NPFL116 Compendium of Neural Machine Translation

Neural Architectures for
NLP

February 27, 2017

Jindfich Libovicky, Jindfich Helcl

Charles Univeristy in Prague —
Faculty of Mathematics and Physics F/L

Institute of Formal and Applied Linguistics

QOutline

Symbol Embeddings

Discrete symbol vs. continuous representation

Simple task: predict next word given three previous

i-th output = P(wy = i| context)

softmax
(ees [] S see)
7 ~
k4 ’
’ ’ most| computation here \
s i Y
i : \
]] \
1 f [
1‘ 1 tanh 1
I '| Ceeoe - *e) ,'
! 1]
1 ’
1 ’
1 ’
L .
e
< [etns) et .
(ee o) . (oo o) (e o)
Table .. ., Matrix C L
Eoéﬂp shared parameters
across words
index for wy_3 index for w;_;

index for w; ;1

Source: Bengio, Yoshua, et al. "A neural probabilistic language model.” Journal of machine learning research 3.Feb

(2003): 1137-1155. http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

= natural solution: one-hot vector (vector of vocabulary length
with exactly one 1)

= it would mean a huge matrix every time a symbol is on the
input

= rather factorize this matrix and share the first part =
embeddings

= “embeddings” because they embed discrete symbols into a
continuous space

What is the biggest problem during training?
Embeddings get updated only rarely — only when a symbol appears.

Properties of embeddings

GloVe Word Embedding (SB 300d) - Food Related Area

preakfast vmeyard crata Lau ndry
fat -

fragrﬁnoe broiler

bak seashare df‘:’el"
. bake -
. girseng glcohol - ; bayou kettle
opium Bottle "
., coffee. . . bamboo
: e . .
cdm cacaoconfectionery mint "+ 77
[i . , -alder
cotnbifie - ' banana girhond .]
L "oe_rgzal‘ AT clover
y bloor.”
creme n,
- g Savee bread” B
Clov.e‘ b, .. '+ cappitcine jockey
) an bagel telt
chive” artl(_?hoke ’casserﬁ%ﬁburger :
celeriac « pasta roast
R " bacon
chicory 1 ﬂ n. carp
cutlet chowdet
crayf|5h\

Source: https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-
text-analytics-toolbox/

Recurrent Networks

Why RNNs

= for loops over sequential data

= the most frequently used type of network in NLP

@—1>@®

inputs: x ..., xT

initial state hg = 0, a result
of previous computation,
trainable parameter

recurrent computation:
hy = A(ht—lvxt)

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

RNN as a Fancy Image

b &

Vanilla RNN

ht = tanh (VV[ht—l; Xt] + b)

= cannot propagate long-distance relations

= vanishing gradient problem

1 — e 2x d tanh x

tanhx= ———— 7:1—tanh2x€(0,1]
14 e 2x dx
1 T T 1 T T
08 -
05 |- -
06 -
- - >
> 0 04 | -
0.5 = - 02 = -
A 1 1 0 1 1 1
6 4 2 0 2 4 6 -6 4 2 0 2 4 6
X X

Weight initialized ~ N(0, 1) to have gradients further from zero.

L

N

OEt1

OEe1 Ohey
Ohtyq

ob

ob

Vanishing Gradient Problem (3)

=z; (activation)

% ~ Otanh (Wpht_1 + Wixt + b) N
ab = ab (tanh” is derivative of tanh)
8Whht_]_ aWXXt ab
= tanh’ . -~
anh'(z:) ab ob_ "0
=0 =1

Ohs—
= W tanh'(z) % + tanh’(z)

LSTMs

LSTM = Long short-term memory

® ® @

T\ I |
A [HEAT A T
5 6 &

1 0 — > <

Neural Network Pointwise
Layel o

Operation Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,

= what to put on output

= two types of hidden states
= h; — “public” hidden state, used an output
= ¢ — “private” memory, no non-linearities on the way

= direct flow of gradients (without multiplying by < derivatives)
= only vectors guaranteed to live in the same space are
manipulated

= information highway metaphor

Ciy %

&
@&

1 fr = o (Wehe—1; x¢] + by)

hi—1

= based on input and previous state, decide what to forget from
the memory

E(lgl-%’t it = o (W;- [hi—1;x] + b))
_
htfl Ct == tanh (Wc : [htfl; Xt] + bC)

