Encoder-Decoder Models

Jindřich Libovíký, Jindřich Helcl

March 03, 2022
Model Concept
Encoder-Decoder Models

Neural model with a sequence of discrete symbols as an input that generates another sequence of discrete symbols as an output.

- pre-process source sentence (tokenize, split into smaller units)
- convert input into vocabulary indices
- run the encoder to get an intermediate representation (vector/matrix)
- run the decoder
- postprocess the output (detokenize)
Language Models and Decoders
What is a Language Model

LM = an estimator of a sentence probability given a language

- From now on: sentence = sequence of words w_1, \ldots, w_n
- Factorize the probability by word
 i.e., no grammar, no hierarchical structure

\[
\text{Pr}(w_1, \ldots, w_n) = \text{Pr}(w_1) \cdot \text{Pr}(w_2|w_1) \cdot \text{Pr}(w_3|w_2, w_1) \cdot \ldots \\
= \prod_{i}^{n} \text{Pr}(w_i|w_{i-1}, \ldots, w_1)
\]
What is it good for?

- Substitute for grammar: tells what is a good sentence in a language
- Used in ASR, and statistical MT to select more probable outputs
- Being able to predict next word = proxy for knowing the language
 - language modeling is training objective for word2vec
 - BERT is a masked language model

- **Neural decoder is a conditional language model.**
\(n \)-gram vs. Neural LMs

n-gram

- Limited history = Markov assumption
- Transparent: estimated from \(n \)-gram counts in a corpus

\[
P(w_i|w_{i-1}, w_{i-2}, \ldots, w_{i-n}) \approx \sum_{j=0}^{n} \lambda_j \frac{c(w_i|w_{i-1}, \ldots, w_{i-j})}{c(w_i|w_{i-1}, \ldots, w_{i-j+1})}
\]

Neural

- Conditioned on RNN state which gather potentially unlimited history
- Trained by back-propagation to maximize probability of the training data
- Opaque, but works better (as usual with deep learning)
Reminder: Recurrent Neural Networks

RNN = pipeline for information

In every step some information goes in and some information goes out.

Technically: A “for” loop applying the same function A on input vectors x_i.

At training time unrolled in time: technically just a very deep network

Sequence Labeling

- Assign a label to each word in a sentence.
- Tasks formulated as sequence labeling:
 - Part-of-Speech Tagging
 - Named Entity Recognition
 - Filling missing punctuation

MLP = Multilayer perceptron

\[n \times \text{layer: } \sigma(Wx + b) \]

Softmax for \(K \) classes with logits

\[z = (z_1, ..., z_K): \quad \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \]

Encoder-Decoder Models

\(w_i \)

lookup index in the vocabulary

\(h_{i-1} \rightarrow \text{RNN} \rightarrow h_i \)

\(\text{MLP} \)

\(\text{Softmax} \)
Detour: Why is softmax a good choice

Output layer with softmax (with parameters W, b) — gets categorical distribution:

$$P_y = \text{softmax}(x) = \Pr(y \mid x) = \frac{\exp\{x^\top W\} + b}{\sum \exp\{x^\top W\} + b}$$

Network error = cross-entropy between estimated distribution and one-hot ground-truth distribution $T = 1(y^*) = (0, 0, \ldots, 1, 0, \ldots, 0)$:

$$L(P_y, y^*) = H(P, T) = -\mathbb{E}_{i \sim T} \log P(i)$$
$$= -\sum_i T(i) \log P(i)$$
$$= -\log P(y^*)$$
Derivative of Cross-Entropy

Let \(l = \mathbf{x}^\top W + b \), \(l_{y^*} \) corresponds to the correct one.

\[
\frac{\partial L(P_y, y^*)}{\partial l} = - \frac{\partial}{\partial l} \log \frac{\exp l_{y^*}}{\sum_j \exp l_j} = - \frac{\partial}{\partial l} \left(l_{y^*} - \log \sum \exp l \right)
\]

\[
= 1_{y^*} + \frac{\partial}{\partial l} - \log \sum \exp l = 1_{y^*} - \frac{\sum 1_{y^*} \exp l}{\sum \exp l}
\]

\[
= 1_{y^*} - P_y(y^*)
\]

Interpretation: Reinforce the correct logit, suppress the rest.
Language Model as Sequence Labeling

- Input symbol one-hot vectors
- Embedding lookup
- RNN cell (more layers)
- Classifier
- Normalization
- Distribution for the next symbol

\[
P(w_1 | <s>)
\]

\[
P(w_1 | \ldots)
\]

\[
P(w_2 | \ldots)
\]
Sampling from a Language Model

<\textit{s}> → embed → RNN → MLP → softmax → Pr(w_1|<\textit{s}>) → sample

...
Sampling from a Language Model: Pseudocode

last_w = "<s>"
state = initial_state
while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state = rnn(state, last_w_embedding)
 logits = output_projection(state)
 last_w = vocabulary[np.random.multinomial(1, logits)]
yield last_w
Training

Training objective: negative-log likelihood:

$$\text{NLL} = - \sum_{i}^{n} \log \Pr (w_i | w_{i-1}, \ldots, w_1)$$

I.e., maximize probability of the correct word.

