
Chapter 1

Ambiguity, Neutrality, and Coordination in
Higher-Order Grammar

CARL POLLARD AND JI ŘÍ HANA

ABSTRACT. We show that the standard account of neutrality and coordination in type-logical
grammar is untenable. However, when using as our framework aversion of Lambek’s categor-
ical grammar with a type theory based on Lambek and Scott’s higher order intuitionistic logic
(the internal language of a topos) rather than the Lambek calculus, the account can largely be
salvaged. Because of the difficulty of phonologically interpreting coordinated functors of differ-
ing directionality we need to handle both phonology and syntax within a single polymorphically
typed lambda calculus.

1.1 Introduction

The standard type-logical grammar (hereafter TLG) accountof neutrality and co-
ordination (Morrill 1990, Bayer and Johnson 1995, Bayer 1996, hereafter MBJ)
analyzes neutrality between two typesA andB as the conjunctionA ^B, and co-
ordination of anA and aB as the disjunctionA_B, where^ and_ are Lambek’s
(1961) binary additive connectives. This account is problematic in several respects.
First, as shown by Whitman 2002, it fails to distinguish argument ambiguity from
argument neutrality, so that all instances of homophony between slots in a word
paradigm are wrongly predicted to be syncretic. This is falsified by examples such
as the following (Dyla 1984):

(1) * CO
what.NOM/ACC

Janek zrobil
did

a
and

zmartwilo
upset

Marie? (Polish)

[Intended meaning, roughly: What was it that Janek did and that upset
Mary?]

as compared with syncretic examples such as

(2) KOGO
who.ACC/GEN

Janek lubi
likea a

and
Jerzy nienawidzi?

hategen (Polish)

‘Who does Janek like and Jerzy hate?’
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Likewise, the MBJ account fails to distinguish functor neutrality from functor am-
biguity, deriving the ungrammatical (3) side by side with the grammatical (4):

(3) *Mary WANTS to go and John to go.

(4) I WOULD LIKE to leave town early tomorrow morning and for you to go
with me.

Faced with this problem, Whitman (2002) and Morrill (p.c.) independently
suggested the possibility of distinct phonologies/prosodies with no audible differ-
ence (more specifically, Morrill suggested using an orderedpair of a string and an
integer instead of just a string). Whitman subsequently opted instead for abandon-
ing the hypothesis that there is any purely syntactic distinction between neutrality
and ambiguity, so that in principle all ambiguities are potentially neutralizable sub-
ject to pragmatic or processing constraints.

Second, the MBJ account does not account for examples of nonbinary coor-
dination, where one or more of the coordinated constituentscan themselves be
coordinate structures:

(5) Kim is [drunk, stoned, or under the table] and an inveterate liar.

And third, on the MBJ account an unlike coordination such asrich and an excellent
cook is analyzed as anNP_AP. But in the standard frame-semantical phonological
interpretation (Heylen 1996 and 1997, Moortgat 1997, Carpenter 1997), ifS is the
stringset that interpretsNP andT the stringset that interpretsAP, thenrich and an
excellent cook is in their union. So either it is inS or it is in T ; hence either it is
derivable as anNP, or it is derivable as anAP. But it is neither. So the theory is
inconsistent.

From what we have said so far, it may seem that the MBJ account is beyond
salvation. However, we will argue that the intuitions behind it are right on the
mark, but just need to be expressed in a more cooperative kindof type theory.
An alternative account of (inter alia) the same phenomena due to Dalrymple and
Kaplan (2000, hereafter DK) treats the f-structure of a coordinate structure as the
set of f-structures of the coordinated constituents. In this paper we show how
to import the desirable features of the DK analysis into a form of type-logical
grammar so as to fix what is wrong with the MBJ account while preserving its
main insights.

