Neural Architectures for NLP

February 27, 2017

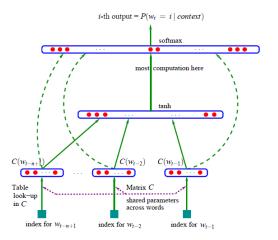
Jindřich Libovický, Jindřich Helcl

Charles Univeristy in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Outline

Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:



Source: Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155. http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Embeddings

- natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
- it would mean a huge matrix every time a symbol is on the input
- rather factorize this matrix and share the first part ⇒ embeddings
- "embeddings" because they embed discrete symbols into a continuous space

What is the biggest problem during training? Embeddings get updated only rarely – only when a symbol appears.

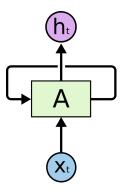
Properties of embeddings



Why RNNs

- for loops over sequential data
- the most frequently used type of network in NLP

General Formulation

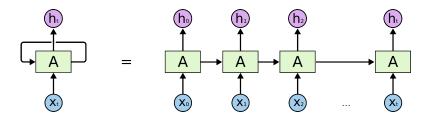


- inputs: *x*, . . . , *x*_{*T*}
- initial state $h_0 = \mathbf{0}$, a result of previous computation, trainable parameter
- recurrent computation: $h_t = A(h_{t-1}, x_t)$

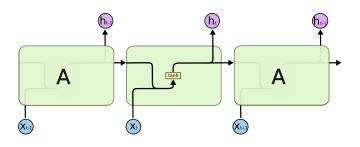
RNN as Imperative Code

```
def rnn(initial_state, inputs):
   prev_state = initial_state
   for x in inputs:
      new_state, output = rnn_cell(x, prev_state)
      prev_state = new_state
      yield output
```

RNN as a Fancy Image



Vanilla RNN



$$h_t = \tanh\left(W[h_{t-1}; x_t] + b\right)$$

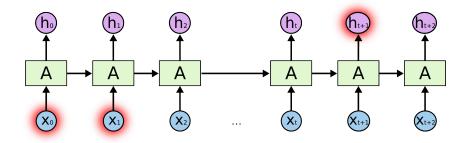
- cannot propagate long-distance relations
- vanishing gradient problem

Vanishing Gradient Problem (1)

$$\tanh x = \frac{1 - e^{-2x}}{1 + e^{-2x}} \qquad \frac{d \tanh x}{dx} = 1 - \tanh^2 x \in (0, 1]$$

Weight initialized $\sim \mathcal{N}(0,1)$ to have gradients further from zero.

Vanishing Gradient Problem (2)



$$\frac{\partial \textit{E}_{\textit{t}+1}}{\partial \textit{b}} = \frac{\partial \textit{E}_{\textit{t}+1}}{\partial \textit{h}_{\textit{t}+1}} \cdot \frac{\partial \textit{h}_{\textit{t}+1}}{\partial \textit{b}} \ \ {}_{\text{(chain rule)}}$$

Vanishing Gradient Problem (3)

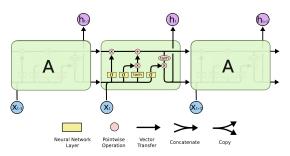
$$\frac{\partial h_t}{\partial b} = \frac{\partial \tanh\left(\overline{W_h h_{t-1} + W_x x_t + b}\right)}{\partial b} \quad \text{(tanh' is derivative of tanh)}$$

$$= \tanh'(z_t) \cdot \left(\frac{\partial W_h h_{t-1}}{\partial b} + \underbrace{\frac{\partial W_x x_t}{\partial b}}_{=0} + \underbrace{\frac{\partial b}{\partial b}}_{=1}\right)$$

$$= \underbrace{W}_{\sim \mathcal{N}(0,1)} \underbrace{\tanh'(z_t)}_{\in (0;1]} \frac{\partial h_{t-1}}{\partial b} + \tanh'(z_t)$$

LSTMs

$\mathsf{LSTM} = \mathsf{Long} \; \mathsf{short}\text{-}\mathsf{term} \; \mathsf{memory}$

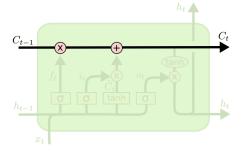


Control the gradient flow by explicitly gating:

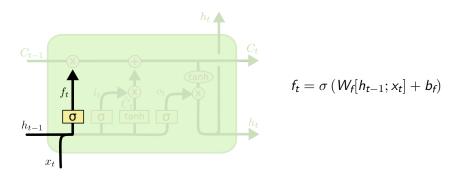
- what to use from input,
- what to use from hidden state,
- what to put on output

Hidden State

- two types of hidden states
- h_t "public" hidden state, used an output
- c_t "private" memory, no non-linearities on the way
 - direct flow of gradients (without multiplying by ≤ derivatives)
 - only vectors guaranteed to live in the same space are manipulated
- information highway metaphor



Forget Gate



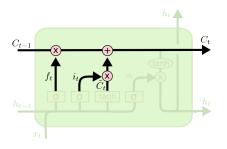
 based on input and previous state, decide what to forget from the memory

Input Gate



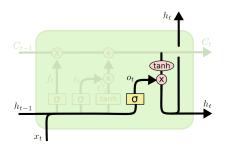
- \tilde{C} candidate what may want to add to the memory
- *i_t* decide how much of the information we want to store

Cell State Update



$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

Output Gate



$$o_t = \sigma \left(W_o \cdot [h_{t-1}; x_t] + b_o
ight)$$
 $h_t = o_t \odot anh C_t$

Here we are!

$$f_{t} = \sigma \left(W_{f}[h_{t-1}; x_{t}] + b_{f}\right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [h_{t-1}; x_{t}] + b_{i}\right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [h_{t-1}; x_{t}] + b_{o}\right)$$

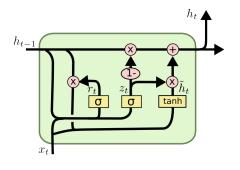
$$\tilde{C}_{t} = \tanh \left(W_{c} \cdot [h_{t-1}; x_{t}] + b_{c}\right)$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \tanh C_{t}$$

How would you implement it efficiently? Compute all gates in a single matrix multiplication.

