Neural Network Basics

Jindřich Libovický, Jindřich Helcl

February 20, 2019
Outline

Neural Networks Basics

Representing Words

Representing Sequences
 Recurrent Networks
 Convolutional Networks
 Self-attentive Networks
• NLP tasks learn end-to-end using deep learning — the number-one approach in current research
• State of the art in POS tagging, parsing, named-entity recognition, machine translation, …
• Good news: training without almost any linguistic insight
• Bad news: requires enormous amount of training data and really big computational power
What is deep learning?

- Buzzword for machine learning using neural networks with many layers using back-propagation
- Learning of a real-valued function with millions of parameters that solves a particular problem
- Learning more and more abstract representation of the input data until we reach such a suitable representation for our problem
Neural Networks Basics
Neural Networks Basics

Representing Words

Representing Sequences
 Recurrent Networks
 Convolutional Networks
 Self-attentive Networks
Single Neuron

\[\sum \cdot \text{is} > 0? \]

input \(\mathbf{x} \)

weights \(\mathbf{w} \)

activation function

output

\[x_1 \cdot w_1 \]
\[x_2 \cdot w_2 \]
\[x_i \cdot w_i \]
\[x_n \cdot w_n \]
Neural Network Basics

\[x \]
\[h_1 = f(W_1 x + b_1) \]
\[h_2 = f(W_2 h_1 + b_2) \]
\[\vdots \]
\[h_n = f(W_n h_{n-1} + b_n) \]
\[o = g(W_o h_n + b_o) \]
\[E = e(o, t) \]

\[\frac{\partial E}{\partial W_o} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial W_o} \]
Logistic regression:

\[y = \sigma (W x + b) \]

Computation graph:
Representing Words
Representing Words

Neural Networks Basics

Representing Words

Representing Sequences
 Recurrent Networks
 Convolutional Networks
 Self-attentive Networks
Discrete vs. Continuous
Representing Sequences
Representing Sequences

Neural Networks Basics

Representing Words

Representing Sequences
 Recurrent Networks
 Convolutional Networks
 Self-attentive Networks
Representing Sequences
Recurrent Networks
Recurrent Networks (RNNs)

...the default choice for sequence labeling

- inputs: x, \ldots, x_T
- initial state $h_0 = 0$, a result of previous computation, trainable parameter
- recurrent computation: $h_t = A(h_{t-1}, x_t)$
def rnn(initial_state, inputs):
 prev_state = initial_state
 for x in inputs:
 new_state, output = rnn_cell(x, prev_state)
 prev_state = new_state
 yield output
RNN as a Fancy Image

\[h_t = A(x_t) \]

\[h_0 \quad h_1 \quad h_2 \quad \ldots \quad h_t \]

\[x_0 \quad x_1 \quad x_2 \quad \ldots \quad x_t \]
Vanilla RNN

\[h_t = \tanh \left(W[h_{t-1}; x_t] + b \right) \]

- cannot propagate long-distance relations
- vanishing gradient problem
Vanishing Gradient Problem (1)

\[\tanh x = \frac{1 - e^{-2x}}{1 + e^{-2x}} \]

\[\frac{dtanh}{dx} = 1 - \tanh^2 x \in (0, 1] \]

Weight initialized $\sim \mathcal{N}(0, 1)$ to have gradients further from zero.
Vanishing Gradient Problem (2)

\[\frac{\partial E_{t+1}}{\partial b} = \frac{\partial E_{t+1}}{\partial h_{t+1}} \cdot \frac{\partial h_{t+1}}{\partial b} \] (chain rule)
Vanishing Gradient Problem (3)

\[
\frac{\partial h_t}{\partial b} = \frac{\partial \tanh \left(W_h h_{t-1} + W_x x_t + b \right)}{\partial b} (\text{tanh}’ \text{ is derivative of tanh})
\]

\[
= \tanh' \left(z_t \right) \cdot \left(\frac{\partial W_h h_{t-1}}{\partial b} + \frac{\partial W_x x_t}{\partial b} + \frac{\partial b}{\partial b} \right)
\]

\[
= W_h \underbrace{\tanh' \left(z_t \right)}_{\sim \mathcal{N}(0,1)} \underbrace{\frac{\partial h_{t-1}}{\partial b}}_{(0;1]} + \tanh' \left(z_t \right)
\]
Control the gradient flow by explicitly gating:

