NPFL140 Large Language Models

LLM Training

http://ufal.cz/courses/npf140
Ondrej Dusek
14.3.2024

Charles University @ @ @
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics unless otherwise stated

http://ufal.cz/npf140

Training Transformers

in parallel: feed in training data & try to predict 1 next token at each position

layers — Transformer blocks: | I‘*3 expect
attention & fully connected 61)

embeddings (~100s of numbers)

w» 10 = thunder-

&
o
>
0 <start>s paoszio] =
1 <end> |l10s80944 O
2 weather po27-06-3. 2
3 expe O
4 storms O
numbered 5 some =
subwords © 'S =
...... =
10 thunder-

positional encoding
NPFL140 L3 2024

thunder-

Gradient Descent

* any neural net (supervised) training- gradient descent methods

* minimizing a cost/loss function
(notion of error — given a model output, how far off are we?)

* calculus: derivative = steepness/slope

* backpropagation: derivatives of all parameters w. r. t. cost (compound function)
* follow the slope to find the minimum - derivative gives the direction

* learning rate = how fast we go (needs to be tuned)

» gradient averaged over mini-batches
* random bunches of a few training instances

* not as erratic as using just 1 instance,
not as slow as computing over whole data

 stochastic gradient descent

1(60,8,) o

NPFL140 L3 2024 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Cost/Loss Functions

loss
N R

» differ based on what we’re trying to predict

 default: logistic [log loss (“cross entropy”) B
. pred. prob. when true label=1
» for any classification / softmax - including word prediction in LMs logistic
* classes from the whole dictionary
* correct class has <100% prob. » loss is >0 reference: Blue Spice is expensive
* pretty stupid for sequences, but works ——— prediction: expensive
* sequence shifted by 1 = everything wron cheap
q y ything wrong pricey
e othero ptiO ns: in the expensive price range
* squared error loss - for regression (floats)
* hinge loss - blnary classification (SVMs), ranking squared error hinge
* many others, variants max(0,1 — 9 -y)
g o v —-9?

loss

04

02
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with- e)
tensorflow-9f60be9d09f9 , https://en.wikipedia.org/wiki/Hinge loss Ty =9 oo _Gsyiy

>

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

* LR: most important parameter in (stochastic) gradient descent

e tricky to tune:
 too high LR
* too low LR

* Learning rate decay: start high, lower LR gradually
* make bigger steps (to speed learning)
* slow down when you’re almost there (to avoid overshooting)

 Momentum: moving average of gradients

= may not find optimum

= may take forever

* make learning less erratic

m=f-m+ (1—-p) A, update by minstead of A

loss

N

low learning rate

high learning rate

\

good learning rate

>
.

epoch

http://cs231n.github.io/neural-networks-3/

base SGD

momentum

https://ruder.io/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Optimizers

http://kaeken.hatenablog.com/entry/2016/11/10/203151

1.0

e—e SGD

* Better LR management = tomeom|
* change LR based on gradients, less sensitive to settings

« AdaGrad - all history
« remember sum of total gradients squared: Y, A?

» divide LR by /X, AZ
* variants: Adadelta, RMSProp - slower LR drop

 Adam - per-parameter momentum

=—a AdaGrad

momentum [
VAN

. (Kingma & Ba, 2015)
* moving averages for A & A?: https://aniv.orglabs/1412 6980 MK
m=pf;-m+{1-pB)A Adap%/j
v =y vt (1= f)N

* use minstead of A, divide LR by /v X &gl minimum
 often used as default nowadays -

https://ruder.io/optimizing-gradient-descent/
NPFL140 L3 2024 . : : : : 6
_ https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c¢

http://kaeken.hatenablog.com/entry/2016/11/10/203151
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Schedulers

» more fiddling with LR - warm-ups
* start learning slowly, then increase LR, then reduce again

* may be repeated (warm restarts),
with lowered maximum LR

* allow to diverge slightly - work around local minima

* multiple options:

« cyclical (=warm restarts) - linear, cosine annealing

* ohe cyc

* Noam scheduler - linear warm-up, decay by +/steps
* combine with base SGD or Adam/Adadelta etc.

le - same, just don’t restart

« momentum updated inversely to LR
* may have less effect with optimizers

* trade

-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADmM6F

NPFL140 L3 2024

https://nn.labml.ai/optimizers/noam.html

0.05

cyclical scheduler (warm restarts)

