NPFL116 Compendium of Neural Machine Translation

Neural Network Basics

Jindfich Libovicky, Jindfich Helcl

& February 20, 2019

y U - Charles University @ 0 @ @
— L el Faculty of Mathematics and Physics BY NC SA

"t

7 - i

FA LANGTECH e St rd e Institute of Formal and Applied Linguistics N a—————
Dot e o

Outline

Neural Networks Basics

Representing Words

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 1/ 45

NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

State of the art in POS tagging, parsing, named-entity recognition, machine translation,
Good news: training without almost any linguistic insight

Bad news: requires enormous amount of training data and really big computational
power

2/ 45

= Buzzword for machine learning using neural networks with many layers using
back-propagation

= Learning of a real-valued function with millions of parameters that solves a particular
problem

= Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem

3/ 45

Neural Networks Basics

Neural Networks Basics

Neural Networks Basics

Neural Network Basics 4/ 45

Single Neuron

activation
Tn function

weights w
input x

Neural Network Basics 5/ 45

Neural Network

T
i1 +
(seseeeceeceeeceeere] hy = f(Wyx +by)
i1 1
(seeeeceecceeceeere] ho = f(Wyhy + by)
i1 {
11 l
G ., = (W, ,h, ,+0,)
N {
[EXXXD) 0= g(Wohn + bo)
{ {
=B E =e(o,t)

6/ 45

Implementation

Logistic regression:

y=oc(Wzx+0b) (1)

Computation graph:

forward graph backward graph

Neural Network Basics 7/ 45

Representing Words

Representing Words

Representing Words

Neural Network Basics 8/ 45

Discrete vs. Continous

Neural Network Basics 9/ 45

Representing Sequences

Representing Sequences

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 10/ 45

Representing Sequences

Recurrent Networks

..the default choice for sequence labeling

o

inputs: = ..., xp
initial state hy = 0, a result of previous
computation, trainable parameter

recurrent computation: h, = A(h,_1,x,)

11/ 45

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Neural Network Basics 12/ 45

RNN as a Fancy Image

b &

)
<
~
o)
—

Vanilla RNN

|
© © &

hy = tanh (Wlhy_q;2,] +b)

= cannot propagate long-distance relations

= vanishing gradient problem

Neural Network Basics 14/ 45

Vanishing Gradient Problem (1)

1— 6—230 dtanh x 2
— —— =1—tanh“z € (0,1
tanh x T Az (0,1]
1.0 : . 1.0
0.8 i
05 i
0.6 + i
L 4 =
> 0.0 04 | |
0.5 1 02 b 1
-1.0 - . 0.0
-6 —4 -2 0 2 4 6 —6 6
x X

Weight initialized ~ N(0,1) to have gradients further from zero.

Neural Network Basics 15/ 45

Vanishing Gradient Problem (2)

v

v

v

v

P RY
A A A A
b . b b &
0By _ 0E,q Ohy,
ob Ohy, 0b

®
:
®

Q—Pib—re

(chain rule)

16/ 45

Vanishing Gradient Problem (3)

=z, (activation)

% = a tanh (Whht_l + wat + b> (tanh/ is derivative of tanh)
0b ob
B , oW, h, , OW,z, b
= tanh'(z,) % + 3 + o
=0 =1
= W, tanh’(z,) Oy + tanh’(z,)
2 — 0

~N(0,1) €(0;1]

Neural Network Basics 17/ 45

Long Short-Term Memory Networks

LSTM = Long short-term memory

© ® ()

Tx I |
A [HAAT A
S T

(. O — > <

Neural Network ~ Pointwise Vector

Layer Operation ~ Transfer ~ Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,
= what to put on output

Neural Network Basics 18/ 45

two types of hidden states
h, — “public” hidden state, used an output
¢, — "“private” memory, no non-linearities on the way

direct flow of gradients (without multiplying by < 1 derivatives)

Ci C;

S
®

19/ 45

LSTM: Forget Gate

fe fi=0 (Wf[htfl;xt] + bf)
he—y

T

= based on input and previous state, decide what to forget from the memory

Neural Network Basics 20/ 45

LSTM: Input Gate

i C, iy =0 (W, lhy 1324 +0;)
f -
! Cy =tanh (W, - [hy 1574 +bc)
Zt[

» C — candidate what may want to add to the memory

= 4, — decide how much of the information we want to store

Neural Network Basics 21/ 45

LMST: Cell State Update

ftT 5. . Ct:ft@ot—l +it®ct
| Ci

Neural Network Basics 22/ 45

LSTM: Output Gate

he A
CEanh>
b 0 0y =0 (Wo : [htfl; xt] + bo)
hi—1 g k h, = o, © tanh C,

A

Neural Network Basics 23/ 45

Here we are, LSTM!

ft = U<Wf[ht—1§xt] +bf)

iy = oW [hy_q52]+by)

o, = oWy [hy_q524] +b,)

ét tanh (W, - [hy_1;7,] + bo)
C, = [0, +it®ét

hy = o, ®tanhC,

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Neural Network Basics 24/ 45

Gated Recurrent Units

update gate z, =0(x,W,_ +h, ;U _+b,) e (0,1)
remember gate ry =o0(z,W,.+h,_U.+b,) €(0,1)
candidate hidden state f, = tanh (z, W}, + (r, © hy_1)U,,) € (—1,1)
hidden state hy=(1—2,)0h, ;+2h,

x4l

Neural Network Basics 25/ 45

LSTM vs. GRU

» GRU is smaller and therefore faster
= performance similar, task dependent

= theoretical limitation: GRU accepts regular languages, LSTM can simulate counter
machine