- what to use from input,
- what to use from hidden state,
- what to put on output
two types of hidden states

h_t — “public” hidden state, used in an output

c_t — “private” memory, no non-linearities on the way

direct flow of gradients (without multiplying by ≤ 1 derivatives)
LSTM: Forget Gate

\[f_t = \sigma (W_f [h_{t-1}; x_t] + b_f) \]

- based on input and previous state, decide what to forget from the memory
LSTM: Input Gate

\[i_t = \sigma(W_i \cdot [h_{t-1}; x_t] + b_i) \]

\[\tilde{C}_t = \tanh(W_c \cdot [h_{t-1}; x_t] + b_C) \]

- \(\tilde{C} \) — candidate what may want to add to the memory
- \(i_t \) — decide how much of the information we want to store
LMST: Cell State Update

\[C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \]
LSTM: Output Gate

\[o_t = \sigma (W_o \cdot [h_{t-1}; x_t] + b_o) \]

\[h_t = o_t \odot \tanh C_t \]
Here we are, LSTM!

\[f_t = \sigma (W_f [h_{t-1}; x_t] + b_f) \]
\[i_t = \sigma (W_i \cdot [h_{t-1}; x_t] + b_i) \]
\[o_t = \sigma (W_o \cdot [h_{t-1}; x_t] + b_o) \]
\[\tilde{C}_t = \tanh (W_c \cdot [h_{t-1}; x_t] + b_C) \]
\[C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \]
\[h_t = o_t \odot \tanh C_t \]

Question How would you implement it efficiently? Compute all gates in a single matrix multiplication.
Gated Recurrent Units

update gate
\[z_t = \sigma(x_t W_z + h_{t-1} U_z + b_z) \in (0, 1) \]

remember gate
\[r_t = \sigma(x_t W_r + h_{t-1} U_r + b_r) \in (0, 1) \]

candidate hidden state
\[\tilde{h}_t = \tanh(x_t W_h + (r_t \odot h_{t-1}) U_h) \in (-1, 1) \]

hidden state
\[h_t = (1 - z_t) \odot h_{t-1} + z_t \cdot \tilde{h}_t \]
LSTM vs. GRU

- GRU is smaller and therefore faster
- performance similar, task dependent
- theoretical limitation: GRU accepts regular languages, LSTM can simulate counter machine
RNN in PyTorch

```python
rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1, bidirectional=True, dropout=0.8)
output, (hidden, cell) = self.rnn(x)
```

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
 cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn
Bidirectional Networks

- simple trick to improve performance
- run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

- state of the art in tagging, crucial for neural machine translation
Representing Sequences

Convolutional Networks
1-D Convolution

≈ sliding window over the sequence

\[h_i = f \left(W \left[x_{i-1}; x_i; x_{i+1} \right] + b \right) \]

\[h_1 = f \left(W \left[x_0; x_1; x_2 \right] + b \right) \]

\[x_0 = \vec{0} \]

embeddings \(\mathbf{x} = (x_1, \ldots, x_N) \)

\[x_N = \vec{0} \]

pad with 0s if we want to keep sequence length
1-D Convolution: Pseudocode

```python
xs = ... # input sequence

kernel_size = 3  # window size
filters = 300    # output dimensions
strides=1       # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):
    h = np.mul(W, xs[i - window:i + window]) + b
    outputs.append(h)
return np.array(h)
```
1-D Convolution: Frameworks

TensorFlow

```python
h = tf.layers.conv1d(x, filters=300, kernel_size=3,
                     strides=1, padding='same')
```

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

PyTorch

```python
conv = nn.Conv1d(in_channels, out_channels=300, kernel_size=3, stride=1,
                 padding=0, dilation=1, groups=1, bias=True)
```

```python
h = conv(x)
```

Rectified Linear Units

ReLU:

\[y = \begin{cases}
0 & \text{if } x < 0 \\
 x & \text{if } x \geq 0
\end{cases} \]

Derivative of ReLU:

\[y = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x \geq 0
\end{cases} \]

faster, suffer less with vanishing gradient
Residual Connections

\[h_i = f(W [x_{i-1}; x_i; x_{i+1}] + b) + x_i \]

\[x_0 = \vec{0} \]

embeddings \(x = (x_1, \ldots, x_N) \)

\[x_N = \vec{0} \]

Allows training deeper networks.