LR

092

0.88

0.86

"I\ momentum /

vvvvvvvvv

one cycle with cosine annealing

earning Rate

Noam scheduler with different parameters

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html

When to stop training

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

* generally, when cost stops going down
* despite all the LR fiddling

* problem: overfitting
* cost low on training set, high on validation set -

* network essentially memorized the training set

* > check on validation set after each epoch
(pass through data)

 stop when cost goes up on validation set
* regularization (e.g. dropout) helps de

* bias-variance trade-off:
* smaller models may underfit (highbias, low variance = not flexi
* larger models likely to overfit (too flexible, memorize
« XXL models: overfit soo much they actually interpolate data > good (&) ?)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355

NPFL140 L3 2024 8

: \ Solutions interpolate
training data

Bias-variance
tradeoff

. Learned model
© complexity

https://arxiv.org/abs/2109.02355
https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

0.1% | Aardvark
Self-supervised training Posblodasses:
0% | Zyzzyva
e train supervised, but don’t provide labels
* use naturally occurring labels

 create labels automatically somehow
» corrupt data & learn to fix them
* learn from rule-based annotation (not ideal!) BERT

* use specific tasks that don’t require manual labels

* good to train on huge amounts of data
* language modelling
* next-word prediction (~ most LLMs) aLs)

* MLM - masked word prediction (~ encoder LMs, e.g. BERT)

 good to pretrain a LM self-supervised
before you finetune it fully supervised (on your own task-specific data)

http://jalammar.github.io/illustrated-bert/

NPFL140 L3 2024 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/

Pretrained (Large) Language Models (PLMs/LLMs) ey

. (Devlin et al., 2019) https://aclanthology.org/N19-1423/
* BERT/ROBERTa' TranSformer enCOder (Liu etal., 2019) http://arxiv.org/abs/1907.11692
* masked word prediction, sentence order

° BART _ enCOder'deCOder (Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/
* denoising: masking, word removal... > regenerate original sentence

° T5: generalization Of ,]\ (mUItl'taSk, different prOmptS) (Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Cpnneau et al., 2020) https://www.aclweb.org/anthologv/2020.acl—main.747
» multilingual: XLM-ROBERTa, mBART, mT5 [0700) (i iioionors oo tnasct mains
* GPT-2, most LLMs (GPT-3, LlaMa, Falcon, Mistral...): Transformer decoder

e next-wo rd p red iCtiO N (Radford et al., 2019) https://openai.com/blog/better-language-models/
(Brown et al., 2020) http://arxiv.org/abs/2005.14165
° _ _ (Touvron et al., 2023) http://arxiv.org/abs/2307.09288
many models released plug-and-play s hugginaface Colbiog alcon

) (Jiang et al., 2023) https://arxiv.org/abs/2310.06825

» you only need to finetune (and sometimes, not even that
o Il others (GPT-3/ChatGPT/GPT-4, Claude... closed & APl-only)

L)
https://github.com/huggingface/transformers A4

NPFL140 L3 2024

https://aclanthology.org/N19-1423/
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1910.10683
https://aclanthology.org/2020.acl-main.703/
https://github.com/huggingface/transformers
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2020.acl-main.747
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2021.naacl-main.41
http://arxiv.org/abs/2307.09288
https://huggingface.co/blog/falcon
https://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2303.18223

Parameter-efficient Finetuning (alinetal, 2023

http://arxiv.org/abs/2303.15647
(Sabry & Belz, 2023)
http://arxiv.org/abs/2304.12410

* Finetuning large models: don’t update all parameters
* less memory-hungry (fewer gradients/momentums etc.)
* trains faster
* less prone to overfitting (~ regularization)

* Add few parameters & only update these
* Adapters - small feed-forward networks after/on top of each layer
» Soft prompts - tune a few special embeddings & use them on input

* LoRA (low-rank adaptation): hi '
» 2 decomposition matrixes A4, B (parallel to each layer) '
e update = multiplication AB
e 2 X1 X dis much smaller than full weights (d?)
» updateis added to original weights on the fl

Pretrained
Weights

* QLORA - LoRA + quantized 4/8-bit computation § ; Ia
X
* tofit large models onto a small GPU
(Houlsby et al., 2019) http://proceedings.mlr.press/v97/houlsbyl9a.html (Hu et al., 2021) http://arxiv.org/abs/2106.09685

