NPFL140 Large Language Models

LLM Efficiency

Tomasz Limisiewicz

18 April 2024

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Lesson plan

1. 💬 Assignments (20 min)

- 2. **Transformers (30 min)**
- 3. 🏃 **Efficiency** algorithms (30 min)

What is the main problem when training a LLM?

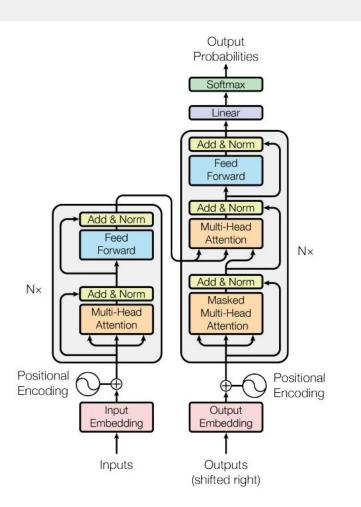
computation speed? memory? disk space?

Transformer Bottlenecks

Speed

Complexities against: inner dimension (d) and sequence length (n), vocabulary (v).

- Feed forward: $O(n \cdot d^2)$
- Linear Softmax: $O(n \cdot v \cdot d)$
- Attention: $O(n^2 \cdot d)$

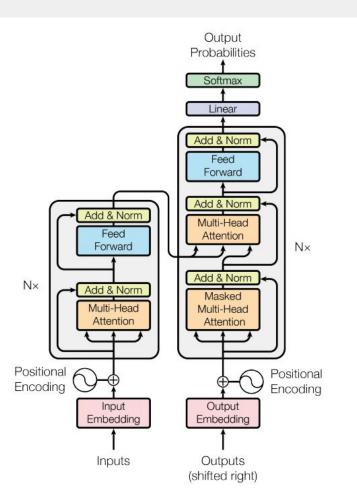


Speed

Complexities against: inner dimension (d) and sequence length (n), vocabulary (v).

- Feed forward: $O(n \cdot d^2)$
- Linear Softmax: $O(n \cdot v \cdot d)$
- Attention: $O(n^2 \cdot d)$

Complexity of transformer: $O(n^2 \cdot d + n \cdot d^2)$



Disk Space

Size of the model:

Usually 2 bytes per parameter (16 bit)

10B param model 🔁 20GB

Disk Space

Size of the model:

Usually 2 bytes per parameter (16 bit)

10B param model 🔁 20GB

Size of dataset:

Pre-training: ~10T tokens 🔄 50TB

Fine-tuning and inference: up to 100s GB

Usually 2 bytes per parameter (16 bit)

10B param model - 20GB (+ some for inference batch)

Usually 2 bytes per parameter (16 bit)

10B param model 🔄 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter2 bytes per gradient

Usually 2 bytes per parameter (16 bit)

10B param model 🔄 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter 2 bytes per gradient 12 bytes per optimizer weight (Adam)

10B param model 🔜 ?

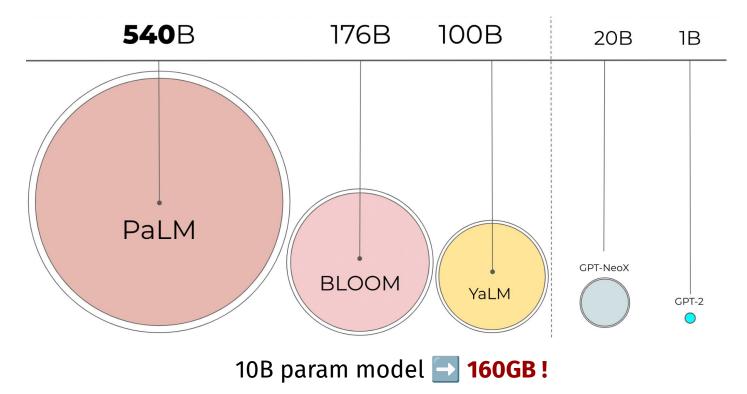
Usually 2 bytes per parameter (16 bit)

10B param model 🔄 20GB (+ some for inference batch)

Training or Fine-tuning:

2 bytes per parameter 2 bytes per gradient 12 bytes per optimizer weight (Adam)

10B param model 🔁 160GB !



Efficiency Algorithms

Problem: Constrained Memory in Training

What can we do? Any ideas?

Problem: Constrained Memory in Training

What can we do? Any ideas?

Get few million dollars to buy a brand new GPU cluster!

Problem: Constrained Memory in Training

What can we do? Any ideas?

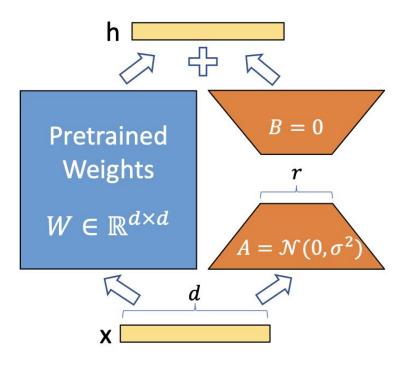
Get few million dollars to buy a brand new GPU cluster!

