
NPFL116 Compendium of Neural Machine Translation

Neural Architectures for
NLP

February 27, 2017

Jindřich Libovický, Jindřich Helcl

Charles Univeristy in Prague
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics



Outline

Symbol Embeddings

Recurrent Networks

Convolutional Networks

Self-attentive Networks

Reading Assignment



Symbol Embeddings



Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:

Source: Bengio, Yoshua, et al. ”A neural probabilistic language model.” Journal of machine learning research 3.Feb
(2003): 1137-1155. http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Embeddings

• natural solution: one-hot vector (vector of vocabulary length
with exactly one 1)

• it would mean a huge matrix every time a symbol is on the
input

• rather factorize this matrix and share the first part ⇒
embeddings

• “embeddings” because they embed discrete symbols into a
continuous space

What is the biggest problem during training?
Embeddings get updated only rarely – only when a symbol appears.



Properties of embeddings

Source: https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-
text-analytics-toolbox/



Recurrent Networks



Why RNNs

• for loops over sequential data
• the most frequently used type of network in NLP



General Formulation

• inputs: x, . . . , xT
• initial state h0 = 0, a result

of previous computation,
trainable parameter

• recurrent computation:
ht = A(ht−1, xt)



RNN as Imperative Code

def rnn(initial_state , inputs):
prev_state = initial_state
for x in inputs:

new_state , output = rnn_cell(x, prev_state)
prev_state = new_state
yield output



RNN as a Fancy Image



Vanilla RNN

ht = tanh (W[ht−1; xt] + b)

• cannot propagate long-distance relations
• vanishing gradient problem



Vanishing Gradient Problem (1)

tanh x =
1− e−2x

1 + e−2x

-1

-0.5

0

0.5

1

-6 -4 -2 0 2 4 6

Y

X

d tanh x
dx = 1− tanh2 x ∈ (0, 1]

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

Y
X

Weight initialized ∼ N (0, 1) to have gradients further from zero.



Vanishing Gradient Problem (2)

∂Et+1

∂b =
∂Et+1

∂ht+1
· ∂ht+1

∂b (chain rule)



Vanishing Gradient Problem (3)

∂ht
∂b =

∂ tanh
=zt (activation)︷ ︸︸ ︷

(Whht−1 + Wxxt + b)
∂b (tanh′ is derivative of tanh)

= tanh′(zt) ·

∂Whht−1

∂b +
∂Wxxt
∂b︸ ︷︷ ︸
=0

+
∂b
∂b︸︷︷︸
=1


= W︸︷︷︸

∼N (0,1)

tanh′(zt)︸ ︷︷ ︸
∈(0;1]

∂ht−1

∂b + tanh′(zt)



LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output



Hidden State

• two types of hidden states
• ht — “public” hidden state, used an output
• ct — “private” memory, no non-linearities on the way

• direct flow of gradients (without multiplying by ≤ derivatives)
• only vectors guaranteed to live in the same space are

manipulated

• information highway metaphor



Forget Gate

ft = σ (Wf[ht−1; xt] + bf)

• based on input and previous state, decide what to forget from
the memory



Input Gate

it = σ (Wi · [ht−1; xt] + bi)

C̃t = tanh (Wc · [ht−1; xt] + bC)

• C̃ — candidate what may want to add to the memory
• it — decide how much of the information we want to store



Cell State Update

Ct = ft ⊙ Ct−1 + it ⊙ C̃t



Output Gate

ot = σ (Wo · [ht−1; xt] + bo)

ht = ot ⊙ tanh Ct



Here we are!

ft = σ (Wf[ht−1; xt] + bf)

it = σ (Wi · [ht−1; xt] + bi)

ot = σ (Wo · [ht−1; xt] + bo)

C̃t = tanh (Wc · [ht−1; xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh Ct

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.



Gated Recurrent Units

zt = σ (Wz[ht−1; xt] + bz)

rt = σ (Wr[ht−1; xt] + br)

h̃t = tanh (W[rt ⊙ ht−1; xt])

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t



GRU and LSTM

Are GRUs special case of LSTMs?