Why do you it helps?

Better gradient flow – the same as in RNNs.
Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale \Rightarrow layer normalization. Activation before non-linearity is normalized:

$$\bar{a}_i = \frac{g_i}{\sigma_i} (a_i - \mu_i)$$

...g is a trainable parameter, μ, σ estimated from data.

$$\mu = \frac{1}{H} \sum_{i=1}^{H} a_i$$

$$\sigma = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_i - \mu)^2}$$
Receptive Field

$\mathbf{x} = (x_1, \ldots, x_N)$

$x_0 = \vec{0}$

$\mathbf{x} = (x_1, \ldots, x_N)$

$x_N = \vec{0}$

Can be enlarged by dilated convolutions.
Convolutional architectures

+
 - extremely computationally efficient
 - max-pooling over the hidden states = element-wise maximum over sequence
 - can be understood as an \exists operator over the feature extractors

-
 - limited context
 - by default no aware of n-gram order
Representing Sequences
Self-attentive Networks
Self-attentive Networks

- In some layers: states are linear combination of previous layer states
- Originally for the Transformer model for machine translation

- similarity matrix between all pairs of states
- $O(n^2)$ memory, $O(1)$ time (when parallelized)
- next layer: sum by rows
Multi-headed scaled dot-product attention

Single-head setup

\[\text{Attn}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d}} \right) V \]

\[h_{i+1} = \sum \text{softmax} \left(\frac{h_i h_i^T}{\sqrt{d}} \right) \]

Multihead-head setup

\[\text{Multihead}(Q, V) = (H_1 \oplus \cdots \oplus H_h)W^O \]

\[H_i = \text{Attn}(QW_i^Q, VW_i^K, VW_i^V) \]
def attention(query, key, value, mask=None):
 d_k = query.size(-1)
 scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
 p_attn = F.softmax(scores, dim = -1)
 return torch.matmul(p_attn, value), p_attn
def scaled_dot_product(self, queries, keys, values):
 o1 = tf.matmul(queries, keys, transpose_b=True)
 o2 = o1 / (dim**0.5)

 o3 = tf.nn.softmax(o2)
 return tf.matmul(o3, values)
Position Encoding

Model cannot be aware of the position in the sequence.

\[
\text{pos}(i) = \begin{cases}
\sin \left(\frac{t \cdot i}{10^4 \cdot d} \right), & \text{if } i \mod 2 = 0 \\
\cos \left(\frac{t \cdot (i-1)}{10^4 \cdot d} \right), & \text{otherwise}
\end{cases}
\]
Stacking self-attentive Layers

- several layers (original paper 6)
- each layer: 2 sub-layers: self-attention and feed-forward layer
- everything inter-connected with residual connections
Architectures Comparison

<table>
<thead>
<tr>
<th></th>
<th>computation</th>
<th>sequential operations</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent</td>
<td>$O(n \cdot d^2)$</td>
<td>$O(n)$</td>
<td>$O(n \cdot d)$</td>
</tr>
<tr>
<td>Convolutional</td>
<td>$O(k \cdot n \cdot d^2)$</td>
<td>$O(1)$</td>
<td>$O(n \cdot d)$</td>
</tr>
<tr>
<td>Self-attentive</td>
<td>$O(n^2 \cdot d)$</td>
<td>$O(1)$</td>
<td>$O(n^2 \cdot d)$</td>
</tr>
</tbody>
</table>

d model dimension, n sequence length, k convolutional kernel
Summary

1. Discrete symbols \rightarrow continuous representation with trained embeddings
2. Architectures to get suitable representation: recurrent, convolutional, self-attentive
3. Output: classification, sequence labeling, autoregressive decoding …next time

http://ufal.mff.cuni.cz/courses/npfl116