1.2 Higher Order Grammar

Our framework is higher-order grammar (hereafter HOG, Pollard 2001 and 2003),
a version of Lambek’s (1988, 1999) categorical (not categorial) grammar. In cat-
egorical grammar the role of proofs is different than in standard TLG. Instead of
starting with a set of lexical signs (usually triples of a phonology/prosody, a syn-
tactic type, and a meaning) and using proof theory to enlargethe set of triples, in
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categorical grammar the signs literallyare the proofs, or more precisely, Prawitz
(1965) equivalence classes of them. (Categorically, theseare arrows which are in
a natural one-to-one correspondence with equivalence classes of proofs, but for fa-
miliarity we will engage in a mild abuse of language and simply call them proofs.)
On the Curry-Howard interpretation, this means that, e.g. the proper nounJohn
is actually an inhabitant of the typeNP. Logically, that means it is a proof of the
propositionNP from the null premissI (tensor identity):

John : I ! NP
Moreover, semantic interpretation is treated as a (categorical, not categorial) func-
tor, which in logical terms amounts to a mapping from syntactic proofs into seman-
tic proofs that preserves identity proofs (p : A ! A) and composition of proofs.
In terms of the associated proof term calculi, this amounts to a translation from a
bilinear lambda calculus (Mints 1977, Szabo 1978, Wansing 1992, Gabbay and de
Queiroz 1992) into a more familiar (Church-Henkin-Gallin-Montague-style) clas-
sical higher-order logic.

HOG differs from Lambek’s categorical grammar in employingas the syntactic
type logic not the Lambek calculus but rather a full intuitionistic propositional
logic with all three of weakening, contraction, and permutation. The basic types
are sign types such asNP, S, andN, as well as types for the values of features
such as CASE, VFORM, etc. In keeping with the formulas-as-types perspective we
write �, +, and1 for conjunction, disjunction, and truth; categorically these are
(cartesian, not tensor) product and coproduct and terminaltype (in the presence of
the structural rules the tensor null premissI becomes cartesian1). The typeBool
is also provided by the logic: it is just1+1, with the truth valuest andf being the
canonical injections into the coproduct.

The proof term calculus, correspondingly, is not bilinear but rather a boolean,
two-valued form of Lambek and Scott’s (1986) higher order intuitionistic logic.
Basic constants correspond to syntactic words (e.g.John of type NP denotes
the wordJohn: 1 ! NP), and also to feature values, e.g.acc of typeCase
denotesacc: 1 ! Case). In light of the Lambek-Scott equivalence discussed
below, we don’t bother to distinguish notationally betweenclosed terms and the
arrows/equivalence classes of proofs that they denote.

This logic, called SL (syntactic logic), has a robust form ofsubtyping: ifx is a
variable of typeA and� a propositional term with at mostx free, then[x 2 A j �℄
is a subtype ofA. It is important to note that in order forB to be a subtype ofA, it
is not enough just for there to be a proof fromA toB; rather there must be amonic
proof fromA toB (the categorical generalization of an injective function from one
set to another).

Because the proof term calculus for higher order intuitionistic logic is so much
expressive than ones for the Lambek calculus, SL can be used in place of special
purpose feature logics (such as Richter’s (2000) RSRL formalism for HPSG) to
impose feature constraints on types, and obviates the need to “layer” one logic
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over another (Doerre et al. 1996, Bayer and Johnson 1995). That is, the gram-
mar (or at least the purely syntactic part of it) is written inSL. So it is relatively
straightforward to implement a HOG grammar in a typed applicative programming
language with a suitably robust form of subtyping. Note thatunlike standard TLG,
there is not a logic associated with the grammar but rather the grammaris a logical
theory (since the constraints are nonlogical axioms). The canonical model of such
a theory is a (bivalent boolean) topos (Lawvere 1971, Goldblatt 1984, Lambek and
Scott 1986), which we call SYNTAX. Categorically, SL is the internal language of
SYNTAX; the relationship between the two is one of adjoint equivalence (Lambek
and Scott 1986).

A second important important difference between HOG and Lambek’s categor-
ical grammar is that it follows Curry (1961) in distinguishing phonology (pheno-
grammar) from syntax (tectogrammar). The way this is done isby having a second
higher-order intuitionistic logic for the phonology (hereafter PL for phonological
logic). The corresponding topos model is called PHONOLOGY,and (adopting
Lambek’s methodology for semantic interpretation) phonological interpretation is
a logical functor from SYNTAX to PHONOLOGY (or equivalently, a translation
from SL to PL that preserves all the logical connectives). Since the string realiza-
tions of signs are handled functorially, there is no need forthe syntactic logic to be
resource sensitive, and none of the structural rules in SYNTAX leads to undesirable
results (Pollard 2003).

