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Discussion time!

1. How many trained language models do you

estimate to be publicly available?

2. What is the difference between inference,

generation, and decoding?
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Warm-up: identify what is not a language model

Optimus MARGE Megatron
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Warm-up: identify what is not a language model

not yet

Megatron
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https://huggingface.co/facebook/bart-base
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/nghuyong/ernie-3.0-base-zh
https://huggingface.co/Q-bert/Optimus-7B
https://github.com/lucidrains/marge-pytorch
https://github.com/NVIDIA/Megatron-LM

(Although...)

source: https://arxiv.org/abs /240211746

L] 19 Feb 2024

LANGUAGE MODELS ARE HOMER SIMPSON! Safety Re-Alignment of
Fine-tuned Language Models through Task Arithmetic

Rishabh Bhardwaj', Do Duc Anh?, Soujanya Poria’

! Singapore University of Technology and Design, 2 Nanyang Technological University

Abstract

Aligned language models face a significant
limitation as their fine-tuning often results in
compromised safety. To tackle this, we pro-
pose a simple method RESTA that performs
LLM safety realignment. RESTA stands for
REstoring Safety through Task Arithmetic.
At its core, it involves a simple arithmetic
addition of a safety vector to the weights
of the compromised model. We demon-
strate the effectiveness of RESTA in both
parameter-efficient and full fine-tuning, cov-
ering a wide range of downstream tasks, in-

Performant
(SFT)

rmance
A i@ Chinese
o~
Porformant & Safe
L — A (RESTA)
i??o e
A % Math O Base
Ds
A % ?.’/:7“55 TA
oo ?i.\% RESTA + DARE
Safety

NPFL140 - LLM Inference



https://arxiv.org/abs/2402.11746

Warm-up: identify what is not a language model

Alpaca Camel Falcon Flamingo

M
?.

Orca Vicuna

Koala

images from https://creazilla.com/
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Warm-up: identify what is not a language model

o
'b

Flamingo

Koala Vicuna

images from https://creazilla.com/
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https://crfm.stanford.edu/2023/03/13/alpaca.html
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://llama.meta.com
https://huggingface.co/Writer/camel-5b-hf
https://huggingface.co/tiiuae/falcon-180B
https://arxiv.org/pdf/2204.14198.pdf
https://www.microsoft.com/en-us/research/project/orca/
https://lmsys.org/blog/2023-03-30-vicuna/

Some numbers

e 555,743 models uploaded on HuggingFace (2024/03/18)
o includes finetuned / scaled variants of the same base model

e 123 models on AlpacaEval Leaderboard

o mostly instruction-tuned models
e 73 models in the LMSYS Chatbot Arena

o mostly models finetuned for chat

¢ 1medetl platform te-rute-them-att everyone knows (ChatGPT)
e See also https://github.com/Hannibal046/Awesome-LLM.
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https://huggingface.co/models
https://tatsu-lab.github.io/alpaca_eval/
https://arena.lmsys.org
https://github.com/Hannibal046/Awesome-LLM

LLM evolutionary tree
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https://arxiv.org/abs/2304.13712
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Inference vs. generation vs. decoding

Inference

The concept of using a trained model for making
predictions on new data (for classification,
sequence tagging, text generation, ...).

Generation
The process of using a trained model for
producing a sequence of tokens.

Decoding

The algorithm of turning the model’s internal
representation into a sequence of tokens.

NPFL140 - LLM Inference

inference

generation

decoding
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Transformer inference

https://bbycroft.net/llm

https://github.com/bbycroft/llm-viz

NPFL140 - LLM Inference
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https://bbycroft.net/llm
https://github.com/bbycroft/llm-viz
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Autoregressive decoding

Where are we:
e Task: Generating a sequence of tokens.
e Tool: A language model (LM) giving us a probability distribution over
the vocabulary for a given prefix.
e Method: Feed the sequence prefix in the LM - Select the next token -
(how?)

Append the token to the prefix - Repeat.

= Autoregressive decoding

NPFL140 - LLM Inference
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Autoregressive decoding

t=1 P(y,| <BOS>, “I”)

a
aardwark
am

I

Transformer

_| the
walrus

] zyzzyva

——

which token to select?

NPFL140 - LLM Inference
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Autoregressive decoding

t=1 P(y,| <BOS>, “I”)
a
* aardwark
am
Transformer I
_| the
walrus
] zyzzyva

the most probable one?
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Autoregressive decoding

t:2 P(ytl <BOS>, “I", uamn)

a
aardwark
am

I

the

zyzzyva

Transformer
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Autoregressive decoding

t:3 P(ytl <BOS>, “I", uamn’ uthen)

<BOS> ] a
aardwark

I am

am Transformer I
the

the E walrus
zyzzyva
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Autoregressive decoding
t=4

<B0OS>
I

am Transformer

the

walrus

NPFL140 - LLM Inference
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Autoregressive decoding

Have we generated the most
probable sequence?

