
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

LLM Inference
Zdeněk Kasner

10 March 2025

NPFL140 Large Language Models

After today’s class, you should be able to:

● Understand how to generate text with a Transformer-based

language model.

● Explain differences between decoding algorithms and the role of

decoding parameters.

● Choose a suitable LLM for your task.

● Run a LLM locally on your computer or computational cluster.

2

Today’s learning outcomes

NPFL140 - LLM Inference

Generating text

4

Recap: Training

NPFL140 - LLM Inference

Prague is the capital of Czechia (...)

Pre-training1

Instruction tuning2

user: What is the capital of Czechia?
assistant: Prague

random neural
network

Model stages:

helpful assistant

3

“autocomplete on steroids”

1

base / foundational model

assistant

2

instruction-tuned model 3 Human preference optimization

user: What is the capital of Czechia?

answer #1: Prague.
answer #2: The capital of Czechia is Prague.

Training stages:

NPFL140 - LLM Inference

This lecture: LLM inference.

= We have a trained model and we want to use it.

Question: What is the difference between inference,

generation, and decoding?

5

LLM Inference

Inference
The concept of using a trained model for making
predictions on new data (for classification,
sequence tagging, text generation, ...).

Generation
The process of using a trained model for
producing a sequence of tokens.

Decoding
The algorithm of selecting the next token using
the model’s internal representation.

6

LLM Inference

inference

generation

decoding

NPFL140 - LLM Inference

7

Training vs. inference

NPFL140 - LLM Inference

Prague is the capital of Czechia

is the capital of Czechia <EOS>

Transformer

Teacher forcing: We know what token
should come next, so we use it to train the

model.

Training Inference

user: Who are you?
assistant:

Transformer

Decoding: We need to select what token
should come next.

https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz

8

What happens during LLM inference?

NPFL140 - LLM Inference

https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz

9

Generating text

NPFL140 - LLM Inference

For every sequence, the LLM generates a probability distribution over the vocabulary of

tokens.

To generate text:
1. Start with a sequence of tokens (“prompt”).
2. Feed the sequence into the LLM.
3. Select the next token from the model-generated probability distribution.
4. Append the selected token to the sequence.
5. Repeat from (2).

→ Autoregressive decoding

10

Autoregressive decoding

Transformer

I
a
aardwark
am

walrus

zyzzyva

NPFL140 - LLM Inference

the

I
...

...

...

P(yt| <BOS>, “I”)t=1

}
which token to select?

<BOS>

11

Autoregressive decoding

Transformer

I
a
aardwark
am

walrus

zyzzyva

NPFL140 - LLM Inference

the

I
...

...

...

P(yt| <BOS>, “I”)t=1

the most probable one?
am

<BOS>

12NPFL140 - LLM Inference

Autoregressive decoding

Transformer

I

am

a
aardwark
am

walrus

zyzzyva

the

I
...

...

...

P(yt| <BOS>, “I”, “am”)t=2

<BOS>

every single time?

the

13NPFL140 - LLM Inference

Autoregressive decoding

I

am

the

Transformer

a
aardwark
am

walrus

zyzzyva

the

model
...

...

...

P(yt| <BOS>, “I”, “am”, “the”)t=3

<BOS>

YOLO!

walrus

14NPFL140 - LLM Inference

Autoregressive decoding

I

am

the

walrus

Transformer

t=4

<BOS>

Decoding algorithms

16

Greedy decoding source: https://huggingface.co/blog/how-to-generate

NPFL140 - LLM Inference

● Selecting the most probable token

in each step t:

● Very fast, often works satisfactorily

(especially with LLMs)

● Non-parameteric

https://huggingface.co/blog/how-to-generate

17

Beam search source: https://huggingface.co/blog/how-to-generate

NPFL140 - LLM Inference

● Parameter k: number of sequences

● Each step t:
○ Extend the sequences from the step

t-1 with all possible tokens.

○ Select the k most probable

sequences for the step t+1.

● Tuning k:

○ k=1 == greedy decoding

○ larger k → slower algorithm

○ k>1 allows re-ranking results

https://huggingface.co/blog/how-to-generate

18

Exact Inference = Maximum a posteriori (MAP) decoding

● Finding the most probable sequence (=mode of the LM distribution) given the

step-wise factorization of sequence probability:

● Intractable (exponential search space)

● Can be approximated by greedy decoding or beam search

● The mode may not be a good solution! ([1], [2])

○ e.g. an empty sequence

NPFL140 - LLM Inference

https://arxiv.org/pdf/2005.10283.pdf
https://aclanthology.org/D19-1331/

19

Top-k sampling source: https://huggingface.co/blog/how-to-generate

NPFL140 - LLM Inference

● Selecting the token in each step

randomly from k ∈ {1, ..., |V|}

most probable tokens

● The truncated distribution is

re-weighed using softmax

prefix = “The”
 → sampling from

{nice, dog, car,
woman, guy, man}

cum.prob. = 0.68

prefix = “The car”
→ sampling from
{drives, is, turns,
stops, down, a}

cum.prob. = 0.99

step #1

step #2

https://huggingface.co/blog/how-to-generate

20

Top-p (nucleus) sampling source: https://huggingface.co/blog/how-to-generate

NPFL140 - LLM Inference

● Sampling from “nucleus”: set of

the most probable tokens with

combined probability summing to

p ∈ (0, 1]

