NPFL140 Large Language Models
LLM Training

http://ufal.cz/courses/npf140

Ondřej Dušek
14.3.2024
Training Transformers

In parallel: feed in training data & try to predict 1 next token at each position

- layers – Transformer blocks: attention & fully connected
- embeddings (~100s of numbers)
- numbered subwords
- positional encoding

0 <start>
1 <end>
2 weather
3 expe
4 storms
5 some
6 is
... ...
10 thunder-
... ...

multiple (6-100) layers

0 = 1
3 = expect
5 = some
10 = thunder-
12 = storms
Gradient Descent

• any neural net (supervised) training—**gradient descent** methods
 • minimizing a **cost/loss function**
 (notion of error – given a model output, how far off are we?)
 • calculus: derivative = steepness/slope
 • **backpropagation**: derivatives of all parameters w. r. t. cost (compound function)
 • follow the slope to find the minimum – derivative gives the direction
 • **learning rate** = how fast we go (needs to be tuned)

• gradient averaged over **mini-batches**
 • random bunches of a few training instances
 • not as erratic as using just 1 instance,
 not as slow as computing over whole data
 • **stochastic gradient descent**
Cost/Loss Functions

• differ based on what we’re trying to predict

• **default: logistic / log loss** ("cross entropy")
 • for any classification / softmax – including **word prediction** in LMs
 • classes from the whole dictionary
 • correct class has <100% prob. → loss is >0
 • pretty stupid for sequences, but works
 • sequence shifted by 1 ⇒ everything wrong

• other options:
 • squared error loss – for regression (floats)
 • hinge loss – binary classification (SVMs), ranking
 • many others, variants

reference: **Blue Spice is expensive**
prediction: **cheap pricey in the expensive price range**

Learning Rate & Momentum

• **LR: most important parameter** in (stochastic) gradient descent

• tricky to tune:
 • too high LR = may not find optimum
 • too low LR = may take forever

• **Learning rate decay**: start high, lower LR gradually
 • make bigger steps (to speed learning)
 • slow down when you’re almost there (to avoid overshooting)

• **Momentum**: moving average of gradients
 • make learning less erratic
 • \(m = \beta \cdot m + (1 - \beta) \cdot \Delta \), update by \(m \) instead of \(\Delta \)
Optimizers

• Better LR management
 • change LR based on gradients, less sensitive to settings

• **AdaGrad** – all history
 • remember sum of total gradients squared: $\sum_t \Delta_t^2$
 • divide LR by $\sqrt{\sum \Delta_t^2}$
 • variants: **Adadelta, RMSProp** – slower LR drop

• **Adam** – per-parameter momentum
 • moving averages for Δ & Δ^2:
 $$m = \beta_1 \cdot m + (1 - \beta_1) \Delta$$
 $$v = \beta_2 \cdot v + (1 - \beta_2) \Delta^2$$
 • use m instead of Δ, divide LR by \sqrt{v}
 • often used as default nowadays

(Kingma & Ba, 2015)
https://arxiv.org/abs/1412.6980
https://ruder.io/optimizing-gradient-descent/
Schedulers

- more fiddling with LR – **warm-ups**
 - start learning slowly, then increase LR, then reduce again
 - may be repeated (**warm restarts**), with lowered maximum LR
 - allow to diverge slightly – work around local minima

- multiple options:
 - cyclical (=warm restarts) – linear, cosine annealing
 - **one cycle** – same, just don’t restart
 - **Noam scheduler** – linear warm-up, decay by $\sqrt{\text{steps}}$

- combine with base SGD or Adam/Adadelta etc.
 - momentum updated inversely to LR
 - may have less effect with optimizers
 - trade-off: speed vs. sensitivity to parameter settings

- [cyclical scheduler (warm restarts)](https://nn.labml.ai/optimizers/noam.html)
- [one cycle with cosine annealing](https://nn.labml.ai/optimizers/noam.html)
- [Noam scheduler with different parameters](https://nn.labml.ai/optimizers/noam.html)
When to stop training

- generally, when cost stops going down
 - despite all the LR fiddling
- problem: **overfitting**
 - cost low on training set, high on validation set
 - network essentially memorized the training set
 - → **check on validation set** after each epoch (pass through data)
 - stop when cost goes up on validation set
 - regularization (e.g. dropout) helps delay overfitting
- **bias-variance** trade-off:
 - smaller models may underfit (high bias, low variance = not flexible enough)
 - larger models likely to overfit (too flexible, memorize data)
 - XXL models: overfit soo much they actually interpolate data → good (🤔 ?)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355
Self-supervised training

