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NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

State of the art in POS tagging, parsing, named-entity recognition, machine translation,
Good news: training without almost any linguistic insight

Bad news: requires enormous amount of training data and really big computational
power
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= Buzzword for machine learning using neural networks with many layers using
back-propagation

= Learning of a real-valued function with millions of parameters that solves a particular
problem

= Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem
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Single Neuron

activation
Tn function

weights w
input x
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Neural Network
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Implementation

Logistic regression:

y=oc(Wzx+0b) (1)

Computation graph:

forward graph backward graph
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Discrete vs. Continous
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Representing Sequences

Recurrent Networks




..the default choice for sequence labeling

o

inputs: = ..., xp
initial state hy = 0, a result of previous
computation, trainable parameter

recurrent computation: h, = A(h,_1,x,)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

|
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hy = tanh (Wlhy_q;2,] +b)

= cannot propagate long-distance relations

= vanishing gradient problem
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Vanishing Gradient Problem (1)
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Weight initialized ~ N(0,1) to have gradients further from zero.
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Vanishing Gradient Problem (2)
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Vanishing Gradient Problem (3)

=z, (activation)

% = a tanh (Whht_l + wat + b> (tanh/ is derivative of tanh)
0b ob
B , oW, h, , OW,z, b
= tanh'(z,) % + 3 + o
=0 =1
= W, tanh’(z,) Oy + tanh’(z,)
2 — 0

~N(0,1) €(0;1]
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Long Short-Term Memory Networks

LSTM = Long short-term memory
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Neural Network ~ Pointwise Vector

Layer Operation ~ Transfer ~ Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,
= what to put on output
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two types of hidden states
h, — “public” hidden state, used an output
¢, — "“private” memory, no non-linearities on the way

direct flow of gradients (without multiplying by < 1 derivatives)

Ci C;

S
®
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LSTM: Forget Gate

fe fi=0 (Wf[htfl;xt] + bf)
he—y

T

= based on input and previous state, decide what to forget from the memory
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LSTM: Input Gate

i C, iy =0 (W, lhy 1324 +0;)
f -
! Cy =tanh (W, - [hy 1574 +bc)
Zt[

» C — candidate what may want to add to the memory

= 4, — decide how much of the information we want to store
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LMST: Cell State Update

ftT 5. . Ct:ft@ot—l +it®ct
| Ci
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LSTM: Output Gate

he A
CEanh>
b 0 0y =0 (Wo : [htfl; xt] + bo)
hi—1 g k h, = o, © tanh C,

A
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Here we are, LSTM!

ft = U<Wf[ht—1§xt] +bf)

iy = oW [hy_q52]+by)

o, = oWy [hy_q524] +b,)

ét tanh (W, - [hy_1;7,] + bo)
C, = [0, +it®ét

hy = o, ®tanhC,

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.
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Gated Recurrent Units

update gate z, =0(x,W,_ +h, ;U _+b,) e (0,1)
remember gate ry =o0(z,W,.+h,_U.+b,) €(0,1)
candidate hidden state f, = tanh (z, W}, + (r, © hy_1)U,,) € (—1,1)
hidden state hy=(1—2,)0h, ;+2h,

x4l
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LSTM vs. GRU

» GRU is smaller and therefore faster
= performance similar, task dependent

= theoretical limitation: GRU accepts regular languages, LSTM can simulate counter
machine
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RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)
output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html7highlight=1stm#torch.nn.LSTM
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https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

# Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell (512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell (512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn
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https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Bidirectional Networks

= simple trick to improve performance

= run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

= state of the art in tagging, crucial for neural machine translation
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1-D Convolution

~ sliding window over the sequence

hy = f(Wlz;_y52;52,,4] +D)
hy | FIWV Ro; =f +

HIIIIIIIIIIIIH

embeddings x = (1, ...,Tp) =0

pad with Os if we want to keep sequence length

Neural Network Basics
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1-D Convolution: Pseudocode

Xxs = ... # input sequnce

kernel _size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter (xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []

for i in range(window, xs.shape[l] - window):
h = np.mul(W, xs[i - window:i + window]) + b
outputs.append (h)

return np.array (h)
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TensorFlow

h = tf.layers.convld(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/convid

PyTorch

conv = nn.Convid(in_channels, out_channels=300, kernel size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)
h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Convid
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https://www.tensorflow.org/api_docs/python/tf/layers/conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Rectified Linear Units
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Derivative of RelLU:

-4 -2 0 2

faster, suffer less with vanishing gradient
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Residual Connections

2o =0 embeddings x = (z4,...,7 ) =0

Allows training deeper networks.
Why do you it helps?
Better gradient flow — the same as in RNNs.
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Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale = layer normalization.

Activation before non-linearity is normalized:

_ 9;
a; = U_z_(ai—ﬁ%‘)
1

..g is a trainable parameter, pu, o estimated from data.
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Receptive Field

ALLALLLLLLL
ALIALLALLLLL

FTTrrrrrrrrrnl

0 embeddings x = (z1,..., 2 ) 2y =0

Can be enlarged by dilated convolutions.
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Convolutional architectures

_|_ —

= extremely computationally efficient = limited context

= by default no aware of n-gram order

= max-pooling over the hidden states = element-wise maximum over sequence

= can be understood as an 3 operator over the feature extractors
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= In some layers: states are linear combination of previous layer states

= Originally for the Transformer model for machine translation

women

would

welcome 0.8

= similarity matrix between all pairs of states

child

0.6

e |} ' = O(n?) memory, O(1) time (when paralelized)

facilities

04 » next layer: sum by rows

at

sclentific
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0.2

0.0
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Multi-headed scaled dot-product attention

Single-head setup

Attn(Q, K, V) = softmax

S N

QKT
)Y
KT
h; 1 = g softmax( \’/C_;)

Multihead-head setup

Multihead(Q, V) = (H, & - @ H,,)W©
H; = Attn(QW2, VWK vIvY)
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Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul (query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul (p_attn, value), p_attn
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Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values) :
ol = tf.matmul (queries, keys, transpose_b=True)
02 = ol / (dim**0.5)

03 = tf.nn.softmax(02)
return tf.matmul (03, values)
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Position Encoding

Model cannot be aware of the position in the sequence.

sin (#

pos(i) = cos <
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Stacking self-attentive Layers
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input embeddings

several layers (original paper 6)

each layer: 2 sub-layers: self-attention and
feed-forward layer

everything inter-connected with residual
connections
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Architectures Comparison

computation sequential operations  memory

Recurrent O(n - d?) O(n) O(n-d)
Convolutional  O(k - n -d?) O(1) O(n-d)
Self-attentive ~ O(n? - d) O(1) O(n?-d)

d model dimension, n sequence length, k£ convolutional kernel
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Neural Network Basics

Summary

1. Discrete symbols — continuous representation with trained
embeddings

2. Architectures to get suitable representation: recurrent,
convolutional, self-attentive

3. Output: classification, sequence labeling, autoregressive
decoding ..next time

http://ufal.mff.cuni.cz/courses/npf1116
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