= C — candidate what may want to add to the memory

» j — decide how much of the information we want to store

Cell State Update

CG=(0GCG1+ir® at

hy T

‘% or =0 (Wo - [he—1; x¢] + bo)

ht_1

ht =0:t©® tanh Ct

8
v

fo = o (Wrhe1;x + by)

Iy = U(VVI" [ht—IQXt] + bi)

or = o (W, [he1;x]+ bo)

C; = tanh (W, - [he_1;x] + bc)
G = oG +i0G

h:; = o; ® tanh C;

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Gated Recurrent Units

z; = 0 (Wy[hi—1; x¢] + b;)

rt =0 (Wr[ht—l;xt] + br)
Et = tanh (VV[rt @ htf]_;Xt])
A | ht:(l—zt)th_l—i-zt@ih

Are GRUs special case of LSTMs?

LSTM GRU

fe = o (Wihe1;xt| + br) ze = o (Wylhi1;x] + by)
ir = o (Wi [he—1;x¢] + bi) re = o (Wilhe—1; x| + by)
o = O (Wo . [htfl; Xt] + bo) ht = tanh (VV[rt ® htfl; Xt])

Ct = tanh (WC . [htfl;Xt] + bc) ht = (1 — Zt) ® htfl + z ® Et
G = FOGa+iOCG
ht = Ot®tanh Ct

No, you cannot lay C; = h; because of the additional non-linearity
in LSTMs.

= GRU preserved the information highway property
= less parameters, should learn faster
= LSTM more general (although both Turing complete)

= empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv
preprint arXiv:412.3555 (204).

Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in
speech recognition.” Interspeech, San Francisco, CA, USA (206).

Recurrent Networks'’

| -
= correspond to intuition of = cannot be parallelized,
sequential processing always need to wait for

= theoretically strong previous state

Convolutional Networks

1-D Convolution

~ sliding window over the sequence

hi = f(W([xi-1; xi; Xi+1] + b)

HIIIIIIIIIIIIH

Xp = 0 embeddings X = (x, ..., xy) XN = 0

pad with Os if we want to keep sequence length

Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter (xs.shape[2] * kernel_size, filters)
b trained_parameter (filters)
window = kernel_size // 2

outputs = []

for i in range(window, xs.shape([1] - window):
h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

TensorFlow

h = tf.layers.convld(x, filters=300 kernel_size=3,
strides=1, padding='same')

Residual Connections

xo =0 embeddings X = (xi,. .., xy) xy =0

Allows training deeper networks.
Why do you it helps?
Better gradient flow — the same as in RNNs.

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale =
layer normalization.
Activation before non-linearity is normalized:

— 8i
a. e — a. — -
I ; (1 lul)

..g is a trainable parameter, 1, o estimated from data.

NN

0 embeddings X = (xq,..., XN) xy =0

H
H
H

X0

Can be enlarged by dilated convolutions.

Convolutional architectures

+ -

= extremely computationally = limited context

efficient = by default no aware of
n-gram order

Self-attentive Networks

matrix multiplication can be used for to get dot-product
similarity between all sequence vectors

while using the same vector space, information might be
gathered by summing up

Both regardless the distance in the sequence!

xs = ... # input sequence, time = dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection

for x_1 in xs:
similarities = np.array(np.sum(x_1 * x_2) for x_2 in xs)
distribution = softmax(similarities)
context = np.sum(xs * distribution, axis=1)

hidden_layer_input = layer_norm(context + xs)
hidden_layer_middle = relu(

dense_layer (hidden_input, hidden_size))
hidden_layer_output = relu(

dense_layer (hidden_input, hidden_size))

yield layer_norm(
hidden_layer_input + hidden_layer_output)

|

computationally efficient
unlimited context

empower state-of-the-art
models

memory requirements grow
quadratically with sequence
length

not aware or positions in the
sequence (requires positional
embeddings)

Reading Assignment

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural
machine translation by jointly learning to align and translate.”
arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/pdf/1409.0473.pdf

Questions:

The authors report 5 BLEU points worse score than the
previous encoder-decoder architecture (Sutskever et al.,
2014). Why is their model better then?

If someone asked you to create automatically a dictionary.
Would you use the attention mechanism for it? Why yes?
Why not?

https://arxiv.org/pdf/1409.0473.pdf

	Symbol Embeddings
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks
	Reading Assignment

