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Task definition

   !  "  #  $  %&  %% ' ( ) %

 !"#$%&'()(*%+#,-.')()-'

!  %"  (" !"#$% #

! $ " $!" % #

!  ""  ""&$'()*$% #

!  $"  %&"&$'()*$% #

& +!  %"  )" '''"  " #

A Survey on Deep Learning for Named Entity Recognition | Jing Li et al. Page 1/29



Evaluation metrics

• Exact-match evaluation
consider a prediction correct if it has both boundaries and type matching
ground truth.

• Relaxed-match evaluation
credit a predicted type if it matches the ground truth and overlaps with ground
truth boundaries; credit predicted boundaries if they match the ground truth
boundaries regardless of a predicted type.
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F-score

F-score = 2 × Precision × Recall
Precision + Recall ,

where Precision = TP
TP+FP , Recall = TP

TP+FN

Macro-averaged F-score treats all entity types equally (average is taken
of scores for each entity type).

Micro-averaged F-score treats all entities equally (average is taken of
scores for all entities).
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Relaxed-match evaluation

Evaluation doesn’t require the prediction to match both the boundary
and entity type:

• Correct type is credited when the predicted type matches the ground
truth and there is an overlap with ground truth boundaries.

• Correct boundaries are credited only when they match perfectly with
ground truth.

Improvement (?): ACE proposed a metric that takes into account subtypes
of named entities.
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Rule-based approaches

• Reliance on hand-crafted/inferred rules.

• Regexp.

• Works well when we know enough language-specific information and
resources (dictionaries, lexicons, linguists).

• Rules can’t easily represent some dependencies.
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Unsupervised learning approaches

• Clustering – gathering of named entities from clustered groups based
on the similarity of context.

• Usage of hyperonyms/hyponyms (location>country,
creature>animal>bear).

• Querying the web/database for patterns (Google queries like "such as
X").

• Mining named entities from several newspapers at time X.

• Reliance on lexical resources (e.g. word net), lexical patterns.
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Feature-based approaches

• Feature engineering.

• Features – descriptors or characteristic attributes of words designed
for algorithmic consumption (abstraction layer over the text/words).
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Word-level features

Case : capitalization, uppercase, mixed case.

Punctuation : word has a period (ends with it, letters are separated by
it)/apostrophe/hyphen/ampersand.

Digit : digit patterns (dates, time, IDs, serial numbers, ...),
Roman numerals, abbreviations with digits.

Morphology : utilization of morphemes: {pre-,suf-}fixes, root words.

Part-of-speech : proper name, verb, noun, foreign word.
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List lookup features

General list : stop words, capitalized nouns (months/days of the
week), abbreviations.

List of entities : organizations, names, geographical entities

List of entity cues : name prefixes, titles, typical words in organization
names.
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Deep Learning techniques
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Input representation

Word-level

• One-hot, Word2vec (CBOW/Skip-gram), Glove, fastText, Bert, ...

• Use pre-trained word embeddings.

• One of the mentioned works utilizes a model that is trained for two
sub-tasks: it first segments the text, and then predicts labels.
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Input representation

Character-level
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CNN-based char-level representation
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RNN-based char-level representation
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Input representation

Methodologies
• Use representations from both levels – first, extract char-level word

representations using CNN and concatenate them with word
embedding (can also add a gate to make the model decide which
representation to utilize more), then feed it into a (bidirectional) RNN
context encoder.

• Consider a sentence as a sequence of characters and apply utilize
RNN (LSTM) to extract char-level representation. Output a tag
distribution for each character.
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Input representation
• Contextual string embeddings: use string char-level LM to generate

contextualized embeddings for a string in a sentence context.
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Forward (red) LM extract the hidden state after the last character in the word, backward
(blue) LM extracts the hidden state before the first one.
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Input representation

Hybrid – a combination of feature-based and neural
approaches

• Yields even better results than neural approaches.

• Systems employ rich features such as POS tags, morphological
features, capitalization, etc.

• Resulting representations are often concatenations of embeddings
vector and vector of features.
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CNNs
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Each word is embedded to a multidimensional vector, then a convolution layer is applied
to produce features around each word, then a global feature vector is built by combining
these features. Both local and global features are then fed to a linear NN for decoding.
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RNNs

09!.9 #

$%&'""()*+,!-'.

/ . " ! ) $)"0'12')3'

4//526

=>>

7:!.!39'.;,'8',+
.'6.'<')9!9(/) 7/)3!9')!9(/)

BRNN allows the model to contain information from the whole input sequence.
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Recursive NNs
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Recursive Neural Nets allow us to parse the sentence node by node using a constituency
structure. The bottom-up direction calculates the semantic composition of the subtree
of each node, and the top-down counterpart propagates to that node the linguistic struc-
tures which contain the subtree.
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Neural LLMs
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LM-LSTM-CRF model. The language model and sequence tagging model share the same
character-level layer in a multi-task learning manner.
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Transformer
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GPT
Just as in previous architectures, transformer embeddings are contextualized.
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MLP + softmax
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MLP+softmax decoder reformulates the NER problem to a multi-class classification prob-
lem. Tag for each word is independently predicted based on context-dependent repre-
sentations.

A Survey on Deep Learning for Named Entity Recognition | Jing Li et al. Page 21/29



Conditional Random Fields
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RNNs
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Pointer networks
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Pointer networks first identify a segment and then label it.
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Multi-task Learning

Let the model discover internal representations that are useful for many
tasks.
Approaches:

• Train a model to jointly perform additional tasks like POS tagging,
segmentation, SRL (Semantic Role Labeling).

• Modelling NER as two related subtasks: entity segmentation and
category prediction.
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Deep Learning Transfer

Approaches:

• Bootstrapping
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Deep Reinforcement Learning
"Maximizing some heuristic helps to train a better performing model: the
agent learns from the environment by interacting with it and receiving
rewards."
Key components of the environment

• State transition function.
• Output function.
• Reward function

Key components of the agent:
• State transition function.
• Policy function.
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Deep Adversarial Learning

"Learn to generate from a training distribution through a 2-player game:
one network generates candidates, and the other evaluates them"
Adversarial examples can be produced in 2 ways

1. Consider instances in a source domain as adversarial examples for a
target domain, and vice versa.

2. Prepare an adversarial sample by adding an original sample with a
perturbation. Useful when dealing with a low-resource setting. The
classifier is trained on both original and adversarial examples.
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Neural attention

Application:

• When combining word-level and char-level input representations,
use the attention mechanism to make the model decide what
representations are more important.

• Obtaining relevant information from the entire document.
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