Tune only some parameters for specific task

Use smaller parameters

Parameter Efficiency in Fine Tuning: LoRA

Weight matrices are decomposed



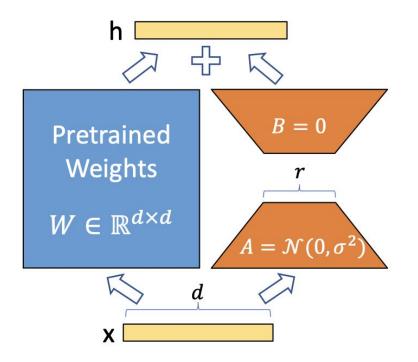
Parameter Efficiency in Fine Tuning: LoRA

Weight matrices are decomposed

Decrease tunable parameters by 1000 to 10000 times

Gradient computed just for adapted parameters (not whole model)

Originally only attention layers were adapted in LoRA



If you prefer equations:

$h = W_0 x + \Delta W x = W_0 + BAx$

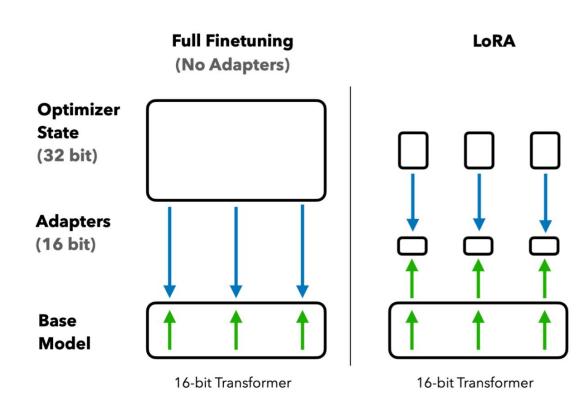
Where

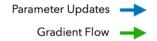
LORA

$W_0 \in \mathbb{R}^{d \times k} \qquad r \ll \min(d, k)$ $B \in \mathbb{R}^{d \times r} \quad A \in \mathbb{R}^{r \times k}$

At the beginning of the training B initialized to 0, A initialized randomly.

Fine-Tuning vs. LoRA





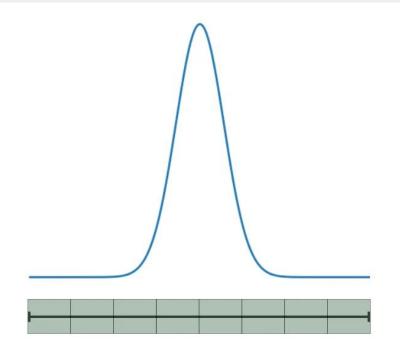
NPFL140 - LLM Efficiency

Quantization

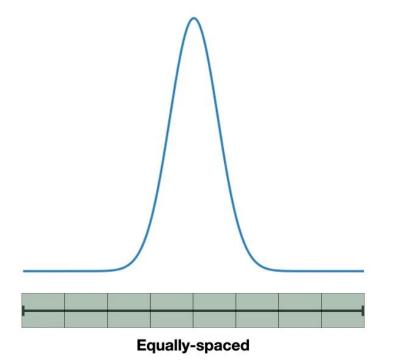
The size of parameters may be decreased by quantization

Parameters are assigned into coarse buckets

Important to determine the range of the quantization c

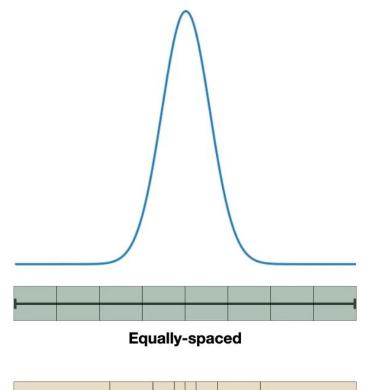


4bit NormalBit quantization: equally-sized buckets based



4bit NormalBit quantization: equally-sized buckets based

Double Quantization: quantize both parameters but also their range c

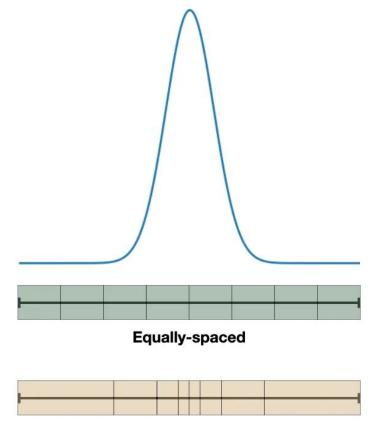


QLoRA

4bit NormalBit quantization: equally-sized buckets based

Double Quantization: quantize both parameters but also their range c

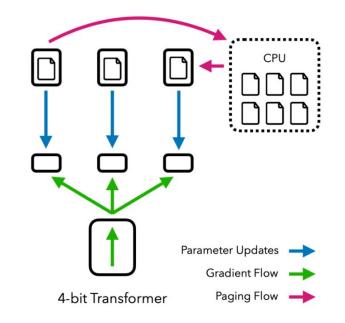
IMPORTANT: LoRA adaptation of all the layers (attention and feed forward)