Do we want to generate the
most probable sequence?

NPFL140 - LLM Inference

W

JTE™S
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Decoding algorithms

minimizing unwanted
behavior

MAP decoding Greedy search MBR decoding

finding the most probable sequence

sampling a random sequence

. Top-p (nucleus . Typical
B ST ps:n(]pling ) sa)r/r[n)pling

NPFL140 - LLM Inference 25



Exact Inference = Maximum a posteriori (MAP) decoding

e Finding the most probable sequence (=mode of the LM distribution) given the

step-wise factorization of sequence probability:

t
y* = argmax P(y) = arg max H P(yilyr, -+, Y1)

e Intractable (exponential search space) > approximation algorithms
e The mode may even not be a good solution! ([1], [2])

o e.g.an empty sequence

NPFL140 - LLM Inference
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https://arxiv.org/pdf/2005.10283.pdf
https://aclanthology.org/D19-1331/

Greedy decoding

e Selecting the most probable token

in each step t:

Yt — argmax P(yt|y1, ceey yt—1)
yieV

e Very fast, often works satisfactorily
(especially with LLMs)

e Non-parameteric

NPFL140 - LLM Inference

source: https://hugsingface.co/blog/how-to-generate
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https://huggingface.co/blog/how-to-generate

Beam search

e Parameter k: number of sequences

e Eachstept:
o Extend the sequences from the step

t-1 with all possible tokens.
The

source: https://hugsingface.co/blog/how-to-generate

o Select the k most probable

sequences for the step t+1.
e Tuningk:
o Rk=1==greedy decoding
o larger kR - slower algorithm

o k>1allows re-ranking results

NPFL140 - LLM Inference
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https://huggingface.co/blog/how-to-generate

Mi n i mum Bayes RiSI( (M B R) DeCOd i ng source: Minimum Bayes Risk Decoding

. .. ‘5H“‘m\byﬂ\
e Selecting the sequence most similar to other o J N
sequences = “consensus decoding ¢ T B
} L 44 i
y* = arg max E sim (Y., Yr) .
yreY (a) yé
€
yeCY\yk MAP &
e Useful for minimizing pathological behavior
. . ‘ﬁ
e Intractable - we need a sampling algorithm y‘ﬁj 23 J | mo‘f;;;w
e Application in automatic speech recognition and {t ) _{f“
machine translation | () yey
MBR @&
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https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html

Selecting the token in each step
randomly fromk € {1, ..., |V|} most
probable tokens

The truncated distribution is
re-weighed using softmax

The shape of distribution can be

adjusted using the temperature T:
e¥i/T

yi/T
Z Yj € Vtop—k &

softmax(y;) =

1.0

0.0

P weviopx Pw]“The”) = 0.68

K—/H

_QQDﬂDDDDDD

oman guy man people big house cat

P(w|“The”)

%

> weVigp i L (W] “The”, “car”) = 0.99

F_/H

turns stops down a not the small told

P(w‘ CCThe” , “Car” )

t=1

prefix = “The”
- sampling from
{nice, dog, car,
woman, guy, man}

cum.prob. = 0.68

t=2

prefix = “The car”
- sampling from
{drives, is, turns,

stops, down, a}

cum.prob. = 0.99
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https://huggingface.co/blog/how-to-generate

Similar to top-k sampling, but with a
variable Rk in each step.

Sampling from “nucleus”: set of the
most probable tokens with combined
probability summing to p € (0, 1]
The number of selected tokens is
related to the “peakiness” of the

distribution.

1.0

D weViey, P(w[“The”) = 0.94

/—/%

o,o.._UDDDDDDDDD
nice  dog car woman guy man people big house cat

P(w|“The”)

%

S Vanyp P(w]“The”, “car”) = 0.97

1’_/%

b0 = — — —_ — —

urns stops down a not the small told

IS
P(w|“The”, “car”)

t=1

prefix = “The”

- sampling from
{nice, dog, car,
woman, guy, man,
people, big, house}

cum.prob. = 0.94
(>0.9)

t=2

prefix = “The car”
- sampling from
{drives, is, turns}

cum.prob. = 0.97
(>0.9)


https://huggingface.co/blog/how-to-generate

Aims to eliminate repetition and
incoherent text in stochastic algorithms
Adapting the k parameter based on the
desired text perplexity (“mirum” =
surprise, “stat” = control)
Parameters:

o r(tau) - the target perplexity

o n(eta) - learning rate

Algorithm 1: Adaptive top-k sampling for perplexity control

Target cross entropy 7, maximum cross entropy p = 2 * 7, learning rate 7
while more words are to be generated do
il tibi

