
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

LLM Inference
Zdeněk Kasner

10 March 2025

NPFL140 Large Language Models



After today’s class, you should be able to:

● Understand how to generate text with a Transformer-based 

language model.

● Explain differences between decoding algorithms and the role of 

decoding parameters.

● Choose a suitable LLM for your task.

● Run a LLM locally on your computer or computational cluster.
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Today’s learning outcomes
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Generating text
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Recap: Training

NPFL140 - LLM Inference

Prague is the capital of Czechia (...)

Pre-training1

Instruction tuning2

user: What is the capital of Czechia?
assistant: Prague

random neural 
network

Model stages:

helpful assistant
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“autocomplete on steroids”

1

base / foundational model

assistant

2

instruction-tuned model 3 Human preference optimization

user: What is the capital of Czechia?

answer #1: Prague.
answer #2: The capital of Czechia is Prague.

Training stages:
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This lecture: LLM inference.

= We have a trained model and we want to use it.

Question: What is the difference between inference, 

generation, and decoding?
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LLM Inference



Inference
The concept of using a trained model for making 
predictions on new data (for classification, 
sequence tagging, text generation, ...).

Generation
The process of using a trained model for 
producing a sequence of tokens.

Decoding
The algorithm of selecting the next token using 
the model’s internal representation.
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LLM Inference

inference

generation

decoding
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Training vs. inference
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Prague is the capital of Czechia

is the capital of Czechia <EOS>

Transformer

Teacher forcing: We know what token 
should come next, so we use it to train the 

model.

Training Inference

user: Who are you? 
assistant:

Transformer

Decoding: We need to select what token 
should come next.



https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz
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What happens during LLM inference?
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https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz
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Generating text
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For every sequence, the LLM generates a probability distribution over the vocabulary of 

tokens.

To generate text:
1. Start with a sequence of tokens (“prompt”).
2. Feed the sequence into the LLM.
3. Select the next token from the model-generated probability distribution.
4. Append the selected token to the sequence.
5. Repeat from (2).

→ Autoregressive decoding
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Autoregressive decoding

Transformer

I
a
aardwark
am

walrus

zyzzyva

NPFL140 - LLM Inference

the

I
...

...

...

P(yt| <BOS>, “I”)t=1

}
which token to select?

<BOS>
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Autoregressive decoding

Transformer

I
a
aardwark
am

walrus

zyzzyva

NPFL140 - LLM Inference

the

I
...

...

...

P(yt| <BOS>, “I”)t=1

the most probable one?
am

<BOS>
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Autoregressive decoding

Transformer

I

am

a
aardwark
am

walrus 

zyzzyva

the

I
...

...

...

P(yt| <BOS>, “I”, “am”)t=2

<BOS>

every single time?

the
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Autoregressive decoding

I

am

the

Transformer

a
aardwark
am

walrus

zyzzyva

the

model
...

...

...

P(yt| <BOS>, “I”, “am”, “the”)t=3

<BOS>

YOLO!

walrus
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Autoregressive decoding

I

am

the

walrus

Transformer

t=4

<BOS>



Decoding algorithms
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Greedy decoding source: https://huggingface.co/blog/how-to-generate
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● Selecting the most probable token 

in each step t:

● Very fast, often works satisfactorily 

(especially with LLMs)

● Non-parameteric

https://huggingface.co/blog/how-to-generate
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Beam search source: https://huggingface.co/blog/how-to-generate
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● Parameter k: number of sequences

● Each step t:
○ Extend the sequences from the step 

t-1 with all possible tokens.

○ Select the k most probable 

sequences for the step t+1.

● Tuning k:

○ k=1 == greedy decoding

○ larger k → slower algorithm

○ k>1 allows re-ranking results

https://huggingface.co/blog/how-to-generate
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Exact Inference = Maximum a posteriori (MAP) decoding

● Finding the most probable sequence (=mode of the LM distribution) given the 

step-wise factorization of sequence probability:

● Intractable (exponential search space)

● Can be approximated by greedy decoding or beam search

● The mode may not be a good solution! ([1], [2])

○ e.g. an empty sequence

NPFL140 - LLM Inference

https://arxiv.org/pdf/2005.10283.pdf
https://aclanthology.org/D19-1331/
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Top-k sampling source: https://huggingface.co/blog/how-to-generate
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● Selecting the token in each step 

randomly from k  ∈ {1, ..., |V|} 

most probable tokens

● The truncated distribution is 

re-weighed using softmax

prefix = “The”
 →  sampling from 

{nice, dog, car, 
woman, guy, man}

cum.prob. = 0.68

prefix = “The car”
→  sampling from 
{drives, is, turns, 
stops, down, a}

cum.prob. = 0.99

step #1

step #2

https://huggingface.co/blog/how-to-generate
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Top-p (nucleus) sampling source: https://huggingface.co/blog/how-to-generate
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● Sampling from “nucleus”: set of 

the most probable tokens with 

combined probability summing to 

p ∈ (0, 1]

● Similar to top-k sampling, but 

with a variable k in each step.