HOG makes use, both in SYNTAX and PHONOLOGY, of the fact that the
Kleene-* type constructor is definable in a topos (as long as one follows Lambek
and Scott in including a natural number typeN ). That is, for every type A there is:

1. a typeA*;

2. a monic prooflosA : A ! A� (the name is mnemonic for “length-one
string”);

3. an elementeA : 1! A� (the nullA-string)

4. a proof̂ A : A� �A� ! A� (concatenation ofA-strings) such that` 8x(e^x = x)` 8x(x^e = x)` 8x; y; z((x^y)^z = x^(y^z))
Also, for eachA we defineA+ = [s 2 A�js 6= eA℄.

It can be shown that Kleene-* is monotonic in the sense that ifA is a subtype
of B thenA� is a subtype ofB�. Also there is a natural embeddingh : (A )B)� into A ) B�; intuitively, if f1; :::; fn : A ! B, thenh(f1 Æ ::: Æ fn) is�x(f1(x) Æ ::: Æ fn(x)). (Soh is a typed analog of Lisp’s mapcar. This will be
made more precise in the full paper.)

Thus, the PHONOLOGY topos can be obtained starting from the free bivalent
boolean topos with Kleene-* over the basic type PHONEME (so that PHONEME*
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is the type of phonological words and PHONEME** the type of strings of phono-
logical words) by using PL to define natural classes of phonemes and to impose
phonotactic constraints. But Kleene-* will also play a crucial role in SYNTAX, as
we will see.

It is crucially important that in a boolean topos, for each type A, the typeA)Bool (the powertype ofA) forms a boolean algebra, with local analogs of
union, intersection, and complementation. It must be remembered that these are
not global type constructors but only defined for the subtypes of a given type. For
example, in the case of union what we have is, for each typeA, a binary operation[A on the subtypes ofA, but not a general binary type constructor like� or + that
can produce a new type from any two arbitrary types.

In HOG, since directionality is handled by the phonologicalinterpretation,
there is no need for the implication constructor) to split into= andn. Thus e.g.
the transitive verbsees has typeNPa ) (NPnom) S) and the directionality
is handled by the phonological functorP : P (sees) = �s�t : t^=siz=^s.
1.3 Argument Neutrality

We begin with an already solved problem, viz. how to handle cases of argument
neutrality, such as (2) above. Following Levine et al. 2001,Daniels 2002, and Levy
and Pollard 2002, we employ a nonstandard inventory of CASEvalues:pnom (pure
nominative),pacc (pure accusative), andnom acc (syncretic between nominative
and accusative). ThenNPa andNPgen are defined as subtypes ofNP as follows:NPa = def [x 2 NP j CASE(x) = pacc _ CASE(x) = acc gen℄NPgen = def [x 2 NP j CASE(x) = pgen _ CASE(x) = acc gen℄
AlsoNPa gen = def [x 2 N j CASE(x) = acc gen℄ = NPa \ NPgen
That is, case syncretism is handled by the same device as feature conjunction, just
as in Bayer and Johnson 1995, except that our conjunction is (genuinely boolean)
subtype intersection in a boolean topos, not additive conjunction.

By contrast, if we are given (homophonous or not) distinct signs, such as
co1 andco2 of typesNPnom andNPa respectively, we can pair them to get
(co1,co2) of typeNPnom� NPa, but there is no monic to get us from there toNPnom ^ NPa. So we do not have to posit diacritics in phonology (Morrill’s
suggested integers paired with strings), nor are we required to accept Whitman’s
conclusion that there is no syntactic distinction between ambiguity and neutrality.

1.4 Argument Coordination and Functor Neutrality I

Next we consider functor neutrality, e.g.