- Cross-entropy between the predicted distribution and one-hot “true” distribution
- Error from word is backpropagated into the rest of network unrolled in time
- Prone to exposure bias: during training only well-behaved sequences, it can break when we sample something weird at inference time
Generating from a Language Model

Neural Machine Translation is

- a new technology developed by a team at the University
- a technology that uses neural networks and machine learning to
- a powerful tool for understanding the spoken language.

(Example from GPT-2, a Transformer-based English language model, screenshot from https://transformer.huggingface.co/doc/gpt2-large)

Cool, but where is the source language?
Conditioning the Language Model & Attention
Conditional Language Model

Formally it is simple, condition distribution of

- target sequence $\mathbf{y} = (y_1, \ldots, y_{T_y})$ on
- source sequence $\mathbf{x} = (x_1, \ldots, x_{T_x})$

$$
\Pr(y_1, \ldots, y_n | \mathbf{x}) = \prod_{i=1}^{n} \Pr(y_i | y_{i-1}, \ldots, y_1, \mathbf{x})
$$

We need an encoder to get a representation of \mathbf{x}!

What about just continuing an RNN...
The interface between encoder and decoder is a single vector regardless the sentence length.

state = np.zeros(rnn_size)
for w in input_words:
 input_embedding = source_embeddings[w]
 state = enc_cell(encoder_state, input_embedding)

last_w = "<s>"
while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state = dec_cell(state, last_w_embedding)
 logits = output_projection(state)
 last_w = vocabulary[np.argmax(logits)]
 yield last_w
Vanila Seq2Seq: Information Bottleneck

Bottleneck all information needs to run through. A single vector must represent the entire source sentence.

Main weakness and the reason for introducing the attention.
The Attention Model

- Motivation: It would be nice to have variable length input representation
- RNN returns one state per word …
- …what if we were able to get only information from words we need to generate a word.

Attention = probabilistic retrieval of encoder states for estimating probability of target words.

Query = hidden states of the decoder

Values = encoder hidden states
Sequence-to-Sequence Model With Attention

- Encoder = bidirectional RNN states \(\langle h_i \rangle \approx \) retrieved values
- Decoder step starts as usual state \(s_0 \approx \) retrieval query
- Decoder state \(s_0 \) used to compute distribution the over encoder states
- Weighted average of encoder states = context vector
- Decoder state \& context concatenated
 - \(\text{MLP} + \text{Softmax} \) predicts next word

Attention Model in Equations (1)

Inputs:
- decoder state \(s_i \)
- encoder states \(h_j = [\hat{h}_j; \hat{h}_j] \) \(\forall i = 1 \ldots T_x \)

Attention energies:
\[
e_{ij} = v_a^\top \tanh (W_a s_{i-1} + U_a h_j + b_a)
\]

Attention distribution:
\[
\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}
\]

Context vector:
\[
c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j
\]
Output projection:

\[t_i = \text{MLP} \left(s_{i-1} \oplus v_{y_{i-1}} \oplus c_i \right) \]

...attention is mixed with the hidden state

(different in different models)

Output distribution:

\[p \left(y_i = k \mid s_i, y_{i-1}, c_i \right) \propto \exp \left(W_o t_i + b_k \right)_k \]

(usual trick: use transposed embeddings as \(W_o \))

- Different version of attentive decoders exist
- Alternative: keep the context vector as input for the next step
- Multilayer RNNs: attention between/after layers
Workings of the Attentive Seq2Seq model

Ich habe den Walros gesehen

<s>
I saw the walrus
</s>

Encoder-Decoder Models
state = np.zeros(emb_size)
fw_states = []
for w in input_words:
 input_embedding = source_embeddings[w]
 state, _ = fw_enc_cell(encoder_state, input_embedding)
 fw_states.append(state)

bw_states = []
state = np.zeros(emb_size)
for w in reversed(input_words):
 input_embedding = source_embeddings[w]
 state, _ = bw_enc_cell(encoder_state, input_embedding)
 bw_states.append(state)

enc_states = [np.concatenate(fw, bw) for fw, bw in zip(fw_states, reversed(bw_states))]

Encoder-Decoder Models
last_w = "<s>"

while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state = dec_cell(state, last_w_embedding)
 alphas = attention(state, enc_states)
 context = sum(a * state for a, state in zip(alphas, enc_states))
 logits = output_projection(np.concatenate(state, context, last_w_embedding))
 last_w = np.argmax(logits)
 yield last_w
Published as a conference paper at ICLR 2015

The agreement on the European Economic Area was signed in August 1992.