Neural Network Basics 26/ 45

RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)
output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html7highlight=1stm#torch.nn.LSTM

Neural Network Basics 27/ 45

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell (512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell (512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Neural Network Basics 28/ 45

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Bidirectional Networks

= simple trick to improve performance

= run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

= state of the art in tagging, crucial for neural machine translation

Neural Network Basics 29/ 45

http://colah.github.io/posts/2015-09-NN-Types-FP/

Representing Sequences

Convolutional Networks

1-D Convolution

~ sliding window over the sequence

hy = f(Wlz;_y52;52,,4] +D)
hy | FIWV Ro; =f +

HIIIIIIIIIIIIH

embeddings x = (1, ...,Tp) =0

pad with Os if we want to keep sequence length

Neural Network Basics

30/ 45

1-D Convolution: Pseudocode

Xxs = ... # input sequnce

kernel _size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter (xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []

for i in range(window, xs.shape[l] - window):
h = np.mul(W, xs[i - window:i + window]) + b
outputs.append (h)

return np.array (h)

Neural Network Basics 31/ 45

TensorFlow

h = tf.layers.convld(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/convid

PyTorch

conv = nn.Convid(in_channels, out_channels=300, kernel size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)
h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Convid

32/ 45

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Rectified Linear Units

6.0

50
40 |

2.0
10
0.0

Neural Network Basics

-4 -2 0 2

x

1.0
0.8
0.6
0.4
0.2
0.0

—6

Derivative of RelLU:

-4 -2 0 2

faster, suffer less with vanishing gradient

33/ 45

Residual Connections

2o =0 embeddings x = (z4,...,7) =0

Allows training deeper networks.
Why do you it helps?
Better gradient flow — the same as in RNNs.

Neural Network Basics 34/ 45

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale = layer normalization.

Activation before non-linearity is normalized:

_ 9;
a; = U_z_(ai—ﬁ%‘)
1

..g is a trainable parameter, pu, o estimated from data.

Neural Network Basics

35/ 45

Receptive Field

ALLALLLLLLL
ALIALLALLLLL

FTTrrrrrrrrrnl

0 embeddings x = (z1,..., 2) 2y =0

Can be enlarged by dilated convolutions.

36/ 45

Convolutional architectures

| —

= extremely computationally efficient = limited context

= by default no aware of n-gram order

= max-pooling over the hidden states = element-wise maximum over sequence

= can be understood as an 3 operator over the feature extractors

Neural Network Basics 37/ 45

Representing Sequences

Self-attentive Networks

= In some layers: states are linear combination of previous layer states

= Originally for the Transformer model for machine translation

women

would

welcome 0.8

= similarity matrix between all pairs of states

child

0.6

e |} ' = O(n?) memory, O(1) time (when paralelized)

facilities

04 » next layer: sum by rows

at

sclentific

institutions

0.2

0.0

38/ 45

Multi-headed scaled dot-product attention

Single-head setup

Attn(Q, K, V) = softmax

S N

QKT
)Y
KT
h; 1 = g softmax(\’/C_;)

Multihead-head setup

Multihead(Q, V) = (H, & - @ H,,)W©
H; = Attn(QW2, VWK vIvY)

Neural Network Basics

tt
—
T

2

’scaled dot-product a
I T
f !
f i
f !

enti
e~
——

linear linear

keys & values

linear

39/ 45

Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul (query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul (p_attn, value), p_attn

Neural Network Basics 40/ 45

Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values) :
ol = tf.matmul (queries, keys, transpose_b=True)
02 = ol / (dim**0.5)

03 = tf.nn.softmax(02)
return tf.matmul (03, values)

Neural Network Basics 41/ 45

Position Encoding

Model cannot be aware of the position in the sequence.

sin (#

pos(i) = cos <

Neural Network Basics

t d

1

04

Qe

i

)

i

).

ifi mod2=0

otherwise

100 4

200 1

ann

42/ 45

Stacking self-attentive Layers

! I
1 1
I
! @ |
I o |
: ol
; g |
| : |
I = |
I s |
I s |
by
! 3 |
| S|
! I
' |
Nx | !
! I
I
' |
| 8 |
i & o |
i =
| s |
B I
' = |
multihead 3
I attention s
SN
I keys & \ queries 3
I values S
! I
! I
position
encoding

Neural Network Basics

input embeddings

several layers (original paper 6)

each layer: 2 sub-layers: self-attention and
feed-forward layer

everything inter-connected with residual
connections

43/ 45

Architectures Comparison

computation sequential operations memory

Recurrent O(n - d?) O(n) O(n-d)
Convolutional O(k - n -d?) O(1) O(n-d)
Self-attentive ~ O(n? - d) O(1) O(n?-d)

d model dimension, n sequence length, k£ convolutional kernel

Neural Network Basics 44/ 45

Neural Network Basics

Summary

1. Discrete symbols — continuous representation with trained
embeddings

2. Architectures to get suitable representation: recurrent,
convolutional, self-attentive

3. Output: classification, sequence labeling, autoregressive
decoding ..next time

http://ufal.mff.cuni.cz/courses/npf1116

http://ufal.mff.cuni.cz/courses/npfl116

	Neural Networks Basics
	Representing Words
	Representing Sequences
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks

