* LR: most important parameter in (stochastic) gradient descent

e tricky to tune: -
 too high LR = may not find optimum N |
* too low LR = may take forever XQ‘

* Learning rate decay: start high, lower LR gradually ——
* make bigger steps (to speed learning) good earning rate -

epoch

* slow down when you’re almost there (to avoid overshooting)  nipuscsosingitubiomeural networks 3/
* linear, stepwise, exponential, reduce-on-plateau...

 Momentum: moving average of gradients
* make learning less erratic

em=pL-m+ (1—p)-A,update by minstead of A

base SGD

momentum

NPFEL140 L5 2025 https://ruder.io/optimizing-gradient-descent/ 6
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Optimizers

http://kaeken.hatenablog.com/entry/2016/11/10/203151

1.0

* Better LR management 1t ERe
* change LR based on gradients, less sensitive to settings

« AdaGrad - all history
« remember sum of total gradients squared: Y, A?
+ divide LR by /Y, A%

* variants: Adadelta, RMSProp - slower LR drop

 Adam - per-parameter momentum

* moving averages for A & A?: e arsi Crglabs/ 14126980

m=p -m+1—PF)IA v=7Pv+ (1 B)A Ada[‘}f?x’”’

« use minstead of A, divide LR by /v "
 often used as default nowadays

(Loshchilov & Hutter, 2019)

* variant: AdamW - better regularization ... orembe/i1105101
* not much difference though

momentum M,

https://ruder.io/optimizing-gradient-descent/
NPFL140 L5 2025 . ; ; ; : 7
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https://arxiv.org/abs/1711.05101

Schedulers

» more fiddling with LR - warm-ups
* start learning slowly, then increase LR, then reduce again

* may be repeated (warm restarts),
with lowered maximum LR

* allow to diverge slightly - work around local minima

* multiple options:

« cyclical (=warm restarts) - linear, cosine annealing

* ohe cyc

* Noam scheduler - linear warm-up, decay by +/steps
* combine with base SGD or Adam/Adadelta etc.

le - same, just don’t restart

 momentum updated inversely to LR
* may have less effect with optimizers

* trade

-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADmM6F
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https://nn.labml.ai/optimizers/noam.html

0.05

0.01

cyclical scheduler (warm restarts)

LR

0.92

|\ momentum

vvvvvvvvv

---------

one cycle with cosine annealing

earning Rate

Noam scheduler with different parameters
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When to stop training

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

* generally, when cost stops going down
* despite all the LR fiddling

* problem: overfitting
* cost low on training set, high on validation set -
* network essentially memorized the training set

* > check on validation set after each epoch
(pass through data)

 stop when cost goes up on validation set
* regularization (e.g. dropout) helps de

* bias-variance trade-off:
* smaller models may underfit (highbias, low variance = not flexi
* larger models likely to overfit (too flexible, memorize

« XXL models: overfit soo much they actually interpolate data > good (= ?)

» “grokking”: model overfits » long nothing > starts generalizing (Dar et al., 2021) https://arxiv.org/abs/2109.02355
(Power et al., 2022) http://arxiv.org/abs/2201.02177

: \ Solutions interpolate
training data

Bias-variance
tradeoff

. Learned model
© complexity



https://www.andreaperlato.com/theorypost/bias-variance-trade-off/
https://arxiv.org/abs/2109.02355
http://arxiv.org/abs/2201.02177

0.1% | Aardvark
Self-supervised training oo dases
0% | Zyzzyva
* train supervised, but don’t provide labels
* use naturally occurring labels

 create labels automatically somehow
» corrupt data & learn to fix them
* learn from rule-based annotation (not ideal!) BERT

* use specific tasks that don’t require manual labels

* good to train on huge amounts of data
* language modelling
* next-word prediction (~ most LLMs) aLs)

* MLM - masked word prediction (~ encoder LMs, e.g. BERT)

 good to pretrain a LM self-supervised
before you finetune it fully supervised (on your own task-specific data)

http://jalammar.github.io/illustrated-bert/

NPFL140 L5 2025 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
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Pretraining & Finetuning: Pretrained LMs

* 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
2. Fine-tune for your own task on your smaller data (supervised)

» ~ pretrained “contextual embeddings” (“better word2vec”, typically Transformer)

* Model capability is all about the data

* the larger model, the more you need (“Chinchilla scaling laws”)
https://twitter.com/Thom Wolf/status/1766783830839406596
* anyway the more, the better

@ Thomas Wolf

this contrarian thing | keep repeating in my "LLMs in 2024" lectures -
surprisingly hard to get this message across

GPT-45" ® Gemini 1.0 Ultra !