prefix = “The”
 →  sampling from 

{nice, dog, car, 
woman, guy, man, 

people, big, house}

cum.prob. = 0.94
(>0.9)

prefix = “The car”
→  sampling from 
{drives, is, turns}

cum.prob. = 0.97 
(>0.9)

step #1

step #2

https://huggingface.co/blog/how-to-generate


The shape of the distribution can be adjusted using the temperature T:
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Temperature image source: Reddit

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/
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Is greediness all you need? source: Reddit
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https://www.reddit.com/r/MachineLearning/comments/1e42das/d_what_happened_to_creative_decoding_strategy/


Navigating the LLM zoo
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LLM evolutionary tree
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source: https://arxiv.org/abs/2304.13712

https://arxiv.org/abs/2304.13712
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LLM size and capabilities
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source: https://informationisbeautiful.net/visualizations/
the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/


HuggingFace: the largest repository of open LLMs.

As of March 2025, it contains ~1.5M models (many of these are derivatives).
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Model sources and leaderboards
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https://huggingface.co/models


27

Model sources and leaderboards
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Chatbot Arena: Elo rating of LLMs.

For a pair of answers from different models, users decide which is 

better.

https://arena.lmsys.org
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Model sources and leaderboards

NPFL140 - LLM Inference

Open LLM Leaderboard: ratings of open LLMs on benchmarks.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/


29NPFL140 - LLM Inference

Rules of thumb for selecting a model

● Try a general-purpose model first.

○ You can specify your task using in-context learning.

○ RAG can help you with a custom knowledge base.

● You may want to use a fine-tuned model, but think carefully about 

which data it was finetuned on.

● You probably do not want an off-the-shelf base model unless you 

want to fine-tune it (or you are interested in LM on its own).

● Out of the newest models, select the largest model you can support.



Running LLMs locally
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How to use LLMs

NPFL140 - LLM Inference
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Frameworks for running open LLMs
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Huggingface transformers: Python library for loading models from the 

Huggingface model repository.

https://github.com/huggingface/transformers
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Frameworks for running open LLMs
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Ollama: running a local server, easy to use, focus on quantized models

https://ollama.com


34

Frameworks for running open LLMs
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vLLM: efficient library for serving of LLMs on an enterprise level

https://docs.vllm.ai/en/latest/
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Text generation
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https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html

Demo time

https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html
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Links
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● Huggingface models

● Awesome LLM: curated list of resources

● Transformer inference: 3D visualization

● Huggingface decoding algorithms overview

● Huggingface text generation strategies (includes a few extra ones)

● Common pitfalls when generating text with LLMs

● Visualizing decoding strategies

● Minimum Bayes Risk decoding

https://huggingface.co/models
https://github.com/Hannibal046/Awesome-LLM
https://bbycroft.net/llm
https://huggingface.co/blog/how-to-generate
https://huggingface.co/docs/transformers/generation_strategies
https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html
https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html


Bonus: Extra decoding algorithms
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Minimum Bayes Risk (MBR) Decoding

● Selecting the sequence most similar to other 

sequences = “consensus decoding”

● Useful for minimizing pathological behavior

● Intractable → we need a sampling algorithm

● Application in automatic speech recognition and 

machine translation

source: Minimum Bayes Risk Decoding

MAP 🫤

MBR 😊
NPFL140 - LLM Inference

https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html
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Mirostat reference: https://openreview.net/pdf?id=W1G1JZEIy5_ 

● Aims to eliminate repetition and 

incoherent text in stochastic algorithms

● Adapting the k parameter based on the 

desired text perplexity (“mirum” = 

surprise, “stat” = control)

● Parameters: 

○ 𝜏 (tau) - the target perplexity

○ η (eta) - learning rate 

NPFL140 - LLM Inference

https://openreview.net/pdf?id=W1G1JZEIy5_
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(Locally) typical sampling reference: 
https://aclanthology.org/2023.tacl-1.7/

● Decodes text so that in each step, its perplexity is 

close to the perplexity of the model 

○ Similar to Mirostat, but dynamic: the 

perplexity is not pre-specified

● Information theory: typical messages are the 

messages that we would expect from the process

NPFL140 - LLM Inference

p(H) = 0.75 H H H H → most probable sequence

p(T) = 0.25 H T H H → typical sequence

https://aclanthology.org/2023.tacl-1.7/
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Further reading
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● On Decoding Strategies for Neural Text Generators (Wiher et al., 2022)
○ Language generation tasks vs. decoding strategies.

● If beam search is the answer, what was the question? (Meister et al., 2020)

○ Why does beam search work so well?

● Understanding the Properties of Minimum Bayes Risk Decoding in Neural 

Machine Translation (Muller and Sennrich, 2021)

○ When can MBR be useful?

https://aclanthology.org/2022.tacl-1.58/
https://aclanthology.org/2020.emnlp-main.170/
https://aclanthology.org/2021.acl-long.22.pdf
https://aclanthology.org/2021.acl-long.22.pdf

