NPFL140 Large Language Models LLM Training

http://ufal.cz/courses/npf140

Ondřej Dušek

14.3.2024

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Training Transformers

in parallel: feed in training data & try to predict 1 next token at each position

Gradient Descent

- any neural net (supervised) training- gradient descent methods
 - minimizing a cost/loss function

 (notion of error given a model output, how far off are we?)
 - calculus: derivative = steepness/slope
 - **backpropagation**: derivatives of all parameters w. r. t. cost (compound function)
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast we go (needs to be tuned)

• gradient averaged over **mini-batches**

- random bunches of a few training instances
- not as erratic as using just 1 instance, not as slow as computing over whole data
- stochastic gradient descent

Cost/Loss Functions

- differ based on what we're trying to predict
- default: logistic / log loss ("cross entropy")
 - for any classification / softmax including word prediction in LMs
 - classes from the whole dictionary
 - correct class has <100% prob. \rightarrow loss is >0
 - pretty stupid for sequences, but works -
 - sequence shifted by $1 \Rightarrow$ everything wrong
- other options:
 - squared error loss for regression (floats)
 - hinge loss binary classification (SVMs), ranking
 - many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-withtensorflow-9f60be9d09f9, https://en.wikipedia.org/wiki/Hinge_loss

 $S = \frac{S}{1}$

reference: Blue Spice is expensive prediction: expensive choop

cheap pricey

in the expensive price range

Learning Rate & Momentum

- LR: most important parameter in (stochastic) gradient descent
- tricky to tune:
 - too high LR = may not find optimum
 - too low LR = may take forever
- Learning rate decay: start high, lower LR gradually
 - make bigger steps (to speed learning)
 - slow down when you're almost there (to avoid overshooting)
- Momentum: moving average of gradients
 - make learning less erratic
 - $m = \beta \cdot m + (1 \beta) \cdot \Delta$, update by m instead of Δ

http://cs231n.github.io/neural-networks-3/

Optimizers

- Better LR management
 - change LR based on gradients, less sensitive to settings
- AdaGrad all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide LR by $\sqrt{\sum \Delta_t^2}$
 - variants: Adadelta, RMSProp slower LR drop
- <u>Adam</u> per-parameter momentum
 - moving averages for $\Delta \& \Delta^2$: $m = \beta_1 \cdot m + (1 - \beta_1) \Delta$ $\nu = \beta_2 \cdot \nu + (1 - \beta_2) \Delta^2$
 - use *m* instead of Δ , divide LR by \sqrt{v}
 - often used as default nowadays

https://ruder.io/optimizing-gradient-descent/

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

(Kingma & Ba, 2015)

Schedulers

- more fiddling with LR warm-ups
 - start learning slowly, then increase LR, then reduce again
 - may be repeated (warm restarts), with lowered maximum LR
 - allow to diverge slightly work around local minima
- multiple options:
 - cyclical (=warm restarts) linear, cosine annealing
 - one cycle same, just don't restart
 - Noam scheduler linear warm-up, decay by \sqrt{steps}
- combine with base SGD or Adam/Adadelta etc.
 - momentum updated inversely to LR
 - may have less effect with optimizers
 - trade-off: speed vs. sensitivity to parameter settings

When to stop training

- generally, when cost stops going down
 - despite all the LR fiddling
- problem: overfitting
 - cost low on training set, high on validation set
 - network essentially memorized the training set
 - → check on validation set after each epoch (pass through data)
 - stop when cost goes up on validation set
 - regularization (e.g. dropout) helps delay overfitting
- bias-variance trade-off:
 - smaller models may underfit (high bias, low variance = not flexible enough)
 - larger models likely to overfit (too flexible, memorize data)
 - XXL models: overfit soo much they actually interpolate data \rightarrow good (G?)

⁽Dar et al., 2021) <u>https://arxiv.org/abs/2109.02355</u>

Self-supervised training

- train supervised, but don't provide labels
 - use naturally occurring labels
 - create labels automatically somehow
 - corrupt data & learn to fix them
 - learn from rule-based annotation (not ideal!)
 - use specific tasks that don't require manual labels
- good to train on huge amounts of data
 - language modelling
 - next-word prediction (~ most LLMs)
 - MLM masked word prediction (~ encoder LMs, e.g. BERT)
- good to pretrain a LM self-supervised
 before you finetune it fully supervised (on your own task-specific data)

http://jalammar.github.io/illustrated-bert/

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

Pretrained (Large) Language Models (PLMs/LLMs)