Compute § from (40): S N1z

Compute k£ from (41): k = (lf%‘,;z
Sample the next word X using top-k sampling

Compute error: e = G(X) — 7
Update p: p=p—nx*e
end

32


https://openreview.net/pdf?id=W1G1JZEIy5_

(Locally) typical sampling

e Decodes text so that in each step, its perplexity is
close to the perplexity of the model
o Similar to Mirostat, but dynamic: the
perplexity is not pre-specified
e Information theory: typical messages are the

messages that we would expect from the process

reference:
https://aclanthology.org/2023.tacl-1.7/

Wikipedia

p(H) = 0.75 HHHH - most probable sequence

p(T) = 0.25 HTHH - typical sequence

NPFL140 - LLM Inference
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https://aclanthology.org/2023.tacl-1.7/

Other parameters

e repetition_penalty - discounting the scores of
previously generated tokens

e length_penalty - promoting shorter / longer
sequences in beam search

e ..and many more, see HF docs >

(we went through the most important ones, though)

NPFL140 - LLM Inference

source:
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https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig

Text Generation - hands-on




Text generation starter kit

NPFL140 - LLM Inference
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Text generation

Demo time

https://huggingface.co/docs/transformers/llm_tutorial

https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html

NPFL140 - LLM Inference
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https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html

Bonus: Beyond Autoregressive Decoding




Bonus: Beyond Autoregressive Decoding

NPFL140 - LLM Inference

LY, R y4E

1
F__]_!__)_E_]_(__]
00000

Non-autoregressive decoding

[1]

can be parallelized
needs to predict
output length
weaker links between

output tokens
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https://www.aclweb.org/anthology/2021.eacl-main.18

Bonus: Beyond Autoregressive Decoding

C;;}E‘,;E;Ej Autoregressive ““";;;u?l‘m‘g;h""’} Non-autoregressive
__[_Pf:::::::::::_’_\ decoding —_— — : decoding
(G[u[a]a]) @ 00000

TTIIT HF;

Non Autoregressive Decoder o mi d d l-e g roun d between
lPIa MuIclmeml ‘ AIbT ( II th || I I ‘ Tﬂ | ‘ )AII | | AI'( ||TTI HST'R ” )AIisl | aUtoregreSSive and
Ee ] non-autoregressive
| THTHTHTHTIITHTHTHTHT\ decoding
PlayMusicintent Album( shake it off )Album Artist( Taylor Swift )Artist

Insertion Transformer [1][2]
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http://arxiv.org/abs/1902.03249
https://assets.amazon.science/88/66/9bdacd4c48bd84c61f5e52070783/controlled-data-generation-via-insertion-operations-for-nlu.pdf

Bonus: Beyond Autoregressive Decoding

””””””” s ahdd
gltlo - ! 1
Cﬂgﬂgjb Autoregressive P ﬁfmzﬁwimﬁw Insertion o Non-autoregressive
__[_5’_7}:_7:_7:::_7:_/_\ decoding e ) : Transformer DDDDD decoding
DDDDD IiFIT\mHtH_IéIFTWLHT\FIT X “““““ ’
. ® \ QL e algorithm for sequence alignment
) 0. -9.-0 e useful for automatic speech recognition

e can be stacked on top of the

; -0
: \»Q QLOL non-autoregressive decoder'i>

Connectionist Temporal
Classification (CTC) layer [1][2]
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https://distill.pub/2017/ctc/
https://aclanthology.org/D18-1336/

Bonus: Reverse-Engineering Decoding Strategies




Bonus: Reverse-Engineering Decoding Strategies

Reverse-Engineering Decoding Strategies Given
Blackbox Access to a Language Generation System

Daphne Ippolito*
dei@google.com

Milad Nasr”
miladnasr@google.com

Abstract

Neural language models are increasingly deployed
into APIs and websites that allow a user to pass
in a prompt and receive generated text. Many of
these systems do not reveal generation parameters.
In this paper, we present methods to reverse-
engineer the decoding method used to generate
text (i.e., top-k or nucleus sampling). Our ability
to discover which decoding strategy was used has

Nicholas Carlini
ncarlini@google.com katherineleelRgoogle.com

Katherine Lee”

Yun William Yuf
ywyu@math.toronto.edu

sided die, we found that it only returns 14 of the 20
options, even though all should be equally likely.

