
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL140 Large Language Models

LLM Training
http://ufal.cz/courses/npf140

Ondřej Dušek

14.3.2024

http://ufal.cz/npf140

Training Transformers

2

in parallel: feed in training data & try to predict 1 next token at each position

embeddings (~100s of numbers)

layers – Transformer blocks:
attention & fully connected

positional encoding

0.4 -0.3 2.1 -0.2

-1.1 0.8 -0.9 4.3

0.0 2.7 -0.6 -3.0

…

m
u

lt
ip

le
 (6

-1
0

0)
 la

ye
rs

numbered
subwords

NPFL140 L3 2024

Gradient Descent

• any neural net (supervised) training– gradient descent methods
• minimizing a cost/loss function

(notion of error – given a model output, how far off are we?)

• calculus: derivative = steepness/slope

• backpropagation: derivatives of all parameters w. r. t. cost (compound function)

• follow the slope to find the minimum – derivative gives the direction

• learning rate = how fast we go (needs to be tuned)

• gradient averaged over mini-batches
• random bunches of a few training instances

• not as erratic as using just 1 instance,
not as slow as computing over whole data

• stochastic gradient descent

NPFL140 L3 2024 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

max(0, 1 − ො𝑦 ⋅ 𝑦)

𝑦 − ො𝑦

lo
ss

Cost/Loss Functions

• differ based on what we’re trying to predict

• default: logistic / log loss (“cross entropy”)
• for any classification / softmax – including word prediction in LMs

• classes from the whole dictionary

• correct class has <100% prob. → loss is >0

• pretty stupid for sequences, but works
• sequence shifted by 1 ⇒ everything wrong

• other options:
• squared error loss – for regression (floats)

• hinge loss – binary classification (SVMs), ranking

• many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-
tensorflow-9f60be9d09f9 , https://en.wikipedia.org/wiki/Hinge_loss

෍

𝑐=1

𝐶

𝑦𝑐 ⋅ log(ෝ𝑦𝑐)

pred. prob. when true label=1

lo
ss

lo
ss 𝑦 − ො𝑦 2

𝑦 − ො𝑦

Blue Spice is expensivereference:

cheap
pricey
in the expensive price range

expensiveprediction:

logistic

squared error hinge

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

• LR: most important parameter in (stochastic) gradient descent

• tricky to tune:
• too high LR = may not find optimum

• too low LR = may take forever

• Learning rate decay: start high, lower LR gradually
• make bigger steps (to speed learning)

• slow down when you’re almost there (to avoid overshooting)

• Momentum: moving average of gradients
• make learning less erratic

• 𝑚 = 𝛽 ⋅ 𝑚 + (1 − 𝛽) ⋅ Δ, update by 𝑚 instead of Δ

Learning Rate & Momentum

5

http://cs231n.github.io/neural-networks-3/

base SGD
momentum

https://ruder.io/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Optimizers

• Better LR management
• change LR based on gradients, less sensitive to settings

• AdaGrad – all history
• remember sum of total gradients squared: σ𝑡 Δ𝑡

2

• divide LR by σΔ𝑡
2

• variants: Adadelta, RMSProp – slower LR drop

• Adam – per-parameter momentum
• moving averages for Δ & Δ2:

𝑚 = 𝛽1 ⋅ 𝑚 + 1 − 𝛽1 Δ
𝑣 = 𝛽2 ⋅ 𝑣 + 1 − 𝛽2 Δ2

• use 𝑚 instead of Δ, divide LR by 𝑣

• often used as default nowadays

6NPFL140 L3 2024

http://kaeken.hatenablog.com/entry/2016/11/10/203151

https://ruder.io/optimizing-gradient-descent/

(Kingma & Ba, 2015)
https://arxiv.org/abs/1412.6980

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD
momentum
AdaGrad
RMSProp
Adam

local minimumglobal minimum

http://kaeken.hatenablog.com/entry/2016/11/10/203151
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Schedulers

• more fiddling with LR – warm-ups
• start learning slowly, then increase LR, then reduce again

• may be repeated (warm restarts),
with lowered maximum LR
• allow to diverge slightly – work around local minima

• multiple options:
• cyclical (=warm restarts) – linear, cosine annealing

• one cycle – same, just don’t restart

• Noam scheduler – linear warm-up, decay by steps

• combine with base SGD or Adam/Adadelta etc.
• momentum updated inversely to LR

• may have less effect with optimizers
• trade-off: speed vs. sensitivity to parameter settings

7NPFL140 L3 2024

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F

cyclical scheduler (warm restarts)

LR momentum

one cycle with cosine annealing

https://nn.labml.ai/optimizers/noam.html
Noam scheduler with different parameters

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html

When to stop training

• generally, when cost stops going down
• despite all the LR fiddling

• problem: overfitting
• cost low on training set, high on validation set

• network essentially memorized the training set

• → check on validation set after each epoch
(pass through data)

• stop when cost goes up on validation set

• regularization (e.g. dropout) helps delay overfitting

• bias-variance trade-off:
• smaller models may underfit (high bias, low variance = not flexible enough)

• larger models likely to overfit (too flexible, memorize data)

• XXL models: overfit soo much they actually interpolate data → good (🤔?)

