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1. 💬 Assignments (20 min)

2. 🍾 Discussion + Bottlenecks in Transformers (30 min)

3. 🏃 Efficiency algorithms (30 min)

4. 🌐 LLMs beyond English (30 min next week)
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Lesson plan
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Discussion
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computation speed? memory? disk space?
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What is the main problem when training a LLM?



Transformer Bottlenecks
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Speed
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Complexities against:
inner dimension (d) and 
sequence length (n), vocabulary (v).

● Feed forward: O(n ⋅ d²)
● Linear Softmax: O(n ⋅ v ⋅ d)
● Attention: O(n² ⋅ d)

Complexity of transformer: 
O(n^2 d + n d^2)
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Speed
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Complexities against:
inner dimension (d) and 
sequence length (n), vocabulary (v).

● Feed forward: O(n ⋅ d²)
● Linear Softmax: O(n ⋅ v ⋅ d)
● Attention: O(n² ⋅ d)

Complexity of transformer: 
O(n² ⋅ d + n ⋅ d²)
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Disk Space
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Size of the  model:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB

Size of dataset:

Pre-training: ~10T token -> 50TB

Fine-tuning and inference: up to 100s GB
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Disk Space
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Size of the  model:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB

Size of dataset:

Pre-training: ~10T tokens ➡ 50TB

Fine-tuning and inference: up to 100s GB
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Memory
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Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

8 bytes per optimizer weights (Adam)

10B param model -> 160GB !
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Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

8 bytes per optimizer weights (Adam)
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Memory
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Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ ❓
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Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ 160GB !
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Memory
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Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ 160GB !



Efficiency Algorithms
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Problem: Constrained Memory in Training

inference
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What can we do? Any ideas?
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Problem: Constrained Memory in Training

inference

NPFL140 - LLM Efficiency

What can we do? Any ideas?

💡 Get few million dollars to buy a brand new GPU cluster!
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Problem: Constrained Memory in Training

inference
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What can we do? Any ideas?

💡 Get few million dollars to buy a brand new GPU cluster!

💡 Tune only some parameters for specific task

💡 Use smaller parameters

💡 Use smaller models



Weight matrices are decomposed

Decrease tunable parameters by 1000 to 
10000 times

Gradient computed just for adapted 
parameters (not whole model)

Originally only attention layers were 
adapted in LoRA
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Parameter Efficiency in Fine Tuning: qLoRA source: https://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685.pdf
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If you prefer equations:

Where

At the beginning of the training  B initialized to 0, A initialized randomly.
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qLoRA source: https://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685.pdf
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Fine-Tuning vs. LoRA source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf
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Quantization

The size of parameters may be 
decreased by quantization

Parameters are assigned into
coarse buckets

Important to determine the range of the 
quantization c
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QLoRA

4bit NormalBit quantization: 
equally-sized  buckets based

Double Quantization: quantize both 
parameters but also their range c

IMPORTANT: LoRA adaptation of all the 
layers (attention and feed forward)

source: https://towardsdatascience.com

https://towardsdatascience.com/qlora-how-to-fine-tune-an-llm-on-a-single-gpu-4e44d6b5be32
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QLoRA

4bit NormalBit quantization: 
equally-sized  buckets based

Double Quantization: quantize both 
parameters but also their range c

IMPORTANT: LoRA adaptation of all the 
layers (attention and feed forward)

source: https://towardsdatascience.com
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QLoRA: Paged Optimizer

Optimizer weights are transferred 
between GPU and CPU memory.

It prevents running out of memory when 
processing long sequences.

source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf
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Fine-Tuning vs. LoRA vs. QLoRA source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf
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Fine-Tuning vs. LoRA vs. QLoRA

Fine-Tuning LoRA QLoRA

Tunable parameters 100 % ~0.1% ~0.2%

Model Precision 16 bit 16 bit 4 bit

RAM 10B model 160GB ~40GB ~12GB

Applicable for Industrial 
Supercomputer

Academic
Cluster

Good Personal
Setting

Matches performance — YES YES*
(in full model tuning)
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Scale Wisely: Chinchilla Rule

Larger models perform better, but what size is enough for me?

It’s often better to prioritize data scale over model scale.

Chinchilla rule of the thumb: 20 tokens per parameter.

sources:   https://arxiv.org/pdf/2203.15556
 https://lifearchitect.ai/chinchilla/

https://arxiv.org/pdf/2203.15556.pdf
https://lifearchitect.ai/chinchilla/
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There are more tunable parameters than in regular Fine-Tuning, i.e. tunable 
layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the 
performance deteriorates.

Hint: Newer models are usually “quantization friendlier”
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Try It Yourself: QLoRA 

https://github.com/artidoro/qlora

Credit: Ondřej Plátek

https://github.com/artidoro/qlora?tab=readme-ov-file
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Questions?