LSTM

ft = σ (Wf[ht−1; xt] + bf)

it = σ (Wi · [ht−1; xt] + bi)

ot = σ (Wo · [ht−1; xt] + bo)

C̃t = tanh (Wc · [ht−1; xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh Ct

GRU

zt = σ (Wz[ht−1; xt] + bz)

rt = σ (Wr[ht−1; xt] + br)

h̃t = tanh (W[rt ⊙ ht−1; xt])

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

No, you cannot lay Ct ≡ ht because of the additional non-linearity
in LSTMs.



GRU or LSTM?

• GRU preserved the information highway property
• less parameters, should learn faster
• LSTM more general (although both Turing complete)
• empirical results: it’s task-specific

Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv
preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. ”LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in
speech recognition.” Interspeech, San Francisco, CA, USA (206).



Recurrent Networks‘

+

• correspond to intuition of
sequential processing

• theoretically strong

-

• cannot be parallelized,
always need to wait for
previous state



Convolutional Networks



1-D Convolution

≈ sliding window over the sequence

..
embeddings x = (x1, . . . , xN)

.
x0 = 0⃗

.
xN = 0⃗

.

h1 = f (W[x0; x1.x2] + b)

.

hi = f (W [xi−1; xi; xi+1] + b)

pad with 0s if we want to keep sequence length



1-D Convolution: Code
Pseudocode
xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size , filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

TensorFlow
h = tf.layers.conv1d(x, filters=300 kernel_size=3,

strides=1, padding='same')



Residual Connections

..
embeddings x = (x1, . . . , xN)

.
x0 = 0⃗

.
xN = 0⃗

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

⊕

.

hi = f (W [xi−1; xi; xi+1] + b) + xi

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.



Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale ⇒
layer normalization.
Activation before non-linearity is normalized:

ai =
gi
σi

(ai − µi)

…g is a trainable parameter, µ, σ estimated from data.

µ =
1

H

H∑
i=1

ai

σ =

√√√√ 1

H

H∑
i=1

(ai − µ)2



Receptive Field

..
embeddings x = (x1, . . . , xN)

.
x0 = 0⃗

.
xN = 0⃗

Can be enlarged by dilated convolutions.



Convolutional architectures

+

• extremely computationally
efficient

-

• limited context
• by default no aware of

n-gram order



Self-attentive Networks



Main idea of self-attention

• matrix multiplication can be used for to get dot-product
similarity between all sequence vectors

• while using the same vector space, information might be
gathered by summing up

Both regardless the distance in the sequence!



Naive code

xs = ... # input sequence , time x dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection

for x_1 in xs:
similarities = np.array(np.sum(x_1 * x_2) for x_2 in xs)
distribution = softmax(similarities)
context = np.sum(xs * distribution , axis=1)

hidden_layer_input = layer_norm(context + xs)
hidden_layer_middle = relu(

dense_layer(hidden_input , hidden_size))
hidden_layer_output = relu(

dense_layer(hidden_input , hidden_size))

yield layer_norm(
hidden_layer_input + hidden_layer_output)



Self-attentive architectures

+

• computationally efficient
• unlimited context
• empower state-of-the-art

models

-

• memory requirements grow
quadratically with sequence
length

• not aware or positions in the
sequence (requires positional
embeddings)



Reading Assignment



Reading for the Next Week

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. ”Neural
machine translation by jointly learning to align and translate.”
arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/pdf/1409.0473.pdf

Questions:
The authors report 5 BLEU points worse score than the
previous encoder-decoder architecture (Sutskever et al.,
2014). Why is their model better then?
If someone asked you to create automatically a dictionary.
Would you use the attention mechanism for it? Why yes?
Why not?

https://arxiv.org/pdf/1409.0473.pdf

	Symbol Embeddings
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks
	Reading Assignment