(6) John is rich and an excellent cook.
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To get started, we need a type for the coordinated complementrich and an excellent
cook. If Bayer is right about coordination being the lattice dualof neutralization,
the obvious thing to try is[. Unfortunately however, as observed above,[ is not
a global type constructor, but is only defined at each typeAas a binary operator on
the subtypes ofA.

The next obvious thing to try is the coproduct+ in SYNTAX, whose basic
properties are dual to those of the product�. But this will not work either, because
in bivalent boolean higher order intuitionistic logic the only ways to proveA+ B
are either (1) to proveA and then apply the injectioni : A ! A + B or (2) to
proveB and then apply the injectionj : B ! A + B. That is, the only ways
rich and an excellent cook could be anAP + NP are for it either to have been anAP to start with or to have been anNP to start with. This is a version of the same
problem that arose in standard TLG in connection with analyzing coordination as
additive_.

However it should be observed that+ is just what we want for functor ambi-
guity, as in:

(7) a. I canned the tuna.

b. I canned the incompetent employee.

c. *I canned the tuna and the incompetent employee.

Here, pairing ofcan1 andcan2, both of typeNP) VP, yields an(NP) VP)�(NP) VP). But in intuitionistic propositional logic disjunctive syllogism and its
converse are valid:1 (A+B)) C � (A) C)� (B ) C)
So the ambiguity ofcan amounts to typing it to(NP +NP)) VP.

Well, if neither the local coproduct nor the global one will model coordination,
what is left? Another possibility is suggested by the analysis of Dalrymple and
Kaplan (2000), which treats the f-structure of a coordinatephrase as something
like the set2 of the f-structures of the conjuncts. The natural way to formalize
the DK analysis of coordination in HOG is to say that the coordination of anA
and aB is a set each of whose elements is either anA or aB, that is it has type(A+B)) Bool. (We really should refine things a bit to limit to nonempty finite
subsets ofA + B, but never mind; we are going to discard this analysis anyway.)
More specifically, ifa andb are of typeA andB respectively, theni(a) andj(b) are
both of typeA + B (so far this is following Morrill’s account), but next we avail
ourselves of the fact that (in any boolean topos), for any type C there is always
an embeddingsingC : C ! (C ) Bool) mapping each element ofC to the

1Categorically, these together constitute the Law of Exponents, which holds in any bicartesian
closed category and therefore in any topos. The arithmetic law of exponents, where the types are
natural numbers and the type constructors are arithmetic operations, is a special case.

2We say “something like” because we are not sure how much set theory is expressible in LFG’s
functional description language.
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singleton containing it; so that, takingC to beA + B and omitting the subscript,sing(i(a)) andsing(j(b)) are both of typeA + B ) Bool. Now we have things
that we can union together, so (picking up the Morrill narrative again) we formsing(i(a)))[sing(b(j)). Intuitively this is the doubleton setfa; bg. Applying this
to example (6), we deriveand(sing(i(rich)); sing(j(an excellent cook))) as an(AP +NP)) Bool.

Thus, we have shown that, at an appropriate level of abstraction, Morrill’s anal-
ysis of coordination and Dalrymple and Kaplan’s are essentially the same (mod-
ulo the identification of members of a set with their singleton subsets). Likewise
(modulo the same thing) we have preserved Bayer’s insight that neutralization and
coordination are, respectively, intersection and union (though one must be careful
about the types whose powersets these operations live on).

1.5 Argument Coordination and Functor Neutrality II

We are not out of the woods yet, though. For one thing, if we nowtry to analyze
functor neutrality by saying that e.g.is is a((AP+NP)) Bool)) VP, it follows
that it can never combine directly with a noncoordinateAP or a noncoordinateNP;
instead such things must be shifted via a canonical injection followed by a singular
embedding. More generally, since arguments always have thepossibility of being
coordinate structures, we need to change our general theoryof argument selection,
so that whenever a word was assigned typeA) B before, it will now be assigned
(A ) Bool) ) B. Second, we have not provided any account of how coordinate
structures are phonologically interpreted. This is a nontrivial problem because sets
are not linearly ordered, and yet the phonological realizations of the conjuncts must
be. Third, there is no place in our account to locate the fact thatand andor must
be different signs that receive different phonological andsemantic interpretations.
Fourth, we have to generalize to nonbinary coordination (where some of the coor-
dinated phrases may themselves be coordinate structures).Fifth, we need to handle
so called “principled resolution” strategies for assigning agreement (person, num-
ber, and gender) features to coordinate structures (Corbett 1983), strategies which
are often sensitive to the linear order of the coordinated phrases. For example, in
Czech, if the coordinate subjects follow the verb, the agreement features of the
verb can be dependent on the relative order of the subjects.

