
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

LLM Efficiency
Tomasz Limisiewicz

18 April 2024

NPFL140 Large Language Models

1. 💬 Assignments (20 min)

2. 🍾 Discussion + Bottlenecks in Transformers (30 min)

3. 🏃 Efficiency algorithms (30 min)

4. 🌐 LLMs beyond English (30 min next week)

2

Lesson plan

NPFL140NPFL140 - LLM Efficiency

Discussion

NPFL140 - LLM Efficiency

computation speed? memory? disk space?

4

What is the main problem when training a LLM?

Transformer Bottlenecks

6

Speed

NPFL140 - LLM Efficiency

Complexities against:
inner dimension (d) and
sequence length (n), vocabulary (v).

● Feed forward: O(n ⋅ d²)
● Linear Softmax: O(n ⋅ v ⋅ d)
● Attention: O(n² ⋅ d)

Complexity of transformer:
O(n^2 d + n d^2)

7

Speed

NPFL140 - LLM Efficiency

Complexities against:
inner dimension (d) and
sequence length (n), vocabulary (v).

● Feed forward: O(n ⋅ d²)
● Linear Softmax: O(n ⋅ v ⋅ d)
● Attention: O(n² ⋅ d)

Complexity of transformer:
O(n² ⋅ d + n ⋅ d²)

8

Disk Space

NPFL140 - LLM Efficiency

Size of the model:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB

Size of dataset:

Pre-training: ~10T token -> 50TB

Fine-tuning and inference: up to 100s GB

9

Disk Space

NPFL140 - LLM Efficiency

Size of the model:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB

Size of dataset:

Pre-training: ~10T tokens ➡ 50TB

Fine-tuning and inference: up to 100s GB

10

Memory

NPFL140 - LLM Efficiency

Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

8 bytes per optimizer weights (Adam)

10B param model -> 160GB !

11

Memory

NPFL140 - LLM Efficiency

Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

8 bytes per optimizer weights (Adam)

10B param model -> 160GB !

12

Memory

NPFL140 - LLM Efficiency

Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ ❓

13

Memory

NPFL140 - LLM Efficiency

Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ 160GB !

14

Memory

NPFL140 - LLM Efficiency

Inference:

Usually 2 bytes per parameter (16 bit)

10B param model ➡ 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter
2 bytes per gradient

12 bytes per optimizer weight (Adam)

10B param model ➡ 160GB !

Efficiency Algorithms

16

Problem: Constrained Memory in Training

inference

NPFL140 - LLM Efficiency

What can we do? Any ideas?

17

Problem: Constrained Memory in Training

inference

NPFL140 - LLM Efficiency

What can we do? Any ideas?

💡 Get few million dollars to buy a brand new GPU cluster!

18

Problem: Constrained Memory in Training

inference

NPFL140 - LLM Efficiency

What can we do? Any ideas?

💡 Get few million dollars to buy a brand new GPU cluster!

💡 Tune only some parameters for specific task

💡 Use smaller parameters

💡 Use smaller models

Weight matrices are decomposed

Decrease tunable parameters by 1000 to
10000 times

Gradient computed just for adapted
parameters (not whole model)

Originally only attention layers were
adapted in LoRA

19NPFL140 - LLM Efficiency

Parameter Efficiency in Fine Tuning: qLoRA source: https://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685.pdf

Weight matrices are decomposed

Decrease tunable parameters by 1000 to
10000 times

Gradient computed just for adapted
parameters (not whole model)

Originally only attention layers were
adapted in LoRA

20NPFL140 - LLM Efficiency

Parameter Efficiency in Fine Tuning: qLoRA source: https://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685.pdf

If you prefer equations:

Where

At the beginning of the training B initialized to 0, A initialized randomly.

