NPFL116 Compendium of Neural Machine Translation

Introductory Notes on Machine
Translation and Deep Learning

Jindfich Helcl, Jindfich Libovicky

& February 26, 2020

’ Charles University 0 (€) @
L Faculty of Mathematics and Physics o NG Sh
curopem
s\lmw:n il and " nd

"t
/ Institute of Formal and Applied Linguistics niltes Gl e
A LANGTECH




What is Machine Translation?



What is machine translation?

Time for discussion...
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What We Think...

= MT does not care what translation is
= We believe people know what translation is and that it is captured in the data

= We evaluate how well we can mimic what humans do when they translate
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What is Deep Learning?



Deep Learning in Context of Al

Sh

Example:
autoencoders
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Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AL Each section of the Venn diagram includes an example of an Al technology.

Source: Goodfellow et al., Deep Learning Book, www.deeplearningbook.org
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www.deeplearningbook.org

Deep Learning

= Machine learning that hierarchically infers suitable data representation with the
increasing level of complexity and abstraction (Goodfellow et al., 2017)

= Formulating end-to-end relation of a problems’ raw inputs and raw outputs as
parameterizable real-valued functions and finding good parameters for the functions (JL,
2017)

= Industrial /marketing buzzword for machine learning with neural networks (backpropaganda, ha, ha)
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Deep Learning as Mathematics



Single Neuron

T
output
activation
Z, function f
weights w
inputs x
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Neural Network
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Implementation

Logistic regression:

y=o0(Wzx+0b) (1)

Computation graph:

forward graph backward graph
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Building Blocks (1)

= Individual neurons / more complex units like recurrent cells (allows innovations like
inventing LSTM cells, ReLU activation)

= Libraries like Pytorch, Keras, TFSlim conceptualize on layer-level (allows innovations like
batch normalization, dropout)

= Sometimes higher-level conceptualization, similar to functional programming concepts
(allows innovations like attention)
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Building Blocks (2)

Single Neuron

RN

= Computational model from 1940's
= Adds weighted inputs and transforms to
input
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Layer

f(Wz +b)

.. f nonlinearity, W _.weight matrix, b ..bias
* Having the network in layers allows using
matrix multiplication
= Allows GPU acceleration

= Vector space interpretations
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Encoder & Decoder

Encoder:
Eaie i i
Functional fold (reduce) with function
foldl a s xs
Decoder:

rr g

@l Al A A —f A

Inverse operation — functional unfold

unfoldr a s
Source: Colah's blog (http://colah.github.io/posts/2015-09-NN-Types-FP/)
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http://colah.github.io/posts/2015-09-NN-Types-FP/

RNNs & Convolutions

General RNN:
® © ® o)
@—{ap{ab{at—{A®
® ® ® - ®

Map with accumulator
mapAccumR a s xs

Convolution:

Bidirectional RNN:

Zip left and right accumulating map
zip (mapAccumR a s xs) (mapAccumlL a' s' xs)

Zip neighbors and apply function
zipWith a xs (tail xs)

Source: Colah’s blog (http://colah.github.io/posts/2015-09-NN-Types-FP/)
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Optimization

= Data is constant, network is treated as function of parameters
= Differentiable error is function of parameters as well

= Clever variants of gradient descent algorithm
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Deep Learning as Alchemy



Deep Learning as Alchemy

= No rigorous manual for developing a good deep learning model — just rules of thumb
= Unclear how to interpret the weights the network has learned

= No theory that is able to predict results of experiments (as in physics), there are only
experiments
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Watching Learning Curves

loss
very high learning rate

low learning rate

high learning rate

good learning rate

A
accuracy

epoch

training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

Source: Convolutional Neural Networks for Visual Recognition at Stanford University (http://cs231n.github.io/neural-networks-3/)
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Other Things to Watch During Training (1)

= Train and validation loss

train_target/runtime_xent train_target/train_xent
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Other Things to Watch During Training (2)

= Target metric on training and validation data

train_target/BLEU-4

La
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= L2 and L1 norm of parameters

train_I1
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Other Things to Watch During Training (3)

= Gradients of the parameters
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= Non-linearities saturation
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Machine Translation and Deep

Learning




What's Strange on Neural MT

= We naturally think of translation in terms of manipulating with symbols
= Neural networks represent everything as real-space vectors

= Ignore pretty much everythng we know about language
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LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521.7553
(2015): 436.

http:
//pages.cs.wisc.edu/~dyer/cs540/handouts/deep-learning-nature2015.pdf

Question:

Can you identify some implicit assumptions the authors make about sentence
meaning while talking about NMT? Do you think they are correct? How do the
properties that the authors attribute to LSTM networks correspond to your own
ideas how should language be computationally processed?
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