Palm 2%
© Falcons:

©
Chinchillai:

@® ®@Llama 2%

2 Pretraining

Our approach to pretraining is to train a standard dense transformer architecture on a heavily
engineered large pretraining corpora, where our underlying assumption is that when trained on
extensive data of high-enough quality, a standard architecture can exhibit advanced capability. This

Parameters (B)

MambaZ® Phi-22 is to say, we may not need much architectural modification, although we have indeed conducted
Llama 158 ; = o extensive preliminary architectural experiments. In the following subsections, we first detail our data
‘ e engineering pipeline, then briefly discuss the model architecture.
2:1 20:1 200:1
Significantly undertrained * H Potentially overtrained "
el kit Ratio of tokens trained to parameters il Q Thomas Wolf

. . o . " 1guess we all want to believe that models are magic
https://lifearchitect.ai/chinchilla/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
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(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

« BERT/RoBERTa/ModernBERT: Transformer encoder
* trained by masked language modeling, good for classification

* GPT-2, most LLMs(GPT-3/4,Llama,Mistral,Gemma, Phi, Qwen...): decoder
» trained by next-word prediction (=language modeling), good for generation / prompting

* BART, T5 - encoder-decoder (many training tasks, good for generation)

* multilingual: XLM-RoBERTa, mBART, mT5, Aya
https://huggingface.co/ L OY

* many models released plug-and-play https://ollama.com/ Y, i 3

* Il others (GPT-3/3.5/4, Claude... closed & API-only)
* PLM vs. LLM distinction a bit vague £7% (W00 yoauh)

» generally >1B, but more on behavior . . ,

. "How large should a model be to qualify as an LLM" is a vacuous
o PLMS: ready tO flnetu ne question. LLMs are NOT about size, they are about having a set of
behaviors that happen to correlate with those exhibited by GPT-3/
¢ LLMS: ready tO prompt (9 9) ChatGPT, which were large (and not exhibited by GPT2, BERT, T5, which

NEEENEED]

(controversial! see discussion iy ) https://x.com/yoavgo/status/1828383882317549765
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Parameter-efficient Finetuning
(Lialin et al., 2023)
* Finetuning large models: don’t update all parameters e
e less memory-hungry (fewer gradients/momentums etc.) LT
* trains faster
* less prone to overfitting (~ regularization)

* Add few parameters & only update these
* Adapters - small feed-forward networks after/on top of each layer
» Soft prompts - tune a few special embeddings & use them on input

* LoRA (low-rank adaptation): hi '
» 2 decomposition matrixes A4, B (parallel to each layer) :
e update = multiplication AB
e 2 X1 X dis much smaller than full weights (d?)
« updateis added to original weights on the fl

Pretrained
Weights

* QLoORA - LoRA + quantized 4/8-bit computation ;% ; ?
* tofit large models onto a small GPU
(Houlsby et al., 2019) http://proceedings.mlr.press/v97/houlsbyl9a.html (Hu et al., 2021) http://arxiv.org/abs/2106.09685

(Lester et al., 2021) https://aclanthology.org/2021.emnlp-main.243 (Dettmers et al., 2023) http://arxiv.org/abs/2305.14314 13
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LLMs: Prompting = In-context Learning

* No model finetuning, just show a few examples in the input (=prompt)
¢ pretraiHEd LMS Can dO Va riOUS taSkS, Circulation revenue has increased by 5% Circulation revenue has increased by

in Finland. // Positive 5% in Finland. // Finance

g I Ve n th e rl ght p rO m pt Panostaja did not disclose the purchase They defeated ... in the NFC
, . L. price. // Neutral Championship Game. // Sports
¢ th ey Ve Seen mada ny ta S kS IN tra NN g d d ta Paying off the national debt will be Apple ... development of in-house
. extremely painful. // Negative chips. // Tech
* on ly WO rkS WI th th S la rge I I— M S (> l B) The company anticipated its operating The company anticipated its operating

profit to improve. // profit to improve. //

* adjusting prompts often helps
* “prompt engineering”
 zero-shot (no examples) vs. few-shot
* chain-of-thought prompting:
“let’s think step by step”

 adding / rephrasing instructions
(see > )

http://ai.stanford.edu/blog/understanding-incontext/

7 Q: A juggler can juggle 16 balls. Half of the balls are golf balls, "
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

tput) 8 X

/(—1 A juggler can juggle 16 balls. Half of the balls are golf ballsx
and half of the golf balls are blue. How many blue golf balls are
| there?
| A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/ balls. That means that there are 8 golf bails. Half of the golf balls

\ are blue. That means that tf 4 bl If balls. ¢ /
NPFLO99 L4 2024 (Liu et al., 2023) https://arxiv.org/abs/2107.13586 NZE e, T oans T Tem e T MR e 14
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Instruction Tuning

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

» Finetune for use with prompting
* “in-domain” for what it’s used later

 Use instructions (task description) + solution in prompts
« Many different tasks, specific datasets available

 Some LLMs released as base (“foundation”) & instruction-tuned versions

Finetune on many tasks (“instruction-tuning”)

Input (Commonsense Reasoning) | Input (Translation)

Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
ELIEN L ?ﬁanlsh_ e buid Input (Natural Language Inference)
How would you accomplish this goal? e new office building — :
_ was built in less than three Premise: At my age you will probably
OPTIONS: have leamt one lesson.
-Keep stack of pillow cases in fridge. months. Hypothesis: Its not certain how many
-Keep stack of pillow cases in oven. Target lessons you'll leam by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge se construyd en tres meses. OPTIONS:
: : yes | it is not possible to tell | | -no
Sentiment analysis tasks
- FLAN Response
Coreference resolution tasks

It is not possible to tell

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
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* Learning from weaker supervision

 only get feedback once in a while, not for every output . lOdel
» good for globally optimizing sequence generation
* you know if the whole sequenceis good .| Agent |
* you don’t know if step X is good e et
* sequence ~ whole generated text *f Environment |<7
* Framing the problem as states & actions & rewards I(smmn&garto,zmg)
* “robot moving in space”, but works for text generation too some definition

of rewards

* state = generation so far (prefix)
* action = one generation output (subword)
* defining rewards is an issue (>-)

* Training: maximizing long-term reward
 optimizing policy = way of choosing actions, i.e. predicting tokens



RL from Human/Al Feedback (RLHF/RLAIF) o b orglabal 220302155

https://openai.com/blog/chatgpt

* RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions
2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)
3) learn a reward model (some kind of other LM: instruction + solution > score)
4) use rating model’s score as reward in RL
* main point: reward is global (not token-by-token) l l
4)

Prompts Dataset

Prompts Dataset

3 ) Reward (Preference)

/" Tuned Language )

Model o ) .
B < é Initial Language Model Model (RL Policy)
» ;{ 9.0 P4 f Reinforcement Learning
5 €ig g ?T0 8 74N Update (e.g. PPO)
Train on ) A4, & . O\ 1 ¢
{sample, reward} pairs O\ @Y @ @2 0 o 9 + VGJ(O)
Xy < y ‘\7:' {lt’)
1) Sample many prompts \L J, N
Base Text ®®®® RLHF ®®®® Reward (Preference)
Outputs are ranked ®® o9 Tuned Text 800 @ Model _
(relative, ELO, etc.) y: a furry mammal y: man'’s best friend - > € a
( N s —2)—— . =  \ Z / 158787
Initial Language Model Lorem ipsum dolor L R
= 2 sit amet , consectel —\
j - X - adipiscing elit. Aen| = 74
Q 7494 Donec quam felis — z <
5 O ’» ’ vulputate eget, arc| : / = >
88 mammnee | == | [ Akt Dict. (7epo (u12) || Moase(312)) .
: eros faucibus tinci Human 8coring \\ v 4 +
L ) s pulvinar, het \ KL prediction shift penalty
Generated text | To ylx)

https://huggingface.co/blog/rlhf 17
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D i re Ct P reIfe re n Ce o pti m i Zati O n (Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

* Trying to do the same thing, but without RL, with supervised learning

* Special loss function to check pairwise text preference
* increases probability of preferred response
* includes weighting w.r.t. reference model H p7ferred /

y; dispreferred

‘ o 7o (yw|T) B (Y| )
Lppo (’ﬂ'?, 7T'r6f) — E(m,yw,yl)ND llog o (18 10 Tref(Yulz) /81 Tre £ (Y1) )]

optimized model

LogSigmoid()
Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the historypofjazz" ® La be'. rewa rdS e the historypofjazz" - 5]
i 5 /-\‘ . \ ” e
— | > | = > reward model LM policy * — =] — final LM 5
Yw yu Yw yi
- ® \/ . & : -2 1
preference data rtwax!mum sample completions preferencedata . -
likelihood reinforcement learning likelihood

NPFL140 L5 2025 18
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Scaling Test-time Compute - Reasoning Models

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
* Glorified chain-of-thought Muennighoft et a1 2025) btpi A orglabs 250119353
* make chainsvery long
e train models with intermediate rewards (process reward models)

* The longer you compute, the better
 can be tree search (over intermediate steps, with backtrack), but linear seems OK
* budget-forcing: inserting “Wait” / force-terminating

* RL again (GRPO: sample a lot, baseline = average, upvote better-than-average)

]
Best-of-N E Beam Search \ Diverse Verifier Tree Search
]

)
! 1
1 1
Math : : et
roblem : Use verifier 1 P'('Ouem
e : to seleet N beams i
E '

Spht beams into N/M

top N/M steps
independent subtrees

Use verifier to select
best step per tree

E /\ /\Beam width M E A A
NPFL140 L5 2025 5 ; 19

Use verifier to
select best
final answer


https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
http://arxiv.org/abs/2501.19393

Synthetic Data

* Generate stuff via base model, train on the result
* like what we did with RLHF/DPO, but for standard training - earlier & more

» Useful for
* detailed annotation (like process rewards)
* cleaner data
» generally more data
* better-aligned data (rewrite as problem-solution pairs, flip problem direction...)
* target modality data (text > audio)

* Needs careful filtering
* iterative refinement - model evaluates itself
 synthetic code: validate via execution

(Abdin et al., 2024) http://arxiv.org/abs/2412.08905
NPFL140 L5 2025 (Defossez et al., 2024) https://arxiv.org/abs/2410.00037
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