21NPFL140 - LLM Efficiency

qLoRA source: https://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685.pdf

22NPFL140 - LLM Efficiency

Fine-Tuning vs. LoRA source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf

23NPFL140 - LLM Efficiency

Quantization

The size of parameters may be
decreased by quantization

Parameters are assigned into
coarse buckets

Important to determine the range of the
quantization c

24NPFL140 - LLM Efficiency

QLoRA

4bit NormalBit quantization:
equally-sized buckets based

Double Quantization: quantize both
parameters but also their range c

IMPORTANT: LoRA adaptation of all the
layers (attention and feed forward)

source: https://towardsdatascience.com

https://towardsdatascience.com/qlora-how-to-fine-tune-an-llm-on-a-single-gpu-4e44d6b5be32

25NPFL140 - LLM Efficiency

QLoRA

4bit NormalBit quantization:
equally-sized buckets based

Double Quantization: quantize both
parameters but also their range c

IMPORTANT: LoRA adaptation of all the
layers (attention and feed forward)

source: https://towardsdatascience.com

https://towardsdatascience.com/qlora-how-to-fine-tune-an-llm-on-a-single-gpu-4e44d6b5be32

26NPFL140 - LLM Efficiency

QLoRA

4bit NormalBit quantization:
equally-sized buckets based

Double Quantization: quantize both
parameters but also their range c

IMPORTANT: LoRA adaptation of all the
layers (attention and feed forward)

source: https://towardsdatascience.com

https://towardsdatascience.com/qlora-how-to-fine-tune-an-llm-on-a-single-gpu-4e44d6b5be32

27NPFL140 - LLM Efficiency

QLoRA: Paged Optimizer

Optimizer weights are transferred
between GPU and CPU memory.

It prevents running out of memory when
processing long sequences.

source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf

28NPFL140 - LLM Efficiency

Fine-Tuning vs. LoRA vs. QLoRA source: https://arxiv.org/pdf/2305.14314

https://arxiv.org/pdf/2305.14314.pdf

29NPFL140 - LLM Efficiency

Fine-Tuning vs. LoRA vs. QLoRA

Fine-Tuning LoRA QLoRA

Tunable parameters 100 % ~0.1% ~0.2%

Model Precision 16 bit 16 bit 4 bit

RAM 10B model 160GB ~40GB ~12GB

Applicable for Industrial
Supercomputer

Academic
Cluster

Good Personal
Setting

Matches performance — YES YES*
(in full model tuning)

30NPFL140 - LLM Efficiency

Scale Wisely: Chinchilla Rule

Larger models perform better, but what size is enough for me?

It’s often better to prioritize data scale over model scale.

Chinchilla rule of the thumb: 20 tokens per parameter.

sources: https://arxiv.org/pdf/2203.15556
 https://lifearchitect.ai/chinchilla/

https://arxiv.org/pdf/2203.15556.pdf
https://lifearchitect.ai/chinchilla/

31NPFL140 - LLM Efficiency

Scale Wisely: Chinchilla Rule

Larger models perform better, but what size is enough for me?

It’s often better to prioritize data scale over model scale.

Chinchilla rule of the thumb: 20 tokens per parameter.

sources: https://arxiv.org/pdf/2203.15556
 https://lifearchitect.ai/chinchilla/

https://arxiv.org/pdf/2203.15556.pdf
https://lifearchitect.ai/chinchilla/

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable
layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the
performance deteriorates.

Hint: Newer models are usually “quantization friendlier”

32NPFL140 - LLM Efficiency

Try It Yourself: QLoRA

https://github.com/artidoro/qlora

Credit: Ondřej Plátek

https://github.com/artidoro/qlora?tab=readme-ov-file

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable
layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the
performance deteriorates.

Hint: Newer models are usually “quantization friendlier”

33NPFL140 - LLM Efficiency

Try It Yourself: QLoRA

https://github.com/artidoro/qlora

Credit: Ondřej Plátek

https://github.com/artidoro/qlora?tab=readme-ov-file

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable
layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the
performance deteriorates.

Hint: Newer models are usually “quantization friendlier”

34NPFL140 - LLM Efficiency

Try It Yourself: QLoRA

https://github.com/artidoro/qlora

Credit: Ondřej Plátek

https://github.com/artidoro/qlora?tab=readme-ov-file

Questions?