Because linear order enters into so many of the considerations just mentioned,
rather than try to address them in terms of sets(A ) Bool), we prefer to refine
the DK-like account sketched above by working with strings (lists) instead. o The
gist of the string-based account of coordination is that foreach syntactic typeA,
there is a type of “generalizedA”. As a first approximation, a generalizedA can
be thought of as something which is either anA or a coordination ofA’s. But
that is too simple because it does not allow for the possibility that one or more of
the coordinated phrases in a coordinate structure might themselves be coordinate
structures. So instead we set things up in such a way that a generalizedA is either
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anA or a coordination of generalizedA’s. More precisely, for each sign typeA
we have a typeGEN[A℄ and a monicgenA : A ! GEN[A℄. We now assign
the conjunctions andA and orA not the typeA ) (A ) A), but rather the typeGEN[A℄+ ) (GEN[A℄ ) GEN[A℄), with P (and) = �s; t:s^=�nd=^t. Mod-
ulo this change, the account now runs along the same lines as the hybrid Morrill-
Dalrymple-Kaplan-style account given above.

By way of illustration, consider the example (5), repeated below:

(5) Kim is [drunk, stoned, or under the table] and an inveterate liar.

Such examples are also problematic for DK because the LFG functional descrip-
tion language only allows sets of f-structures, but not setsof sets, etc. We start by
assigningis the typeGEN[AP+PP+NP℄) VP, and using the coproduct injec-
tions composed with thegen injection to shift all the conjuncts toGEN[AP +PP + NP℄. Next we use thelos injections to shift each of the first two con-
juncts to(GEN[AP + PP + NP℄)+ which are then concatenated to form another(GEN[AP+PP+NP℄)+. Then we applyorAP+PP+NP to this andunder the table,
obtaining aGEN[AP+PP+NP℄. (Note that we would have obtained a different
one had we appliedor rather thanand, so that the identity of the conjunction is
being taken into account.) Another application of thelos injection shifts this to a(GEN[AP+PP+NP℄)+, and finallyandAP+PP+NP combines with this and and
an inveterate liar to produce aGEN[AP + NP + PP℄.

But there is no way for a merely ambiguous functor to become neutral, e.g. for
modalcan of typeGEN[VP℄) VP and main verbcan of typeGEN[NP℄) VP
to somehow get together and cook up anGEN[VP+NP℄) VP. If we pair them
together we get something of type(GEN[NP℄) VP)� (GEN[VP℄) VP)
which, by the Law of Exponentials, yields an(GEN[NP℄ + GEN[VP℄)) VP
But (by a contravariance argument) to get from this toGEN[VP + NP℄ ) VP,
we would need a proof:GEN[VP + NP℄ toGEN[NP℄ + GEN[VP℄. This cannot
exist; if it did, it would let us shift the coordination of aVP and anNP either to anNP or to aVP. This is the desired result.

It may appear as though the preceding argument depends on thearguments of
the homophonous functors having different types, but in fact this is not the case.
Suppose instead we look at the two main verbscan1 ‘to put in cans’ andcan2 ‘to
fire (an employee)’, Then by pairing and disjunctive syllogism again, we get the
copair [can1,can2]: (GEN[NP℄+GEN[NP℄)) VP. To shift this to aGEN[NP])VP, by contravariance again we need a purely logical proof fromGEN[NP℄ toGEN[NP℄+GEN[NP℄. In fact there are two: the canonical injectionsi andj. But
of course composing[can1; can2℄ with either of those just throws one ofcan1 or
can2 away.
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1.6 Functor Coordination.