(Lester et al., 2021) https://aclanthology.org/2021.emnlp-main.243 (Dettmers et al., 2023) http://arxiv.org/abs/2305.14314 11

http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2304.12410
https://aclanthology.org/2021.emnlp-main.243
http://proceedings.mlr.press/v97/houlsby19a.html

Instruction Tuning

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

» Finetune for use with prompting
* “in-domain” for what it’s used later

 Use instructions (task description) + solution in prompts
« Many different tasks, specific datasets available

 Some LLMs released as base (“foundation”) & instruction-tuned versions

Finetune on many tasks (“instruction-tuning”)

Input (Commonsense Reasoning) | Input (Translation)

Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
summer days. ?ﬁanlsh_ e build Input (Natural Language Inference)
How would you accomplish this goal? e new office building — :

_ iy iy Premise: At my age you will probably
OPTIONS: have leamt one lesson.
-Keep stack of pillow cases in fridge. months. Hypothesis: Its not certain how many
-Keep stack of pillow cases in oven. Target lessons you'll leam by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge se construyé en tres meses. OPTIONS:

-yes | [-it is not possible to tell | | -no

Sentiment analysis tasks

- FLAN Response
Coreference resolution tasks .]
It is not possible to tell

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://arxiv.org/abs/2109.01652

* Learning from weaker supervision
* only get feedback once in a while, not for every output
» good for globally optimizing sequence generation

your model

l

* you know if the whole sequenceis good
« you don’t know if step X is good S ;:.ward

IR,

-

* sequence ~ whole generated text s

* Framing the problem as states & actions & rewards
* “robot moving in space”, but works for text generation too
* state = generation so far (prefix)
* action = one generation output (subword)
* defining rewards might be an issue

* Training: maximizing long-term reward
 optimizing policy = way of choosing actions, i.e. predicting tokens

\

Environment]4i

T (Sutton & Barto, 2018)

some definition
of rewards

action
A,

RL from Human/Al Feedback (RLHF/RLAIF) o b orglabal 220302155

https://openai.com/blog/chatgpt

* RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions
2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)
3) learn a reward model (some kind of other LM: instruction + solution > score)
4) use rating model’s score as reward in RL
* main point: reward is global (not token-by-token) l l
4)

Prompts Dataset

Prompts Dataset

3) Reward (Preference)

Model 'l N\ /' TunedLanguage)
o Initial Language Model Model (RL Policy)
R £7 A NG /) Reinforcement Learning
s K\a 97" To 8 8 44 Update (e.g. PPO)
e & &) \' - (5:« X e
Ne’e *\o e 0 0+ VoJ(6)
1) Sample many prompts J, v\l/v -
pase Text 0 90€® RLHF = ®®®® Reward (Preference)
Outputs are ranked ®® ©e e Model
{reiative. ELO. atc) y: a furry mammal y: man’s best friend s ff‘. {::‘- 5
fc _ =) \ — J O /9 D o
Initial Language Model 7/4 \< -V
@
® == > —Axr Dk (7ppo (¥]2) || Thase(¥l7)) =
y eros faucibus tinci Human Scoring \ > o
L -) et pulvinar, het \ KL prediction shift penalty
Generated text | To ylx)

https://huggingface.co/blog/rlhf 14

http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf

D i re Ct P reIfe re n Ce o pti m i Zati O n (Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

* Trying to do the same thing, but without RL, with supervised learning

* Special loss function to check pairwise text preference
* increases probability of preferred response
e includes weighting w.r.t. reference model W p7ferred /

y; dispreferred

. o 7o (Yw|T) o (yi])
LDPO (71';9, 7Tr€f) - E(waywayl)ND []'Og g (l@ 10 Tref (Yulz) ‘61 Tef(yl\a:))]

optimized model

LogSigmoid()
Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the historypofjazz" ® la be'. rewards ® the historypofjazz" ‘ 51
A ; 7N L .
— | > | = > reward model LM policy * — =] — final LM 5
Yw Yt Yw Yu
f data maxi . e f dat :
preference data maximum sample completions preterence data o
likelihood reinforcement learning likelihood

NPFL140 L3 2024 15

http://arxiv.org/abs/2305.18290