Prior work has shown that knowing the decoding
method makes it easier to detect whether a writing
sample was generated by a language model or
else was human-written (Ippolito et al., 2020). As
generated text proliferates on the web, in student
homework, and elsewhere, this disambiguation is
becoming increasingly important.

Stealing the Decoding Algorithms of Language Models

Ali Naseh
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
anaseh@cs.umass.edu

Mohit Iyyer
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
miyyer@cs.umass.edu

ABSTRACT

A key component of generating text from modern language models
(LM) is the selection and tuning of decoding algorithms. These algo-
rithms determine how to generate text from the internal probability
distribution generated by the LM. The process of choosing a de-
coding algorithm and tuning its hyperparameters takes significant

Kalpesh Krishna
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
kalpesh@cs.umass.edu

Amir Houmansadr
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
amir@cs.umass.edu

GPT-2 [37], GPT-3 [4] and GPT-Neo [3] have been shown to gen-
erate high-quality texts for these tasks. To generate a sequence of
tokens, LMs produce a probability distribution over the vocabulary
at each time step, from which the predicted token is drawn. Enumer-
ating all possible output sequences for a given input and choosing
the one with the highest probability is intractable; furthermore,

latively low-probability seq may even be desirable for cer-

time, manual effort, and computation, and it also requires
human evaluation. Therefore, the identity and hyperparameters of
such decoding algorithms are considered to be extremely valuable
to their owners. In this work, we show, for the first time, that an
adversary with typical API access to an LM can steal the type and
hyperparameters of its decoding algorithms at very low monetary
costs. Our attack is effective against popular LMs used in text gener-
ation APIs, including GPT-2, GPT-3 and GPT-Neo. We demonstrate

tain tasks (e.g., creative writing). Therefore, LMs rely on decoding
algorithms to decide which output tokens to produce based on their
probabilities, i.e., to decode the text.

As shown in the literature [11], the choice of the decoding al-
gorithm and its hyperparameters is critical to the performance of
the LM on text generation tasks. Thus, users of many LM-based
APIs are offered a choice of decoding algorithms and also the abil-

implications for detecting generated text. Addi- 7 the feasibility of stealing such information with only a few dollars, ity to adjust any corresponding hypery For 1
[iorI:all e rOCEROE digscgo R A Concurrent work to ours by Naseh et al (2023) has e.g. $0.8, $1, $4, and $40 for the four versions of GPT-3. in machine translation, beam search is more common than other
¥, thep 2 2 developed similar strategies for detecting decoding hods; h . in story i ling-based method

https://aclanthology.org/2023.inlg-main.28/
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https://people.cs.umass.edu/~amir/papers
/CCS23-LM-stealing.pdf
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https://people.cs.umass.edu/~amir/papers/CCS23-LM-stealing.pdf
https://people.cs.umass.edu/~amir/papers/CCS23-LM-stealing.pdf
https://aclanthology.org/2023.inlg-main.28/

With API access, answers to certain questions (dice rolls, months, ...) can be
used to estimate the k and p parameters of the stochastic algorithms

> ChatGPT only returns 14 of the 20 options for a 20-sided dice roll
Distinguishing between top-k and top-p:
If two prompts yield very different predictions of k, then top-k is probably

not used.

With access to model’s full distribution, we can distinguish also between
other algorithms (greedy vs. beam search vs. top-k vs. top-p ...)

A



Huggingface models

Awesome LLM: curated list of resources

Transformer inference: 3D visualization

Huggingface decoding algorithms overview

Huggingface text seneration strategies (includes a few extra ones)

Common pitfalls when generating text with LLMs

Visualizing decoding strategies

Minimum Bayes Risk decoding
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https://huggingface.co/models
https://github.com/Hannibal046/Awesome-LLM
https://bbycroft.net/llm
https://huggingface.co/blog/how-to-generate
https://huggingface.co/docs/transformers/generation_strategies
https://huggingface.co/docs/transformers/llm_tutorial
https://mlabonne.github.io/blog/posts/2023-06-07-Decoding_strategies.html
https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html

On Decoding Strategies for Neural Text Generators (Wiher et al., 2022)

o  Language generation tasks vs. decoding strategies.

If beam search is the answer, what was the question? (Meister et al., 2020)

O  Why does beam search work so well?
Understanding the Properties of Minimum Bayes Risk Decoding in Neural

Machine Translation (Muller and Sennrich, 2021)

O  When can MBR be useful?
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https://aclanthology.org/2022.tacl-1.58/
https://aclanthology.org/2020.emnlp-main.170/
https://aclanthology.org/2021.acl-long.22.pdf
https://aclanthology.org/2021.acl-long.22.pdf