Finally, we consider examples of functor coordination suchas the celebrated

(8) a. Er
he

findet
findsa und

and
hilft
helpsdat FRAUEN

women.ACC/DAT

‘He finds and helps women.’

b. *Er
he

findet
findsa und

and
hilft
helpsdat MÄNNER.

men.ACC

c. *Er
he

findet
findsa und

and
hilft
helpsdat KINDERN.

children.DAT

This is less straightforward, for reasons that have nothingto do with neutrality. The
reason is that the theory of coordination as sketched above does not even handle
simple cases of coordination of like functors, as in

(9) John walks, talks, and smokes.

Here, starting withwalks and talks both of typeGEN[NP℄ ) S, we can easily
producewalks and talks as aGEN[GEN[NP℄ ) S℄, but what enables this to
combine with anNP, or more generally, aGEN[NP℄? Note we don’t have to
require that the result be anS; it would be good enough for the result to be aGEN[S℄, the same type as

(10) John walks, John talks, and John smokes.

Ignoring the extra complication of conjuncts which are themselves coordinate struc-
tures, the problem here is that empirically, in functor coordination, the coordinated
functors must all have the same directionality (i.e. be looking for their arguments
in the same direction, and the phonology of the conjunction must be different for
the leftward case than for the rightward one. Roughly what weneed is, for the
rightward case,P (andr) = �s:�x:maparr(begin(s); e)^=�nd=^[last(s)℄(x)
and for the leftward caseP (andl) = �s:�x:[first(s)℄(x^=�nd=^maparl(rest(s); e)
wheree is the null string andmaparr, maparl are functions like Lisp mapcar
except that they are only defined on strings of functors with the same directionality.
That is, in the phonology the (left or right) peripheral conjunct combines with the
argument as if the other conjuncts were not there, and then the other conjuncts are
appeased by having the null string fed to them.

The reason this is problematic is that, since our type theoryis nondirectional,maparr (or maparl) cannot tell by looking at a string of functors what their
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directionality is. Why? It is because the directionality isgiven by the functorP : SYNTAX ! PHONOLOGY, which is external to SYNTAX. In order to solve
the problem, it is necessary to revise the grammar architecture so that SYNTAX
and PHONOLOGY are subtoposes of a common topos whose internal language
talks about both syntax and phonology, as well as the interface between them.
In that caseP becomes a (partial) endofunctor. Thus the problem is reduced to
representing the endofunctorP internally as a polymorphic function. In order to
do that, we need to be working inside a topos where polymorphic functions are are
definable, that is, we need our logic of phonology and syntax to be a polymorphic
lambda calculus.

1.7 Conclusion

We showed that the standard TLG account of neutrality and coordination is unten-
able. Using as our framework a version of Lambek’s categorical grammar with a
type theory based on Lambek and Scott’s higher order intuitionistic logic (the in-
ternal language of a topos) rather than the Lambek calculus,we showed that this
account can largely be salvaged. However, the difficulty of phonologically inter-
preting coordinated functors of differing directionalitysuggests a need to handle
both phonology and syntax within a single polymorphically typed lambda calculus.
We intend to explore this approach next.

We suspect this is the right direction to go in, though we haveyet to work out
the details. We are not worried about working in an expressive formalism, given
the competition (see Kepser 2001 for the undecidability of finite model checking
(!) in RSRL and Carpenter 1999 on the Turing equivalence of multimodal catego-
rial grammar). To look at the issue another way, we have nevermet a programmer
who declined to employ a language because it was capable of expressing undecid-
able problems; one must just take care that the programs one wants to terminate
actually do. Still another take on it is that when one formalizes a scientific the-
ory, one gets at the real-world constraints being analyzed by the theory one writes,
not by requiring that the language in which one writes the theory be inexpressive.
Otherwise physicists studying gravitation might insist onwriting their equations in
languages where differential equations of order higher than two were not just em-
pirically wrong but rather were syntax errors. In any case, programming language
theory has long since made the move to formalisms that can express polymor-
phism; natural languages aremore complicated than programming languages, so
why should the math be simpler?
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