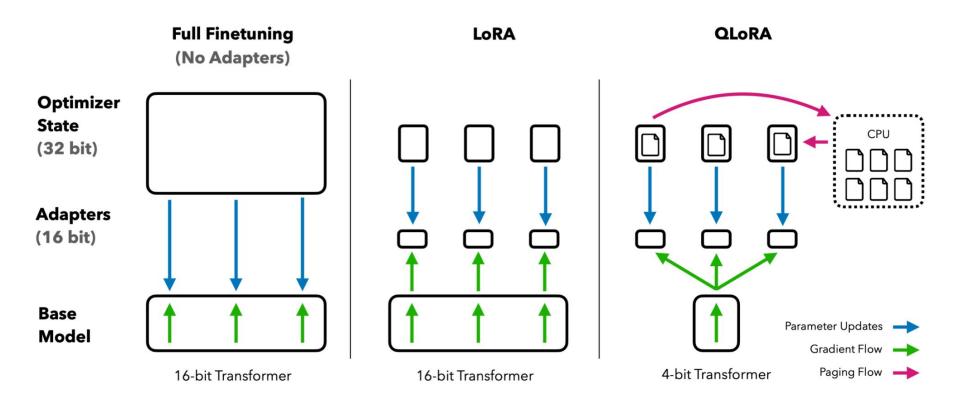
QLoRA: Paged Optimizer

Optimizer weights are transferred between GPU and CPU memory.

It prevents running out of memory when processing long sequences.



Fine-Tuning vs. LoRA vs. QLoRA



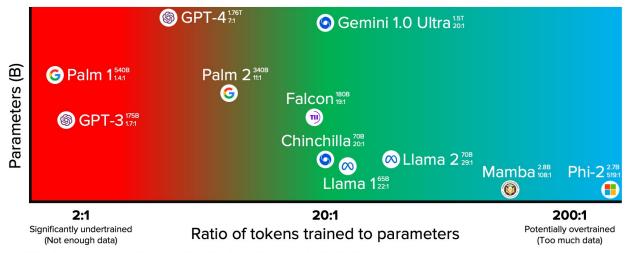
Fine-Tuning vs. LoRA vs. QLoRA

	Fine-Tuning	LoRA	QLoRA
Tunable parameters	100 %	~0.1%	~0.2%
Model Precision	16 bit	16 bit	4 bit
RAM 10B model	160GB	~40GB	~12GB
Applicable for	Industrial Supercomputer	Academic Cluster	Good Personal Setting
Matches performance		YES	YES* (in full model tuning)

Scale Wisely: Chinchilla Rule

Larger models perform better, but what size is enough for me?

It's often better to prioritize data scale over model scale.



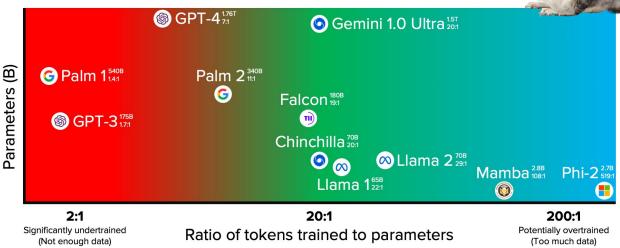
Selected highlights only. Mostly to scale. Informed estimates for Palm 2, GPT-4, and Gemini. Alan D. Thompson. November 2022, major update December 2023. https://lifearchitect.ai/

Scale Wisely: Chinchilla Rule

Larger models perform better, but what size is enough for me?

It's often better to prioritize data scale over model scale.

Chinchilla rule of the thumb: 20 tokens per parameter.



Selected highlights only. Mostly to scale. Informed estimates for Palm 2, GPT-4, and Gemini. Alan D. Thompson. November 2022, major update December 2023. https://lifearchitect.ai/

Try It Yourself: QLoRA

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

https://github.com/artidoro/qlora

Try It Yourself: QLoRA

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the performance deteriorates.

https://github.com/artidoro/qlora

Try It Yourself: QLoRA

There are more tunable parameters than in regular Fine-Tuning, i.e. tunable layers, decomposition rank (quite robust), update scaling.

Hint: QLoRA defaults are usually good to start with.

Hint: Try running inference on quantized (but not adapted) model to see if the performance deteriorates.

Hint: Newer models are usually "quantization friendlier"

https://github.com/artidoro/qlora