It should be noted that the marine environment is the least known of environments.

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot correspond to the words in the source sentence (English) and the generated translation (French), respectively. Each pixel shows the weight α_{ij} of the annotation of the j-th source word for the i-th target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three randomly selected samples among the sentences without any unknown words and of length between 10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector in the basic encoder–decoder approach. We conjectured that this limitation may make the basic encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the performance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand, both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-50, especially, shows no performance deterioration even with sentences of length 50 or more. This superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

Image source: Bahdanau et al. (2015), Fig. 3
Attention Visualization (2)

Image source: Koehn and Knowles (2017), Fig. 8
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>attention (NMT)</th>
<th>alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilistic</td>
<td>discrete</td>
</tr>
<tr>
<td>declarative</td>
<td>imperative</td>
</tr>
<tr>
<td>LM generates</td>
<td>LM discriminates</td>
</tr>
</tbody>
</table>
Training Seq2Seq Model

Optimize negative log-likelihood of parallel data, backpropagation does the rest.

If you choose a right optimizer, learning rate, model hyper-parameters, prepare data, do back-translation, monolingual pre-training …

Confusion: decoder inputs vs. output

inputs $y[: -1]$
s
y_1
y_2
y_3
y_4

outputs $y[1:]$
y_1
y_2
y_3
y_4
s
Inference
• Encoder-decoder is a conditional language model
• For a pair x and y, we can compute:

$$\Pr(y|x) = \prod_{i=1}^{T_y} \Pr(y_i|y_{:,i}, x)$$

• When decoding we want to get

$$y^* = \arg\max_{y'} \Pr(y'|x)$$

Enumerating all y's is computationally intractable ☠
Greedy Decoding

In each step, take the maximum probable word.

\[y_i^* = \arg\max_{y_i} \Pr(y_i | y_{i-1}^*, \ldots, \langle s \rangle) \]

```python
last_w = "<s>"
state = initial_state
while last_w != "</s>":
    last_w_embeding = target_embeddings[last_w]
    state = dec_cell(state, last_w_embeding)
    logits = output_projection(state)
    last_w = vocabulary[np.argmax(logits)]
    yield last_w
```
What if…

This is a

platypus

random end . </s>

25%

30% each

This is a

rather
good sentence . </s>

24%

60% each

⚠ Greedy decoding can easily miss the best option. △
Beam Search

Keep a small k of hypothesis (typically 4–20).

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by all (or the most probable) from the output distribution (we call these candidate hypotheses)
 2.2 Score the candidate hypotheses
 2.3 Keep only k best of them.
3. Finish if all k-best hypotheses end with $<$/s$>$
4. Sort the hypotheses by their score and output the best one.
Beam Search: Example

Hey world

<\s> Hello

Encoder-Decoder Models
beam = [("<s>", initial_state, 1.0)]
while any(hyp[-1] != "</s>" for hyp, _, _ in beam):
 candidates = []
 for hyp, state, score in beam:
 distribution, new_state = decoder_step(hyp[-1], state, encoder_states)
 for i, prob in enumerate(distribution):
 candidates.append(hyp + [vocabulary[i]], new_state, score * prob)
 beam = take_best(k, candidates)
Implementation issues

• Multiplying of too many small numbers → float underflow
 need to compute in log domain and add logarithms

• Sentences can have different lengths
 This is a good long sentence.
 \[
 0.7 \times 0.6 \times 0.9 \times 0.1 \times 0.4 \times 0.4 \times 0.8 \times 0.9 = 0.004
 \]

 This
 \[
 0.7 \times 0.01 = 0.007
 \]
 ⇒ use the geometric mean instead of probabilities directly

• Sorting candidates is expensive, asymptotically \(|V| \log |V|\):
 \(k\)-best can be found in linear time, \(|V| \sim 10^4 - 10^5\)
Final Remarks
Brief history of the architectures

- **2013** First encoder-decoder model (Kalchbrenner and Blunsom, 2013)
- **2014** First really usable encoder-decoder model (Sutskever et al., 2014)
- **2014/2015** Added attention (crucial innovation in NLP) (Bahdanau et al., 2015)
- **2016/2017** WMT winners used RNN-based neural systems (Sennrich et al., 2016)
- **2017** Transformers invented (outperformed RNN) (Vaswani et al., 2017)

The development of architectures still goes on...
Document context, non-autoregressive models, multilingual models, ...
Summary

• Encoder-decoder architecture = major paradigm in MT
• Encoder-decoder architecture = conditional language model
• Attention = way of conditioning the decoder on the encoder
• Attention = probabilistic vector retrieval
• We model probability, but need heuristics to get a good sentence from the model

