Introductory Notes on Machine Translation and Deep Learning

February 20, 2017

Jindřich Libovický, Jindřich Helcl

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
What is machine translation?

Time for discussion.
What we think...

- MT does not care what translation is
- we believe people know what translation is and that it is captured in the data
- we evaluate how well we can mimic what humans do when they translate
Deep Learning

- machine learning that hierarchically infers suitable data representation with the increasing level of complexity and abstraction (Goodfellow et al.)
- formulating end-to-end relation of a problems’ raw inputs and raw outputs as parameterizable real-valued functions and finding good parameters for the functions (me)
- industrial/marketing buzzword for machine learning with neural networks (backpropaganda, ha, ha)
Neural Network

\[h_1 = f(W_1 x + b_1) \]
\[h_2 = f(W_2 h_1 + b_2) \]
\[\vdots \]
\[h_n = f(W_n h_{n-1} + b_n) \]
\[o = g(W_oh_n + b_o) \]
\[E = e(o, t) \]
\[
\frac{\partial E}{\partial W_o} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial W_o}
\]
• individual neurons / more complex units like recurrent cells

 \textit{(allows innovations like inventing LSTM cells, ReLU activation)}

• libraries like Keras, Lasagne, TFSlim conceptualize on

 \textit{layer-level (allows innovations like batch normalization, dropout)}

• sometimes higher-level conceptualization, similar to functional

 \textit{programming concepts (allows innovations like attention)}
Single Neuron

- computational model from 1940’s
- adds weighted inputs and transforms to input

Layer

\[f(Wx + b) \]

- \(f \) nonlinearity, \(W \) ...weight matrix, \(b \) ...bias
- having the network in layers allows using matrix multiplication
- allows GPU acceleration
- vector space interpretations
Encoder & Decoder

Encoder:

Functional fold (reduce) with function
\[
\text{foldl} \ a \ s \ xs
\]

Decoder:

Inverse operation – functional unfold
\[
\text{unfoldr} \ a \ s
\]

Source: Colah’s blog (http://colah.github.io/posts/2015-09-NN-Types-FP/)
RNNs & Convolutions

General RNN:

Map with accumulator
\[\text{mapAccumR } a \ s \ xs \]

Bidirectional RNN:

Zip left and right accumulating map
\[\text{zip} \left(\text{mapAccumR } a \ s \ xs \right) \left(\text{mapAccumL } a' \ s' \ xs \right) \]

Convolution:

Zip neighbors and apply function
\[\text{zipWith } a \ xs \left(\text{tail } xs \right) \]

Source: Colah’s blog (http://colah.github.io/posts/2015-09-NN-Types-FP/)
Optimization

- data is constant, treat the network as function of parameters
- the differentiable error is function of parameters as well
- clever variants of gradient descent algorithm
- there is no rigorous manual how to develop a good deep learning model – just rules of thumb
- we don’t know how to interpret the weights the network has learned
- there is no theory that is able to predict results of experiments (as in physics), there are only experiments
Recoding in mathematics

Algebraic equations

\[10x^2 - x - 60 = 0\]
\[0.2x^3 - 2x^2 - 10x + 4 = 0\]
\[-2x^2 - 10 = 0\]

...became planar curves

Image: Existential comics (http://existentialcomics.com/)
Watching Learning Curves

Source: Convolutional Neural Networks for Visual Recognition at Stanford University
(http://cs231n.github.io/neural-networks-3/)
train and validation loss

- train and validation loss
- train_target/runtime_xent
- train_target/train_xent
- val_target/runtime_xent
- val_target/train_xent
Other Things to Watch During Training (2)

- target metric on training and validation data

- L2 and L1 norm of parameters
Other Things to Watch During Training (3)

- gradients of the parameters

- non-linearities saturation
What’s Strange on Neural MT

- we naturally think of translation in terms of manipulating with symbols
- neural network represents everything as real-space vectors
- ignore pretty much everything we know about language

Question:

Can you identify some implicit assumptions the authors make about sentence meaning while talking about NMT? Do you think they are correct? How do the properties that the authors attribute to LSTM networks correspond to your own ideas how should language be computationally processed?