- **BERT/RoBERTa**: Transformer encoder
 - masked word prediction, sentence order
- BART encoder-decoder (Lewis et al., 2020) <u>https://aclanthology.org/2020.acl-main.703/</u>
 - denoising: masking, word removal... → regenerate original sentence
- T5: generalization of ↑ (multi-task, different prompts) (Conneau et al., 2020)
- multilingual: XLM-RoBERTa, mBART, mT5
- GPT-2, most LLMs (GPT-3, LlaMa, Falcon, Mistral...): Transformer decoder
 - (Radford et al., 2019) https://openai.com/blog/better-language-models/ next-word prediction
- many models released plug-and-play
 - you only need to finetune (and sometimes, not even that)
 - !! others (GPT-3/ChatGPT/GPT-4, Claude... closed & API-only)

(Devlin et al., 2019) https://aclanthology.org/N19-1423/ (Liu et al., 2019) http://arxiv.org/abs/1907.11692

> (Liu et al., 2020) (Xue et al., 2021)

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

https://aclanthology.org/2021.naacl-main.41

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

http://arxiv.org/abs/2001.08210

(Touvron et al., 2023) http://arxiv.org/abs/2307.09288 https://huggingface.co/blog/falcon

https://www.aclweb.org/anthology/2020.acl-main.747

(Jiang et al., 2023) https://arxiv.org/abs/2310.06825

Parameter-efficient Finetuning

(Lialin et al., 2023) http://arxiv.org/abs/2303.15647 (Sabry & Belz, 2023) http://arxiv.org/abs/2304.12410

- Finetuning large models: don't update all parameters
 - less memory-hungry (fewer gradients/momentums etc.)
 - trains faster
 - less prone to overfitting (~ regularization)
- Add few parameters & only update these
 - Adapters small feed-forward networks after/on top of each layer
 - Soft prompts tune a few special embeddings & use them on input
 - LoRA (low-rank adaptation):
 - 2 decomposition matrixes A, B (parallel to each layer)
 - update = multiplication *AB*
 - $2 \times r \times d$ is much smaller than full weights (d^2)
 - update is added to original weights on the fly-
 - **QLoRA** LoRA + quantized 4/8-bit computation
 - to fit large models onto a small GPU

(Houlsby et al., 2019) <u>http://proceedings.mlr.press/v97/houlsby19a.html</u> (Lester et al., 2021) <u>https://aclanthology.org/2021.emnlp-main.243</u>

(Hu et al., 2021) <u>http://arxiv.org/abs/2106.09685</u> (Dettmers et al., 2023) <u>http://arxiv.org/abs/2305.14314</u> $r \ll d$

B = 0

Pretrained

Weights

 $W \in \mathbb{R}^{d \times d}$

Instruction Tuning

- Finetune for use with prompting
 - "in-domain" for what it's used later
- Use instructions (task description) + solution in prompts
 - Many different tasks, specific datasets available
- Some LLMs released as base ("foundation") & instruction-tuned versions

6			
Input (Commonsense Reasoning)	Input (Translation)	Inference on unseen ta Input (Natural Language Inf Premise: At my age you will prof have learnt one lesson. Hypothesis: It's not certain how lessons you'll learn by your thirti Does the premise entail the hyp OPTIONS:	
Here is a goal: Get a cool sleep on summer days.	Translate this sentence to Spanish:		nference on unseen task type
How would you accomplish this goal? OPTIONS:	by would you accomplish this goal? The new office building was built in less than three months.		Premise: At my age you will probably have learnt one lesson.
-Keep stack of pillow cases in oven.	<u>Target</u>		Hypothesis: It's not certain how many lessons you'll learn by your thirties.
keep stack of pillow cases in fridge	El nuevo edificio de oficinas se construyó en tres meses.		OPTIONS:
Sentiment analysis tasks			-yes (-it is not possible to tell (-no)
Coreference resolution tasks			It is not possible to tell
	J) `	

Finetune on many tasks ("instruction-tuning")

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

Reinforcement Learning

- Learning from weaker supervision
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don't know if step X is good
 - sequence ~ whole generated text
- Framing the problem as states & actions & rewards
 - "robot moving in space", but works for text generation too
 - state = generation so far (prefix)
 - action = one generation output (subword)
 - defining rewards might be an issue
- Training: maximizing long-term reward
 - optimizing policy = way of choosing actions, i.e. predicting tokens

RL from Human/AI Feedback (RLHF/RLAIF)

- RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
 - 1) generate lots of outputs for instructions
 - 2) have humans rate them (**RLAIF variant**: replace humans with an off-the-shelf LLM)
 - 3) learn a reward model (some kind of other LM: instruction + solution → score)
 - 4) use rating model's score as reward in RL
 - main point: reward is global (not token-by-token)

https://huggingface.co/blog/rlhf

Direct Preference Optimization

- Trying to do the same thing, but without RL, with supervised learning
- Special loss function to check pairwise text preference
 - increases probability of preferred response

sample completions

reinforcement learning

• includes weighting w.r.t. reference model

maximum

likelihood

preference data

x: "write me a poem about

the history of jazz"

preference data

maximum

likelihood

-2

 y_1 dispreferred