8NPFL140 L3 2024

(Dar et al., 2021) https://arxiv.org/abs/2109.02355

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

https://arxiv.org/abs/2109.02355
https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

Self-supervised training

• train supervised, but don’t provide labels
• use naturally occurring labels

• create labels automatically somehow
• corrupt data & learn to fix them

• learn from rule-based annotation (not ideal!)

• use specific tasks that don’t require manual labels

• good to train on huge amounts of data
• language modelling

• next-word prediction (~ most LLMs)

• MLM – masked word prediction (~ encoder LMs, e.g. BERT)

• good to pretrain a LM self-supervised
before you finetune it fully supervised (on your own task-specific data)

9NPFL140 L3 2024 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

http://jalammar.github.io/illustrated-bert/

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/

Pretrained (Large) Language Models (PLMs/LLMs)

• BERT/RoBERTa: Transformer encoder
• masked word prediction, sentence order

• BART – encoder-decoder
• denoising: masking, word removal… → regenerate original sentence

• T5: generalization of ↑ (multi-task, different prompts)

• multilingual: XLM-RoBERTa, mBART, mT5

• GPT-2, most LLMs (GPT-3, LlaMa, Falcon, Mistral…): Transformer decoder
• next-word prediction

• many models released plug-and-play
• you only need to finetune (and sometimes, not even that)

• !! others (GPT-3/ChatGPT/GPT-4, Claude… closed & API-only)

NPFL140 L3 2024

(Devlin et al., 2019) https://aclanthology.org/N19-1423/

(Radford et al., 2019) https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/

https://github.com/huggingface/transformers

(Liu et al., 2019) http://arxiv.org/abs/1907.11692

(Conneau et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.747
(Liu et al., 2020) http://arxiv.org/abs/2001.08210
(Xue et al., 2021) https://aclanthology.org/2021.naacl-main.41

(Touvron et al., 2023) http://arxiv.org/abs/2307.09288
https://huggingface.co/blog/falcon
(Jiang et al., 2023) https://arxiv.org/abs/2310.06825

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

https://aclanthology.org/N19-1423/
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1910.10683
https://aclanthology.org/2020.acl-main.703/
https://github.com/huggingface/transformers
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2020.acl-main.747
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2021.naacl-main.41
http://arxiv.org/abs/2307.09288
https://huggingface.co/blog/falcon
https://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2303.18223

Parameter-efficient Finetuning

• Finetuning large models: don’t update all parameters
• less memory-hungry (fewer gradients/momentums etc.)

• trains faster

• less prone to overfitting (~ regularization)

• Add few parameters & only update these
• Adapters – small feed-forward networks after/on top of each layer

• Soft prompts – tune a few special embeddings & use them on input

• LoRA (low-rank adaptation):
• 2 decomposition matrixes 𝐴, 𝐵 (parallel to each layer)

• update = multiplication 𝐴𝐵

• 2 × 𝑟 × 𝑑 is much smaller than full weights (𝑑2)

• update is added to original weights on the fly

• QLoRA – LoRA + quantized 4/8-bit computation
• to fit large models onto a small GPU

11(Dettmers et al., 2023) http://arxiv.org/abs/2305.14314

(Hu et al., 2021) http://arxiv.org/abs/2106.09685

(Lialin et al., 2023)
http://arxiv.org/abs/2303.15647
(Sabry & Belz, 2023)
http://arxiv.org/abs/2304.12410

𝑟 ≪ 𝑑

(Lester et al., 2021) https://aclanthology.org/2021.emnlp-main.243

(Houlsby et al., 2019) http://proceedings.mlr.press/v97/houlsby19a.html

http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2304.12410
https://aclanthology.org/2021.emnlp-main.243
http://proceedings.mlr.press/v97/houlsby19a.html

Instruction Tuning

• Finetune for use with prompting
• “in-domain” for what it’s used later

• Use instructions (task description) + solution in prompts
• Many different tasks, specific datasets available

• Some LLMs released as base (“foundation”) & instruction-tuned versions

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://arxiv.org/abs/2109.01652

Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence ~ whole generated text

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for text generation too

• state = generation so far (prefix)

• action = one generation output (subword)

• defining rewards might be an issue

• Training: maximizing long-term reward
• optimizing policy = way of choosing actions, i.e. predicting tokens

13

(Sutton & Barto, 2018)

your model

some definition
of rewards

RL from Human/AI Feedback (RLHF/RLAIF)

• RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions

2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)

3) learn a reward model (some kind of other LM: instruction + solution → score)

4) use rating model’s score as reward in RL

• main point: reward is global (not token-by-token)

14

(Ouyang et al., 2022)
http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt

https://huggingface.co/blog/rlhf

1)

2)

3)

4)

http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf

Direct Preference Optimization

• Trying to do the same thing, but without RL, with supervised learning

• Special loss function to check pairwise text preference
• increases probability of preferred response

• includes weighting w.r.t. reference model

15NPFL140 L3 2024

(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

𝑦𝑤 preferred

𝑦𝑙 dispreferred

optimized model

http://arxiv.org/abs/2305.18290