● Similar to top-k sampling, but

with a variable k in each step.

prefix = “The”
 → sampling from

{nice, dog, car,
woman, guy, man,

people, big, house}

cum.prob. = 0.94
(>0.9)

prefix = “The car”
→ sampling from
{drives, is, turns}

cum.prob. = 0.97
(>0.9)

step #1

step #2

https://huggingface.co/blog/how-to-generate

The shape of the distribution can be adjusted using the temperature T:

21NPFL140 - LLM Inference

Temperature image source: Reddit

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/

22

Is greediness all you need? source: Reddit

NPFL140 - LLM Inference

https://www.reddit.com/r/MachineLearning/comments/1e42das/d_what_happened_to_creative_decoding_strategy/

Navigating the LLM zoo

24

LLM evolutionary tree

NPFL140 - LLM Inference

source: https://arxiv.org/abs/2304.13712

https://arxiv.org/abs/2304.13712

25

LLM size and capabilities

NPFL140 - LLM Inference

source: https://informationisbeautiful.net/visualizations/
the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

HuggingFace: the largest repository of open LLMs.

As of March 2025, it contains ~1.5M models (many of these are derivatives).

26

Model sources and leaderboards

NPFL140 - LLM Inference

https://huggingface.co/models

27

Model sources and leaderboards

NPFL140 - LLM Inference

Chatbot Arena: Elo rating of LLMs.

For a pair of answers from different models, users decide which is

better.

https://arena.lmsys.org

28

Model sources and leaderboards

NPFL140 - LLM Inference

Open LLM Leaderboard: ratings of open LLMs on benchmarks.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

29NPFL140 - LLM Inference

Rules of thumb for selecting a model

● Try a general-purpose model first.

○ You can specify your task using in-context learning.

○ RAG can help you with a custom knowledge base.

● You may want to use a fine-tuned model, but think carefully about

which data it was finetuned on.

● You probably do not want an off-the-shelf base model unless you

want to fine-tune it (or you are interested in LM on its own).

● Out of the newest models, select the largest model you can support.

Running LLMs locally

31

How to use LLMs

NPFL140 - LLM Inference

32

Frameworks for running open LLMs

NPFL140 - LLM Inference

Huggingface transformers: Python library for loading models from the

Huggingface model repository.

https://github.com/huggingface/transformers

33

Frameworks for running open LLMs

NPFL140 - LLM Inference

Ollama: running a local server, easy to use, focus on quantized models

https://ollama.com

34

Frameworks for running open LLMs

NPFL140 - LLM Inference

vLLM: efficient library for serving of LLMs on an enterprise level

https://docs.vllm.ai/en/latest/

35

Text generation

NPFL140 - LLM Inference

https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html

Demo time

https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html

36

Links

NPFL140 - LLM Inference

● Huggingface models

● Awesome LLM: curated list of resources

● Transformer inference: 3D visualization

● Huggingface decoding algorithms overview

● Huggingface text generation strategies (includes a few extra ones)

● Common pitfalls when generating text with LLMs

● Visualizing decoding strategies

● Minimum Bayes Risk decoding

https://huggingface.co/models
https://github.com/Hannibal046/Awesome-LLM
https://bbycroft.net/llm
https://huggingface.co/blog/how-to-generate
https://huggingface.co/docs/transformers/generation_strategies
https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html
https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html

Bonus: Extra decoding algorithms

38

Minimum Bayes Risk (MBR) Decoding

● Selecting the sequence most similar to other

sequences = “consensus decoding”

● Useful for minimizing pathological behavior

● Intractable → we need a sampling algorithm

● Application in automatic speech recognition and

machine translation

source: Minimum Bayes Risk Decoding

MAP 🫤

MBR 😊
NPFL140 - LLM Inference

https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html

39

Mirostat reference: https://openreview.net/pdf?id=W1G1JZEIy5_

● Aims to eliminate repetition and

incoherent text in stochastic algorithms

● Adapting the k parameter based on the

desired text perplexity (“mirum” =

surprise, “stat” = control)

● Parameters:

○ 𝜏 (tau) - the target perplexity

○ η (eta) - learning rate

NPFL140 - LLM Inference

https://openreview.net/pdf?id=W1G1JZEIy5_

40

(Locally) typical sampling reference:
https://aclanthology.org/2023.tacl-1.7/

● Decodes text so that in each step, its perplexity is

close to the perplexity of the model

○ Similar to Mirostat, but dynamic: the

perplexity is not pre-specified

● Information theory: typical messages are the

messages that we would expect from the process

NPFL140 - LLM Inference

p(H) = 0.75 H H H H → most probable sequence

p(T) = 0.25 H T H H → typical sequence

https://aclanthology.org/2023.tacl-1.7/

41

Further reading

NPFL140 - LLM Inference

● On Decoding Strategies for Neural Text Generators (Wiher et al., 2022)
○ Language generation tasks vs. decoding strategies.

● If beam search is the answer, what was the question? (Meister et al., 2020)

○ Why does beam search work so well?

● Understanding the Properties of Minimum Bayes Risk Decoding in Neural

Machine Translation (Muller and Sennrich, 2021)

○ When can MBR be useful?

https://aclanthology.org/2022.tacl-1.58/
https://aclanthology.org/2020.emnlp-main.170/
https://aclanthology.org/2021.acl-long.22.pdf
https://aclanthology.org/2021.acl-long.22.pdf