• train supervised, but **don’t provide labels**
 • use naturally occurring labels
 • create labels automatically somehow
 • corrupt data & learn to fix them
 • learn from rule-based annotation (not ideal!)
 • use specific tasks that don’t require manual labels

• good to train on huge amounts of data
 • language modelling
 • **next-word prediction** (~ most LLMs)
 • **MLM** – masked word prediction (~ encoder LMs, e.g. BERT)

• good to **pretrain** a LM self-supervised
 before you **finetune** it fully supervised (on your own task-specific data)

http://jalammar.github.io/illustrated-bert/
Pretrained (Large) Language Models (PLMs/LLMs)

- **BERT/RoBERTa**: Transformer encoder
 - masked word prediction, sentence order

- **BART** – encoder-decoder
 - denoising: masking, word removal… → regenerate original sentence

- **T5**: generalization of ↑ (multi-task, different prompts)

- multilingual: **XLM-RoBERTa, mBART, mT5**

- **GPT-2**, most LLMs (**GPT-3, LlaMa, Falcon, Mistral…**): Transformer decoder
 - next-word prediction

- many models released plug-and-play
 - **you only need to finetune** (and sometimes, not even that)
 - !! others (GPT-3/ChatGPT/GPT-4, Claude… closed & API-only)

Notes:
- Devlin et al., 2019 https://aclanthology.org/N19-1423/
- Jiang et al., 2023 https://huggingface.co/blog/falcon
Parameter-efficient Finetuning

• Finetuning large models: don’t update all parameters
 • less memory-hungry (fewer gradients/momentums etc.)
 • trains faster
 • less prone to overfitting (~ regularization)

• Add few parameters & only update these
 • **Adapters** – small feed-forward networks after/on top of each layer
 • **Soft prompts** – tune a few special embeddings & use them on input
 • **LoRA** (low-rank adaptation):
 • 2 decomposition matrixes A, B (parallel to each layer)
 • update = multiplication AB
 • $2 \times r \times d$ is much smaller than full weights (d^2)
 • update is added to original weights on the fly
 • **QLoRA** – LoRA + quantized 4/8-bit computation
 • to fit large models onto a small GPU

(Dettmers et al., 2023) http://arxiv.org/abs/2305.14314
Instruction Tuning

• Finetune for use with prompting
 • “in-domain” for what it’s used later

• Use **instructions** (task description) + **solution** in prompts
 • Many different tasks, specific datasets available

• Some LLMs released as base (“foundation”) & instruction-tuned versions

 Wei et al., 2022: https://arxiv.org/abs/2109.01652

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
Reinforcement Learning

• Learning from **weaker supervision**
 • only get feedback once in a while, not for every output
 • good for globally optimizing sequence generation
 • you know if the whole sequence is good
 • you don’t know if step X is good
 • sequence ~ whole generated text

• Framing the problem as **states & actions & rewards**
 • “robot moving in space”, but works for text generation too
 • state = generation so far (prefix)
 • action = one generation output (subword)
 • defining rewards might be an issue

• Training: **maximizing long-term reward**
 • optimizing policy = way of choosing actions, i.e. predicting tokens

(Sutton & Barto, 2018)
RL from Human/AI Feedback (RLHF/RLAIF)

• RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
 1) generate lots of outputs for instructions
 2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)
 3) learn a reward model (some kind of other LM: instruction + solution → score)
 4) use rating model’s score as reward in RL
• main point: reward is global (not token-by-token)

(Chuang et al., 2022)
http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf
Direct Preference Optimization

- Trying to do the same thing, but without RL, with supervised learning
- Special loss function to check pairwise text preference
 - increases probability of preferred response
 - includes weighting w.r.t. reference model

$$L_{DPO}(\pi_{\theta}; \pi_{ref}) = -E_{(x,y_{w},y_{l}) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_{w}|x)}{\pi_{ref}(y_{w}|x)} - \beta \log \frac{\pi_{\theta}(y_{l}|x)}{\pi_{ref}(y_{l}|x)} \right) \right]$$

![Diagram showing Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO)]