Gated Recurrent Units



$$\begin{split} z_t &= \sigma\left(W_z[h_{t-1};x_t] + b_z\right) \\ r_t &= \sigma\left(W_r[h_{t-1};x_t] + b_r\right) \\ \tilde{h}_t &= \tanh\left(W[r_t \odot h_{t-1};x_t]\right) \\ h_t &= (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{split}$$

GRU and LSTM

Are GRUs special case of LSTMs?

LSTM GRU

$$\begin{array}{lll} f_t & = & \sigma\left(W_f[h_{t-1};x_t] + b_f\right) & z_t & = & \sigma\left(W_z[h_{t-1};x_t] + b_z\right) \\ i_t & = & \sigma\left(W_i \cdot [h_{t-1};x_t] + b_i\right) & r_t & = & \sigma\left(W_r[h_{t-1};x_t] + b_r\right) \\ o_t & = & \sigma\left(W_o \cdot [h_{t-1};x_t] + b_o\right) & \tilde{h}_t & = & \tanh\left(W[r_t \odot h_{t-1};x_t]\right) \\ \tilde{C}_t & = & \tanh\left(W_c \cdot [h_{t-1};x_t] + b_C\right) & h_t & = & (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \\ C_t & = & f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t & = & o_t \odot \tanh C_t \end{array}$$

No, you cannot lay $C_t \equiv h_t$ because of the additional non-linearity in LSTMs.

GRU or LSTM?

- GRU preserved the information highway property
- less parameters, should learn faster
- LSTM more general (although both Turing complete)
- empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:412.3555 (204).

Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition." Interspeech, San Francisco, CA, USA (206).

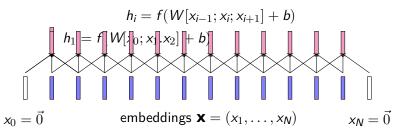
Recurrent Networks'

- correspond to intuition of sequential processing
- theoretically strong

 cannot be parallelized, always need to wait for previous state

1-D Convolution

pprox sliding window over the sequence



pad with 0s if we want to keep sequence length

1-D Convolution: Code

Pseudocode

```
xs = ... # input sequnce
kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size
W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2
outputs = []
for i in range(window, xs.shape[1] - window):
   h = np.mul(W, xs[i - window:i + window]) + b
    outputs.append(h)
return np.array(h)
```

TensorFlow

Residual Connections

$$h_i = f(W[x_{i-1};x_i;x_{i+1}]+b) + x_i$$

$$x_0 = \vec{0}$$
 embeddings $\mathbf{X} = (x_1,\dots,x_N)$ $x_N = \vec{0}$

Allows training deeper networks.

Why do you it helps?

Better gradient flow – the same as in RNNs.

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale \Rightarrow layer normalization.

Activation before non-linearity is normalized:

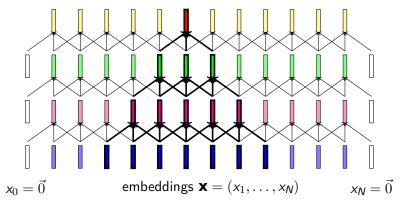
$$\overline{a}_i = \frac{g_i}{\sigma_i} \left(a_i - \mu_i \right)$$

...g is a trainable parameter, μ , σ estimated from data.

$$\mu = \frac{1}{H} \sum_{i=1}^{H} a_i$$

$$\sigma = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_i - \mu)^2}$$

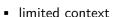
Receptive Field



Can be enlarged by dilated convolutions.

Convolutional architectures

extremely computationally efficient



 by default no aware of n-gram order

Self-attentive Networks

Main idea of self-attention

- matrix multiplication can be used for to get dot-product similarity between all sequence vectors
- while using the same vector space, information might be gathered by summing up

Both regardless the distance in the sequence!

Naive code

```
xs = \dots \# input sequence, time x dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection
for x_1 in xs:
    similarities = np.array(np.sum(x_1 * x_2)) for x_2 in xs
    distribution = softmax(similarities)
    context = np.sum(xs * distribution, axis=1)
    hidden_layer_input = layer_norm(context + xs)
    hidden_layer_middle = relu(
        dense_layer(hidden_input, hidden_size))
    hidden_layer_output = relu(
        dense_layer(hidden_input, hidden_size))
    yield layer_norm(
        hidden_layer_input + hidden_layer_output)
```

Self-attentive architectures

- computationally efficient
- unlimited context
- empower state-of-the-art models

- memory requirements grow quadratically with sequence length
- not aware or positions in the sequence (requires positional embeddings)

Reading Assignment

Reading for the Next Week

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

https://arxiv.org/pdf/1409.0473.pdf

Questions:

The authors report 5 BLEU points worse score than the previous encoder-decoder architecture (Sutskever et al., 2014). Why is their model better then?

If someone asked you to create automatically a dictionary. Would you use the attention mechanism for it? Why yes? Why not?